Factor V Leiden and Other Coagulation Factor Mutations Affecting Thrombotic Risk

Total Page:16

File Type:pdf, Size:1020Kb

Factor V Leiden and Other Coagulation Factor Mutations Affecting Thrombotic Risk Clinical Chemistry 43:9 1678–1683 (1997) Oak Ridge Conference Factor V Leiden and other coagulation factor mutations affecting thrombotic risk Rogier M. Bertina Five genetic defects have been established as risk fac- dominant and recessive inheritances (fibrinogen Naples) tors for venous thrombosis. Three are protein C, protein have been reported [2]. The evidence that dysfibrinogen- S, and antithrombin deficiencies, defects in the antico- emia can be associated with thrombosis is scarce. The agulant pathways of blood coagulation. Together they most convincing support was published in 1995 in a can be found in ;15% of families with inherited throm- report from the SSC subcommittee on fibrinogen [2].So bophilia. Their laboratory diagnosis is hampered by the far at least 15 different mutations in the fibrinogen a, b, large genetic heterogeneity of these defects. The other and g genes have been reported in patients with throm- two genetic risk factors, resistance to activated protein C bosis that result in the phenotype of dysfibrinogenemia. associated with the factor V Leiden mutation and in- Antithrombin deficiency was first reported in 1965 by creased prothrombin associated with the prothrombin Egeberg [3]. It is inherited as an autosomal dominant trait, 20210 A allele, are much more prevalent and together with heterozygotes having an increased risk of venous can be found in 63% of the thrombophilia families. thrombosis [4]. Basically there are two types of antithrom- Because both defects are caused by a single mutation, bin deficiency: type 1 deficiency (reduction of both func- DNA analysis is the basis of their laboratory diagnosis. tional and immunological antithrombin) and type II defi- ciency (presence of an abnormal molecule). At present, Venous thrombosis is a common disease, with an esti- .79 different mutations in the antithrombin gene have mated annual incidence of 1 in 1000 persons. The devel- been reported that are associated with a type I or type II opment of a thrombotic event is the final result of multiple deficiency [5]. Heterozygosity for antithrombin deficiency interactions between different genetic and environmental can be found in ;4% of families with inherited thrombo- components. This is most clearly demonstrated in inher- philia, in 1% of consecutive patients with a first deep vein ited thrombophilia, a genetically determined tendency to thrombosis (DVT), and in 0.02% of healthy individuals venous thrombosis caused by the segregation of one [6].1 (monogenetic trait) or more (complex trait) disease alleles. Protein C deficiency was first reported in 1981 by Because a first thrombotic event is itself a very strong risk Griffin et al. [7]. In families with thrombophilia it is factor for thrombosis, it is important to identify individ- inherited as an autosomal dominant disorder: In these uals at risk and to offer them adequate treatment and (or) families heterozygosity for protein C deficiency is a prophylaxis. significant risk factor for venous thrombosis [8].Onthe other hand, autosomal recessive inheritance has been genetic risk factors for thrombophilia observed in families from newborns with severe throm- During the past 30 years, six genetic defects (listed in bosis resulting from homozygous or compound heterozy- Table 1) have been identified that are associated with an gous protein C deficiency [9]. Also here, type I and type II increased risk of venous thrombosis. Dysfibrinogenemia deficiencies have been reported. Protein C deficiency is was first described in 1965 by Beck et al. [1]. It is a rare genetically very heterogenous: .160 different mutations disorder (prevalence of 1% among selected thrombosis in the protein C gene have been reported to be associated patients), most commonly identified by an abnormal with a type I or II protein C deficiency [10]. Heterozygos- Reptilase® time and (or) thrombin time. Both autosomal ity for protein C deficiency is found in ;6% of families with inherited thrombophilia, in 3% of consecutive pa- Hemostasis and Thrombosis Research Center, Leiden University Medical Center, C2-R-143, P.O. Box 9600, 2300 RC Leiden, The Netherlands. Fax 1 Nonstandard abbreviations: DVT, deep vein thrombosis; APC, activated 131-71-5266755; e-mail [email protected]. protein C; SR, sensitivity ratio; CI, confidence interval; and