Botanical Directory
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Details of Agreement's Executed in Form – III Sl. No Appl. No. Applicant
Details of Agreement’s Executed in Form – III Sl. Appl. Applicant Name & Contact For Name of the Project / Bioresources Agreement Patent No No. Details m Invention signed on No 1 100 M/s. Scitech Centre, III Invention relates to 1.Glycyrrhiza glabra 12.06.2007 7, Prabhat Nagar, composition and a process 2.Asparagus officinalis Jogeshwari (West), for preparation of a 3.Angelice officinalis Mumbai – 400 012, composition for 4.pimpinella anisum Maharashtra, manufacturing textured 5.Azdiracta indica 6.Acacia India. soluble container using catechu 7.Acorus calamus herbal texturing agent 8.Andrographis paniculata 9.Berberis asiatica 10.Bergenia cordifolia 11.Boerhaavia diffusa 12.Curcuma longa 13.Cuminum cyminum 14.Cinnamomum zilanicum 15.Coriandrum sativum 16.Centella asiatica 17. Clerodendrum paniculatum 18. Dioscorea bulbifera 19.Echinecea purpurea 20.Eclipta alba 21.Foeniculum vulgare 22.Gingiber officinale 23.Gymnema salvastre 24.hemidesmus indicus 25.Hydrastis urge or 26.Nardostachy jatamansi 27.Pueraria tuberose 28.Phyllanthus amarus 29.Picorrhiza kurroa 30.Pluchea lanceolata 31.Ricinus communis 32.Rauvolfia indica 33.Rubia cordifolia 34.Sida cordifolia 35.Saraca asoca 36.Saussurea lappa 37.Terminalia chebula 38.Tinospora cordifolia 39.Tylophora indica 40.Valeriana officinalis 41.Withiana somnifera 2 79 M/s. Vasundhara, III Water detoxication by Coconut Coir 21.06.2007 15, Saheed Nagar, using coconut coir Bhubaneswar – 751 007, Orissa, India. 3 80 M/s. Vasundhara, III Water detoxication by Bacha (Acorus calamus) 21.06.2007 15, Saheed Nagar, using bacha (Acorus rhizomes Bhubaneswar – 751 007, calamus) rhizomes extract Orissa, India. 4 81 M/s. Vasundhara, III Water detoxication by Jamun seed (Syzygium cumini 21.06.2007 15, Saheed Nagar, using Syzygium cumini (L.) Skeels) Bhubaneswar – 751 007, seed extract. -
A Review on Traditional Veterinary Medical Practices in Sri Lanka with Special Reference to Cattle Diseases
Tropical c4gricultural gesearch 8,-- e)aension 13(3): 2010 A REVIEW ON TRADITIONAL VETERINARY MEDICAL PRACTICES IN SRI LANKA WITH SPECIAL REFERENCE TO CATTLE DISEASES ERHSS Ediriweeral, NGAAS Nanayakkara2, OTMRKSB Kalawana2, YKSSL Sugathadasa3 1Department of Nidana Chikithsa, Institute of Indigenous Medicine, University of Colombo, Rajagiriya, Sri Lanka, 2Intern Medical Officer, 3Ayurvedic Physician Accepted: 21st July 2010 ABSTRACT Sri Lanka has well developed systems of traditional veterinary medicine. Unfortunately most of our people today, are unaware of these practices and they generally seek western modern veterinary medic- inal assistance due to this unawareness and also for convenience in their busy lives. Hence, this study was undertaken to collect and preserve the old knowledge and practices. Data were gathered from tra- ditional veterinary physicians in Central and Sabaragamuwa provinces, 011a leaves and text books. These physicians have a knowledge in identifying and treating diseases, preparation of medicines, mode of drug administration, burning of vital points (moxibustion), branding, and blood letting. Specific ap- plications of metaphysical nature such as mystical diagrams and charms, `Yanthra' or 'Kern' are also used. The striking feature of this treatment regimen is the incorporation of both physical (visible) and metaphysical (invisible) methods to treat diseases as preventive and therapeutic measures. The medici- nal preparations consist of herbs, metals, minerals and animal products including milk products, eggs, bones, meat, spider web, anthill mud and human urine. It is also observed that the traditional veteri- nary medicinal practices; especially in treatment of cattle, are very diverse. Key words: Cattle diseases, Traditional veterinary remedies, Sri Lanka INTRODUCTION the knowledge to identify and treat them by using various methods. -
Technical Guidelines for Reforestation at Ex-Coal-Mining Areas