APTT, activated Received May 14, 1997; revised and accepted June 27, 1997. partial thromboplastin time. 1678 Clinical Chemistry 43, No. 9, 1997 1679 Table 1. Genetic defects in inherited thrombophilia. deficiency. Hopefully in the future other techniques will become available that will make sequencing of a particu- Prevalence, % Mutations Dysfibrinogenemia 1.0 .11 lar gene a feasible option in the routine hematology Antithrombin deficiency 4.3 .79 laboratory. Protein C deficiency 5.7 .160 The diagnostic procedures for identification of protein Protein S deficiency 5.7 .69 C and protein S deficiencies especially need further im- APC resistance 45 1 provement. Because of biological variation and gene– Increased prothrombin 18 1 environment interactions, there is a large overlap in, for Unknown 30 ? instance, protein C values between proven carriers of a protein C deficiency (heterozygotes) and non-protein C- deficient family members [8]. In practice this leads to the tients with a first DVT, and in 0.3% of healthy individuals definition of arbitrary cutoff points that never will pre- [6]. vent substantial percentages of false-positive and false- Protein S deficiency was first described in 1984 by negative diagnoses. Also, it has become clear that the Comp et al. [11]. In thrombophilic families it is inherited range of protein C values that can be measured in healthy as an autosomal dominant disorder. Heterozygotes in individuals depends on age and gender [17]. these families have an increased risk of venous thrombo- sis when compared with their unaffected family members A further complication in the diagnosis is that many [12]. Also, protein S deficiency is genetically heteroge- patients will be treated with oral anticoagulants. This nous. Almost 70 different mutations in the protein S gene treatment will result in a decrease both in the plasma (PROS-1) have been reported now [13]. The large majority concentration and in the degree of carboxylation of the of protein S-deficient patients have a type I deficiency. vitamin K-dependent proteins, including protein C and The prevalence of heterozygotes for a type I protein S protein S. This problem has been extensively discussed in deficiency is 6% in families with inherited thrombophilia the past and several solutions have been proposed but and 1–2% in consecutive patients with a first DVT [6]. later found to be not good enough (e.g., comparison of Interestingly, heterozygosity for protein S deficiency was protein C/protein S concentrations with those of factor not identified as a risk factor for venous thrombosis in a VII or factor II). recent large patient control study, whereas heterozygosity In the case of the diagnosis of protein S deficiency, an for protein C or antithrombin deficiency was [14]. additional complication is that in plasma part of the More recently, two other genetic risk factors have been protein S circulates in a complex with the C4b binding reported that differ from the previous ones in two re- protein, and that these complexes do not have APC spects. They are more common and they are always cofactor activity [18, 19]. Only very recently have some associated with the same genetic defect. The first concerns hard data been presented that in families with a known activated protein C (APC) resistance due to the factor V type I mutation in the protein S gene, heterozygotes can Leiden (FV R506Q) mutation [15], and the second is be identified better on the basis of their reduced free increased prothrombin, which is associated with the protein S concentrations than on the basis of their reduced 20210 A allele of the prothrombin gene [16]. In the next total protein S concentrations. Hopefully these new in- paragraphs these genetic defects will be discussed in more sights will result in the near future in new recommenda- detail. tions for the laboratory diagnosis of protein S deficiency. Interestingly, protein C, protein S, and antithrombin A technical problem with many of the protein C and deficiencies all involve defects in anticoagulant pathways, protein S clotting assays was discovered during the last 3 whereas the factor V Leiden mutation and the prothrom- years. Most of these assays apparently will give abnormal bin gene mutation involve procoagulant factors. In all results in plasmas of patients that are APC resistant but cases the expected result of the genetic defect is an not protein C or protein S deficient [20, 21]. Therefore new enhanced thrombin generation. functional tests are needed that are more specific for these laboratory diagnosis two anticoagulant proteins. Screening of patients for genetic defects associated with From the foregoing it is clear that laboratory diagnosis thrombophilia is done almost exclusively in specialized of protein C and protein S deficiencies is still far from hemostasis and thrombosis centers. For the detection of optimal, especially where the relatively low prevalence of heterozygotes of protein C, protein S, or antithrombin these defects among thrombosis patients further contrib- deficiency, we still rely on the results of specific functional utes to the rather unfavorable positive and negative and (or) immunological tests. These genetic defects
Recommended publications
  • The Rare Coagulation Disorders
    Treatment OF HEMOPHILIA April 2006 · No. 39 THE RARE COAGULATION DISORDERS Paula HB Bolton-Maggs Department of Haematology Manchester Royal Infirmary Manchester, United Kingdom Published by the World Federation of Hemophilia (WFH) © World Federation of Hemophilia, 2006 The WFH encourages redistribution of its publications for educational purposes by not-for-profit hemophilia organizations. In order to obtain permission to reprint, redistribute, or translate this publication, please contact the Communications Department at the address below. This publication is accessible from the World Federation of Hemophilia’s web site at www.wfh.org. Additional copies are also available from the WFH at: World Federation of Hemophilia 1425 René Lévesque Boulevard West, Suite 1010 Montréal, Québec H3G 1T7 CANADA Tel. : (514) 875-7944 Fax : (514) 875-8916 E-mail: [email protected] Internet: www.wfh.org The Treatment of Hemophilia series is intended to provide general information on the treatment and management of hemophilia. The World Federation of Hemophilia does not engage in the practice of medicine and under no circumstances recommends particular treatment for specific individuals. Dose schedules and other treatment regimes are continually revised and new side effects recognized. WFH makes no representation, express or implied, that drug doses or other treatment recommendations in this publication are correct. For these reasons it is strongly recommended that individuals seek the advice of a medical adviser and/or to consult printed instructions provided by the pharmaceutical company before administering any of the drugs referred to in this monograph. Statements and opinions expressed here do not necessarily represent the opinions, policies, or recommendations of the World Federation of Hemophilia, its Executive Committee, or its staff.
    [Show full text]
  • Activated Protein C Resistance: the Most Common Risk Factor for Venous Thromboembolism
    J Am Board Fam Pract: first published as 10.3122/15572625-13-2-111 on 1 March 2000. Downloaded from CLINICAL REVIEW Activated Protein C Resistance: The Most Common Risk Factor for Venous Thromboembolism Dawn R. Sheppard, DO Background: Venous thromboembolism is a major cause of morbidity and mortality. Although activated protein C resistance (APC-R) is the most commonly recognized inherited risk factor for venous throm­ boembolism, little is known about its long-tenn implications on health. Methods: MEDLINE was searched from January 1989 through August 1999 using the key words ''thromboembolism," ''thrombosis," "activated protein C resistance," and "factor V Leiden." Results: One in 1000 people in the United States is affected by venous thromboembolism annually. APC-R is now understood to be responsible for up to 64% of these cases. APC-R, which occurs widely in some ethnic groups and is nearly absent in others, is due to a single point mutation in the gene for clot­ ting factor V. As a result, inactivation of factor V by activated protein C is impaired, leading to a hyper­ coagulable state. This condition creates a lifelong increased risk of thrombosis and, possibly, anticoag- ulant therapy.. Conclusion: Family physicians have a new tool for assessing risks for venous thromboembolism. Recognizing that up to 64% of patients with venous thromboembolism can have APe-R and treating this disorder with prophylactic and therapeutic anticoagulation might reduce patient morbidity and mortal­ ity from venous thromboembolism. Screening high-risk patients might now be indicated. (J Am Board Fam Pract 2000i13:111-5.) Venous thromboembolism, a serious health prob­ "thromboembolism," "thrombosis," "activated pro­ lem and an important cause of morbidity, affects tein C resistance," and "factor V Leiden." about 1 in 1000 persons annually.