Technical Guidelines for Reforestation at Ex-Coal-Mining Areas - Based on the outcomes of experimental reforestation activities at ex-coal-mining areas in South Kalimantan, Indonesia - Japan International Forestry Promotion and Cooperation Center (JIFPRO) March 2015 Technical Guidelines for Reforestation at Ex-Coal-Mining Areas - Based on the outcomes of experimental reforestation activities at ex-coal-mining areas in South Kalimantan, Indonesia - Eiichiro Nakama, Seiichi Ohta, Yasuo Ohsumi, Tokunori Mori and Satohiko Sasaki Japan International Forestry Promotion and Cooperation Center Fakhrur Razie, Hamdani Fauzi and Mahrus Aryadi Lambung Mangkurat University, Indonesia Japan International Forestry Promotion and Cooperation Center March 2015 Foreword During the past decades, deforestation and forest degradation continues especially in developing countries. According to the report of the Food and Agriculture Organization of the United Nation (FAO), approximately 13 million hectors of global forests have been lost annually due to forest land conversion to other land uses, forest fires and natural disasters, while reforestation and natural regeneration account for an increase of approx. 7.8 million hectors of forest cover. This means the net loss of global forest is estimated at 5.2 million hectors. Adverse impacts of forest conversion to farmland can be minimized as far as the land is properly used and managed in a sustainable manner. However, in some cases, problem soils are exposed and abandoned as degraded land. Deforestation by mining is a big issue these years. Problem soils such as strong acid soils and/or too much heavy metal soils appear at the ex-mining areas. In some cases it is too difficult to reforestate. -
Insecticidal Activity of Essential Oil Formulas and Their Physiological Effects on Eggplant
Journal Journal of Applied Horticulture, 19(2): 152-158, 2017 Appl Insecticidal activity of essential oil formulas and their physiological effects on eggplant Jarongsak Pumnuan*, Lampan Khurnpoon and Ammorn Insung Faculty of Agricultural Technology, King Mongkut’s Institute of Technology Ladkrabang, Bangkok, 10520, Thailand. *E-mail: [email protected] Abstract This study examined fumigation toxicity of 18 medicinal plant essential oils (EOs) against adult of aphid (Aphid gossypii) and whitefly (Bemisia tabaci). Then, non-target effects of the EO mixtures on physiological changes of eggplant (Solanum melongena) were tested. The insecticidal property and physiological toxicity of the fumigation formulas were also examined and compared to methyl bromide (MB) fumigation. The results showed that the eggplant fumigated with clove (Syzygium aromaticum) and lemon grass (Cymbopogon citratus) EOs mixture at the ratio of 1:3 (Cl1Le3) showed no significant physiological changes when compared to the control treatment. The formula resulted in similarly high mortalities (82-100%) of both insects when compared to MB. However, MB fumigation caused complete senescence appeared before day 3 observations. On the contrary, the eggplant fumigated with Cl1Le3 at 3 µL/L air showed no differences in the physiological changes when compared to the control throughout the 9-day examinations. Key words: Pytotoxicity, methyl bromide, fumigation, clove, lemon grass Introduction application and show considerable commercial significance when used as fumigant in storage containers (Solgi and Ghorbanpour, Vegetables are important export crops of Thailand (OAE, 2013a; 2014). Therefore, many medicinal plant essential oils and their 2013b). However, problems involving insecticide residues and insecticidal organic compounds have been extensively studied in insect contaminations have been threatening the credibility of the recent years. -
News and Notes
SPECIALNEWS AND FEATURES NOTES 15 India moves to protect traditional medicines from foreign patents “Non-Wood Forest Products (NWFPs) In the first step by a developing country to consist of goods of biological origin stop multinational companies from patenting other than wood, derived from forests, traditional remedies from local plants and other wooded land and trees outside animals, the Indian Government has forests.” effectively licensed 200 000 local treatments «Les produits forestiers non ligneux as "public property", free for anyone to use sont des biens d’origine biologique but no one to sell as a "brand". autres que le bois, dérivés des forêts, The move comes after scientists in Delhi des autres terres boisées, et des arbres noticed an alarming trend – the hors forêts.» making its own gum using only chicle gum "bioprospecting" of natural remedies by «Productos forestales no madereros base and natural flavourings and companies abroad. After trawling through son los bienes de origen biológico sweeteners. (Source: CNN [United the records of the global trademark offices, distintos de la madera derivados de los Kingdom], 3 April 2009.) officials found 5 000 patents had been bosques, de otras tierras boscosas y de issued – at a cost of at least US$150 million – los árboles fuera de los bosques.» for "medical plants and traditional (FAO’s working definition) BIOPROSPECTING/ systems". %BENEFIT-SHARING "More than 2 000 of these belong to the OR BIOPIRACY? Indian systems of medicine … We began to ask why multinational companies were Bioprospecting: “The Green Gold Rush” spending millions of dollars to patent %BIODEGRADABLE The Green Gold Rush is the name of a video treatments that so many lobbies in Europe CHEWING GUM documentary about bioprospecting and deny work at all," said Dr Vinod Kumar indigenous peoples that was produced in Gupta, who heads the Traditional United Kingdom authorities and October–November 2008 in Geneva, Knowledge Digital Library (TKDL), which environmental groups were welcoming the Switzerland. -