    [Show full text]
  • Familial Multiple Coagulation Factor Deficiencies
    Journal of Clinical Medicine Article Familial Multiple Coagulation Factor Deficiencies (FMCFDs) in a Large Cohort of Patients—A Single-Center Experience in Genetic Diagnosis Barbara Preisler 1,†, Behnaz Pezeshkpoor 1,† , Atanas Banchev 2 , Ronald Fischer 3, Barbara Zieger 4, Ute Scholz 5, Heiko Rühl 1, Bettina Kemkes-Matthes 6, Ursula Schmitt 7, Antje Redlich 8 , Sule Unal 9 , Hans-Jürgen Laws 10, Martin Olivieri 11 , Johannes Oldenburg 1 and Anna Pavlova 1,* 1 Institute of Experimental Hematology and Transfusion Medicine, University Clinic Bonn, 53127 Bonn, Germany; [email protected] (B.P.); [email protected] (B.P.); [email protected] (H.R.); [email protected] (J.O.) 2 Department of Paediatric Haematology and Oncology, University Hospital “Tzaritza Giovanna—ISUL”, 1527 Sofia, Bulgaria; [email protected] 3 Hemophilia Care Center, SRH Kurpfalzkrankenhaus Heidelberg, 69123 Heidelberg, Germany; ronald.fi[email protected] 4 Department of Pediatrics and Adolescent Medicine, University Medical Center–University of Freiburg, 79106 Freiburg, Germany; [email protected] 5 Center of Hemostasis, MVZ Labor Leipzig, 04289 Leipzig, Germany; [email protected] 6 Hemostasis Center, Justus Liebig University Giessen, 35392 Giessen, Germany; [email protected] 7 Center of Hemostasis Berlin, 10789 Berlin-Schöneberg, Germany; [email protected] 8 Pediatric Oncology Department, Otto von Guericke University Children’s Hospital Magdeburg, 39120 Magdeburg, Germany; [email protected] 9 Division of Pediatric Hematology Ankara, Hacettepe University, 06100 Ankara, Turkey; Citation: Preisler, B.; Pezeshkpoor, [email protected] B.; Banchev, A.; Fischer, R.; Zieger, B.; 10 Department of Pediatric Oncology, Hematology and Clinical Immunology, University of Duesseldorf, Scholz, U.; Rühl, H.; Kemkes-Matthes, 40225 Duesseldorf, Germany; [email protected] B.; Schmitt, U.; Redlich, A.; et al.
    [Show full text]
  • Regulation of Coagulation by the Fibrinolytic System: Expecting the Unexpected
    Bleeding disorders Regulation of coagulation by the fibrinolytic system: expecting the unexpected K.A. Hajjar ABSTRACT Department of Cell and Recent investigations into fibrinolysis and coagulation have yielded exciting and unexpected findings. Developmental Biology, Of note, deficiencies of the major components of the classical fibrinolytic system, namely plasminogen, Department of Pediatrics tissue plasminogen activator, and urokinase, are now recognized to be rare causes of macrovascular Department of Medicine, thrombosis. At the same time, both plasminogen activator excess and fibrinolytic inhibitor deficiencies Weill Cornell Medical College, are associated with clinically significant bleeding, while elevated inhibitor levels, particularly thrombin New York, New York, USA activatable fibrinolysis inhibitor, appear to confer clinically significant risk for thrombosis. Receptor- mediated cell surface fibrinolysis adds a new dimension to the regulation of fibrin balance. Exaggerated expression of the annexin A2 complex, for example, is associated with hemorrhage in acute promyelo- Hematology Education: cytic leukemia, whereas autoantibodies directed against A2 correlate with thrombotic disease in the education program for the patients with antiphospholipid syndrome. The contributions of the urokinase receptor and a diverse annual congress of the European array of plasminogen receptors to fibrin homeostasis remain to be defined. Future studies are likely to Hematology Association reveal novel mechanisms that co-regulate coagulation and
    [Show full text]
  • The Two Faces of Thrombosis: Coagulation Cascade and Platelet Aggregation. Are Platelets the Main Therapeutic Target
    Thrombosis and Circulation Open Access Cimmino et al., J Thrombo Cir 2017, 3:1 Review Article Open Access The Two Faces of Thrombosis: Coagulation Cascade and Platelet Aggregation. Are Platelets the Main Therapeutic Target? Giovanni Cimmino*, Salvatore Fischetti and Paolo Golino Department of Cardio-Thoracic and Respiratory Sciences, Section of Cardiology, University of Campania “Luigi Vanvitelli”, Naples, Italy *Corresponding author: Giovanni Cimmino, MD, PhD, Department of Cardio-Thoracic and Respiratory Sciences, Section of Cardiology, University of Campania “Luigi Vanvitelli”, via Leonardo Bianchi, 180131 Naples, Italy. Tel: +39-081-7064175, Fax: +39-081-7064234; E-mail: [email protected] Received date: Dec 28, 2016, Accepted date: Jan 27, 2017, Published date: Jan 31, 2017 Copyright: © 2017 Giovanni C, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Abstract Acute thrombus formation is the pathophysiological substrate underlying several clinical conditions, such as acute coronary syndrome (ACS) and stroke. Activation of coagulation cascade is a key step of the thrombotic process: vessel injury results in exposure of the glycoprotein tissue factor (TF) to the flowing blood. Once exposed, TF binds factor VII/VIIa (FVII/FVIIa) and in presence of calcium ions, it forms a tertiary complex able to activate FX to FXa, FIX to FIXa, and FVIIa itself. The final step is thrombin formation at the site of vessel injury with subsequent platelet activation, fibrinogen to fibrin conversion and ultimately thrombus formation. Platelets are the key cells in primary hemostasis.
    [Show full text]
  • Alpha-Dystroglycan Plays Functional Roles in Platelet Aggregation and Thrombus Growth
    Alpha-dystroglycan plays functional roles in platelet aggregation and thrombus growth by Reid Gallant A thesis submitted in conformity with the requirements For the degree of Master of Science Graduate Department of Laboratory Medicine and Pathobiology University of Toronto © Copyright by Reid Gallant 2017 i Alpha-dystroglycan Plays Functional Roles in Platelet Aggregation and Thrombus Growth Reid Gallant Master of Science Department of Laboratory Medicine and Pathobiology University of Toronto 2017 ABSTRACT Fibrinogen (Fg) and von Willebrand factor (VWF) have been considered essential for platelet adhesion and aggregation. However, platelet aggregation still occurs in mice lacking Fg and/or VWF but not β3 integrin, suggesting other, unidentified αIIbβ3 integrin ligand(s) mediate platelet aggregation. Through screening published platelet proteomics data, we identified a candidate, alpha-dystroglycan (α-DG). Using Western blot and flow cytometry, I found α-DG is expressed on platelets. Using aggregometry, I observed that antibodies against α-DG or its N- terminal Laminin-binding site, decreased platelet aggregation induced by various platelet agonists in both platelet-rich plasma and gel-filtered platelets. These antibodies also decreased platelet adhesion/aggregation in perfusion chambers independent of α-DG-Laminin interaction. Using laser injury intravital microscopy and carotid artery thrombosis models, we further found that these anti-α-DG antibodies decreased thrombus growth in vivo. Our results showed that α- DG may form an α-DG-fibronectin complex that binds to αIIbβ3 integrin, contributing to platelet adhesion/aggregation, and thrombosis growth. ii Acknowledgements ―It helps a man immensely to be a bit of a hero-worshipper, and the stories of the lives of the masters of medicine do much to stimulate our ambition and rouse our sympathies‖ – Sir William Osler I will always be grateful to my MSc supervisor, Dr.