Evaluation of Phytochemicals in Some Indigenous Aromatic Medicinal Plants of North-East India
PharmaTutor PRINT ISSN: 2394-6679 | E-ISSN: 2347-7881 42 Evaluation of phytochemicals in some indigenous aromatic medicinal plants of North-East India *R Sharma, S Sarma Assam Down Town University, Guwahati, Assam, India *[email protected] ABSTRACT Objectives: The aim of the present study was to estimate flavonoid and phenolic content, and to evaluate invitro antioxidant activity of an aqueous extract of Alpinia nigra and Allium tuberosum. Methods: The air dried stem of A. nigra and leaves of A. tuberosum was ground to powder and extracted with water and 95% of ethanol. The extract was screened for phytochemicals, total phenolic content (TPC) and total flavonoid content (TFC) with its potential antioxidant activities using hydrogen peroxide-scavenging assay. Results: Phytochemical test shows that extract contains variety of phytochemicals among which there is a high level of total phenol and flavonoids. The total phenolic content (TPC) of A. nigra and A. tuberosum was 0.450±0.0740 and 1.663±0.296; respectively. The total flavonoid content (TFC) of A. nigra and A. tuberosum was 0.322±0.077 and 0.978±0.119, respectively. The plants possessed potent antioxidant activity when compared with the reference compound ascorbic acid (vitamin C). Conclusions: A. nigra and A. tuberosum may be useful for the preparation of neutraceuticals as potent antioxidant to treat various human diseases and their complications. Keywords: aromatic medicinal plants, North east India, glycosides INTRODUCTION Allium tuberosum belonging to the family North east India comprises seven states commonly Amaryllidaceae is a perennial herb related to onion known as the “Seven Sisters”. -
Phytic Acid- an Antinutrient Nutraceutical in Ethnic Vegetables Growing Wildly in Tribal Regions of Bangladesh
Journal of Diseases and Medicinal Plants 2020; 6(1): 16-21 http://www.sciencepublishinggroup.com/j/jdmp doi: 10.11648/j.jdmp.20200601.13 ISSN: 2469-8202 (Print); ISSN: 2469-8210 (Online) Phytic Acid- an AntiNutrient Nutraceutical in Ethnic Vegetables Growing Wildly in Tribal Regions of Bangladesh Amena Begum 1, Mahbuba Kawser 2, *, Samia Sams 2, Parveen Begum 2, Maksuda Khatun 2, 3, Shabnam Mostafa 2, Muhammad Akhtaruzzaman 2, Sheikh Nazrul Islam 2 1Samorita Hospital Limited, Panthapath, Dhaka, Bangladesh 2Institute of Nutrition and Food Science, University of Dhaka, Dhaka, Bangladesh 3Depart of Botany, University of Dhaka, Dhaka, Bangladesh Email address: *Corresponding author To cite this article: Amena Begum, Mahbuba Kawser, Samia Sams , Parveen Begum, Maksuda Khatun, Shabnam Mostafa , M. Akhtaruzzaman, Sheikh Nazrul Islam. Phytic Acid- an AntiNutrient Nutraceutical in Ethnic Vegetables Growing Wildly in Tribal Regions of Bangladesh. Journal of Diseases and Medicinal Plants. Vol. 6, No. 1, 2020, pp. 16 -21 . doi: 10.11648/j.jdmp.20200601.13 Received : January 4, 2020; Accepted : January 16, 2020; Published : January 31, 2020 Abstract: Phytate has nutraceutical property and scores of potential health benefits in spite of undesirable anti nutrient property. This article investigated phytic acid content in a wide variety of ethnic vegetables growing wildly in tribal regions of Bangladesh. The study was conducted on thirty four rare ethnic vegetables comprising 26 leafy and 8 non-leafy vegetables. A multiregional sampling plan was employed to collect representative samples. The vegetable were collected from weekly markets at Rangamati, Bandarban, Mymensing, Gazipur and Madhupur. The vegetable samples collected were identified and certified by a taxonomist of the Department of Botany, University of Dhaka. -
The Genus Alpinia: a Review of Its Phytochemistry and Pharmacology