    [Show full text]
  • ISTH Couverture 6.6.2012 10:21 Page 1 ISTH Couverture 6.6.2012 10:21 Page 2 ISTH Couverture 6.6.2012 10:21 Page 3 ISTH Couverture 6.6.2012 10:21 Page 4
    ISTH Couverture 6.6.2012 10:21 Page 1 ISTH Couverture 6.6.2012 10:21 Page 2 ISTH Couverture 6.6.2012 10:21 Page 3 ISTH Couverture 6.6.2012 10:21 Page 4 ISTH 2012 11.6.2012 14:46 Page 1 Table of Contents 3 Welcome Message from the Meeting President 3 Welcome Message from ISTH Council Chairman 4 Welcome Message from SSC Chairman 5 Committees 7 ISTH Future Meetings Calendar 8 Meeting Sponsors 9 Awards and Grants 2012 12 General Information 20 Programme at a Glance 21 Day by Day Scientific Schedule & Programme 22 Detailed Programme Tuesday, 26 June 2012 25 Detailed Programme Wednesday, 27 June 2012 33 Detailed Programme Thursday, 28 June 2012 44 Detailed Programme Friday, 29 June 2012 56 Detailed Programme Saturday, 30 June 2012 68 Hot Topics Schedule 71 ePoster Sessions 97 Sponsor & Exhibitor Profiles 110 Exhibition Floor Plan 111 Congress Centre Floor Plan www.isth.org ISTH 2012 11.6.2012 14:46 Page 2 ISTH 2012 11.6.2012 14:46 Page 3 WelcomeCommittees Messages Message from the ISTH SSC 2012 Message from the ISTH Meeting President Chairman of Council Messages Dear Colleagues and Friends, Dear Colleagues and Friends, We warmly welcome you to the elcome It is my distinct privilege to welcome W Scientific and Standardization Com- you to Liverpool for our 2012 SSC mittee (SSC) meeting of the Inter- meeting. national Society on Thrombosis and Dr. Cheng-Hock Toh and his col- Haemostasis (ISTH) at Liverpool’s leagues have set up a great Pro- UNESCO World Heritage Centre waterfront! gramme aiming at making our off-congress year As setting standards is fundamental to all quality meeting especially attractive for our participants.
    [Show full text]
  • Whole-Exome Sequencing of a Patient with Severe and Complex Hemostatic Abnormalities Reveals a Possible Contributing Frameshift Mutation in C3AR1
    Downloaded from molecularcasestudies.cshlp.org on October 2, 2021 - Published by Cold Spring Harbor Laboratory Press Whole-exome sequencing of a patient with severe and complex hemostatic abnormalities reveals a possible contributing frameshift mutation in C3AR1 Eva Leinøe1, Ove Juul Nielsen1, Lars Jønson2 and Maria Rossing2∗ Department of Hematology1 and Center for Genomic Medicine2, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, DK-2100 Copenhagen, Denmark Running head: WES reveals a C3AR1 mutation in a complex hemostatic patient ∗Corresponding author: Maria Rossing Center for Genomic Medicine Rigshospitalet University of Copenhagen Blegdamsvej 9 DK-2100 Copenhagen Denmark E-mail: [email protected] Phone: +45 3545 3016 Fax: +45 3545 4435 1 Downloaded from molecularcasestudies.cshlp.org on October 2, 2021 - Published by Cold Spring Harbor Laboratory Press Abstract The increasing availability of genome-wide analysis has made it possible to rapidly sequence the exome of patients with undiagnosed or unresolved medical conditions. Here, we present the case of a 64-year-old male patient with schistocytes in the peripheral blood smear and a complex and life-threatening coagulation disorder causing recurrent venous thromboembolic events, severe thrombocytopenia, and subdural hematomas. Whole-exome sequencing revealed a frameshift mutation (C3AR1 c.355-356dup, p.Asp119Alafs*19) resulting in a premature stop in C3AR1 (Complement Component 3a Receptor 1). Based on this finding, atypical hemolytic uremic syndrome was suspected due to a genetic predisposition, and a targeted treatment regime with Eculizumab was initiated. Life-threatening hemostatic abnormalities would most likely have persisted had it not been for the implementation of whole-exome sequencing in this particular clinical setting.
    [Show full text]
  • Diagnosis of Hemophilia and Other Bleeding Disorders
    Diagnosis of Hemophilia and Other Bleeding Disorders A LABORATORY MANUAL Second Edition Steve Kitchen Angus McCraw Marión Echenagucia Published by the World Federation of Hemophilia (WFH) © World Federation of Hemophilia, 2010 The WFH encourages redistribution of its publications for educational purposes by not-for-profit hemophilia organizations. For permission to reproduce or translate this document, please contact the Communications Department at the address below. This publication is accessible from the World Federation of Hemophilia’s website at www.wfh.org. Additional copies are also available from the WFH at: World Federation of Hemophilia 1425 René Lévesque Boulevard West, Suite 1010 Montréal, Québec H3G 1T7 CANADA Tel.: (514) 875-7944 Fax: (514) 875-8916 E-mail: [email protected] Internet: www.wfh.org Diagnosis of Hemophilia and Other Bleeding Disorders A LABORATORY MANUAL Second Edition (2010) Steve Kitchen Angus McCraw Marión Echenagucia WFH Laboratory WFH Laboratory (co-author, Automation) Training Specialist Training Specialist Banco Municipal Sheffield Haemophilia Katharine Dormandy de Sangre del D.C. and Thrombosis Centre Haemophilia Centre Universidad Central Royal Hallamshire and Thrombosis Unit de Venezuela Hospital The Royal Free Hospital Caracas, Venezuela Sheffield, U.K. London, U.K. on behalf of The WFH Laboratory Sciences Committee Chair (2010): Steve Kitchen, Sheffield, U.K. Deputy Chair: Sukesh Nair, Vellore, India This edition was reviewed by the following, who at the time of writing were members of the World Federation of Hemophilia Laboratory Sciences Committee: Mansoor Ahmed Clarence Lam Norma de Bosch Sukesh Nair Ampaiwan Chuansumrit Alison Street Marión Echenagucia Alok Srivastava Andreas Hillarp Some sections were also reviewed by members of the World Federation of Hemophilia von Willebrand Disease and Rare Bleeding Disorders Committee.
    [Show full text]
  • RIASTAP®, Fibrinogen Concentrate (Human) Lyophilized Powder for Solution for Intravenous Injection
    HIGHLIGHTS OF PRESCRIBING INFORMATION -------------------------------------CONTRAINDICATIONS ------------------------------------ These highlights do not include all the information needed to use RIASTAP • Known anaphylactic or severe systemic reactions to human plasma-derived products (4). safely and effectively. See full prescribing information for RIASTAP. ---------------------------------WARNINGS AND PRECAUTIONS---------------------------- RIASTAP®, Fibrinogen Concentrate (Human) • Monitor patients for early signs of anaphylaxis or hypersensitivity reactions and if necessary, discontinue administration and institute appropriate treatment (5.1). Lyophilized Powder for Solution for Intravenous Injection • Thrombotic events have been reported in patients receiving RIASTAP. Weigh the benefits of administration versus the risks of thrombosis (5.2). Initial U.S. Approval: 2009 • Because RIASTAP is made from human blood, it may carry a risk of transmitting ------------------------------------RECENT MAJOR CHANGES--------------------------------- infectious agents, e.g., viruses, the variant Creutzfeldt-Jakob disease (vCJD) agent Indications and Usage (1) 06/2021 and, theoretically, the Creutzfeldt-Jakob disease (CJD) agent (5.3). Dosage and Administration (2.2) 07/2020 -------------------------------------ADVERSE REACTIONS-------------------------------------- ----------------------------------INDICATIONS AND USAGE----------------------------------- • The most serious adverse reactions observed are thrombotic episodes (pulmonary RIASTAP, Fibrinogen
    [Show full text]
  • Platelet Surface Glycoproteins. Studies on Resting and Activated Platelets and Platelet Membrane Microparticles in Normal Subjec
    Platelet surface glycoproteins. Studies on resting and activated platelets and platelet membrane microparticles in normal subjects, and observations in patients during adult respiratory distress syndrome and cardiac surgery. J N George, … , N Kieffer, P J Newman J Clin Invest. 1986;78(2):340-348. https://doi.org/10.1172/JCI112582. Research Article The accurate definition of surface glycoprotein abnormalities in circulating platelets may provide better understanding of bleeding and thrombotic disorders. Platelet surface glycoproteins were measured on intact platelets in whole blood and platelet membrane microparticles were assayed in cell-free plasma using 125I-monoclonal antibodies. The glycoproteins (GP) studied were: GP Ib and GP IIb-IIIa, two of the major intrinsic plasma membrane glycoproteins; GMP-140, an alpha- granule membrane glycoprotein that becomes exposed on the platelet surface following secretion; and thrombospondin (TSP), an alpha-granule secreted glycoprotein that rebinds to the platelet surface. Thrombin-induced secretion in normal platelets caused the appearance of GMP-140 and TSP on the platelet surface, increased exposure of GP IIb-IIIa, and decreased antibody binding to GP Ib. Patients with adult respiratory distress syndrome had an increased concentration of GMP-140 and TSP on the surface of their platelets, demonstrating in vivo platelet secretion, but had no increase of platelet microparticles in their plasma. In contrast, patients after cardiac surgery with cardiopulmonary bypass demonstrated changes consistent with membrane fragmentation without secretion: a decreased platelet surface concentration of GP Ib and GP IIb with no increase of GMP-140 and TSP, and an increased plasma concentration of platelet membrane microparticles. These methods will help to define acquired abnormalities of platelet surface glycoproteins.
    [Show full text]
  • Thrombosis in the Antiphospholipid Syndrome
    Thrombosis in the antiphospholipid syndrome Reyhan D‹Z KÜÇÜKKAYA Division of Hematology, Department of Internal Medicine, Istanbul University, Istanbul School of Medicine, Istanbul, TURKEY Turk J Hematol 2006;23(1): 5-14 INTRODUCTION her autoimmune disorders, especially with systemic lupus erythematosus (SLE)[8]. Besi- Antiphospholipid antibodies (aPLA) are des these autoimmune conditions, aPLA may heterogenous antibodies directed against be present in healthy individuals, in patients phospholipid–protein complexes. Antiphosp- with hematologic and solid malignancies, in holipid syndrome (APS) is diagnosed when ar- patients with certain infections [syphilis, lep- terial and/or venous thrombosis or recurrent rosy, human immunodeficiency virus (HIV), fetal loss occurs in a patient in whom scre- cytomegalovirus (CMV), Epstein-Barr virus ening for aPLA are positive. Because both (EBV), etc.], and in patients being treated thrombosis and fetal loss are common in the with some drugs (phenothiazines, procaina- population, persistent positivity of aPLA is mide, phenytoin etc.). Those antibodies are important. This syndrome is predominant in defined as “alloimmune aPLA”, and they are females (female to male ratio is 5 to 1), espe- generally transient and not associated with cially during the childbearing years[1-7]. the clinical findings of APS[9]. A minority of As in the other autoimmune disorders, APS patients may acutely present with mul- aPLA and APS may accompany other autoim- tiple simultaneous vascular occlusions affec- mune diseases and certain situations. APS is ting small vessels predominantly, and this is referred to as “primary” when it occurs alone termed as “catastrophic APS (CAPS)”[1-7]. or “secondary” when it is associated with ot- Milestones in the Antiphospholipid Syndrome History Antifosfolipid sendromu The first antiphospholipid antibodies we- Anahtar Kelimeler: Antifosfolipid sendromu, Antifosfolipid re discovered by Wasserman et al.[10] in antikorlar, Tromboz.
    [Show full text]