DOI: 10.15806/j.issn.2311-8571.2015.0026 World J Tradit Chin Med 2016; 2(1): 26–41 Modern Research on Chinese Materia Medica The Genus Alpinia: A Review of Its Phytochemistry and Pharmacology Wei-Jie Zhanga, Jian-Guang Luoa and Ling-Yi Kong* aState Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China *Correspondence: Prof. Ling-Yi Kong, Department of Natural Medicinal Chemistry,China Pharmaceutical University,24 Tong Jia Xiang, Nanjing 210009, China, E-mail: [email protected] ABSTRACT Genus Alpinia consists of over 250 species, which are widely distributed in south and southeast Asia. Many plants of genus Alpinia have been used for thousands of years to treat digestive system diseases and as anti-inflammatory drugs. Phytochemical research on this genus has led to the isolation of different kinds of diarylheptanoids, terpenes triterpenoids, phenylbutanoids, lignans, and flavonoids. Experimental evidences revealed that both the crude extracts and pure constituents isolated from the genus Alpinia exhibit a wide range of bioactivities such as anti- cancer, anti-oxidant, anti-bacterial, anti-viral, cardiovascular, and digestive system protective effects. Here, we summarize the phytochemistry and pharmacology investigation of the genus Alpinia, which can provide reference for further research and drug development. Key words: Genus Alipinia, phytochemistry, pharmacology, a review Received 3 August 2015; Accept 2 March 2016 INTRODUCTION review, the conclusion can be drawn that, diarylheptanoids, terpenes and flavonoids are abundant in this genus. Genus Alpinia is a large genus of the Zingiberaceae family, which is widely distributed in many tropical regions of Asia, including China, India and Indonesia. -
DNA Barcoding of Commercialized Plants; an Examination of Amomum (Zingiberaceae) in South-East Asia
DNA barcoding of commercialized plants; an examination of Amomum (Zingiberaceae) in South-East Asia Matilda Segersäll Arbetsgruppen för Tropisk Ekologi Minor Field Study 163 Committee of Tropical Ecology ISSN 1653-5634 Uppsala University, Sweden November 2011 Uppsala DNA barcoding of commercialized plants; an examination of Amomum (Zingiberaceae) in South-East Asia Matilda Segersäll Supervisors: MSc. Hugo de Boer, Department of Organismal Biology, Systematic Biology, Uppsala University, Sweden. Dr. Hien Le Thu, Institute of Biotechnology (IBT), Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam. Abstract Trade and commercialization of non‐timber forest products, like cycas palms, rattans, and orchids form a serious threat to biodiversity in South‐East Asia. The intensity at which these resources are collected, as well as the techniques used, are unsustainable. To distinguish between common and endangered species is complicated, especially of related species within the same family or genus. Molecular barcoding applied to plants uses DNA‐sequences to contribute to identification and distinction between species. In this paper we investigate the possibility of finding suitable barcodes for Amomum Roxb., a genus of well‐known medicinal plants in South‐East Asia, by comparing three genetic markers matK, ITS and trnL. Keywords. Amomum, barcoding, medicinal plants Table of Contents 1 Amomum ........................................................................................................................................................................ -
Lao People's Democratic Republic Peace Independence Democracy
Lao People’s Democratic Republic Peace Independence Democracy Unity Prosperity 5 year management plan of Laving‐Lavern Provincial Protected Area, Savannakhet October 2010 1 Table of Contents Table of Contents ..................................................................................................................... 2 Introduction ............................................................................................................................. 5 Part 1 ‐ Background, physical and socio‐economic status of Laving Lavern PPA ....................... 6 1.1. Background ................................................................................................................................ 6 1.2. Physical status .......................................................................................................................... 6 1.2.1. Location and topography ............................................................................................................................. 6 1.2.2. Climate ......................................................................................................................................................... 7 1.3. Natural resources .............................................................................................................. 8 1.3.1. Forestry .................................................................................................................................. 8 1.3.2. Aquatic and Wildlife .................................................................................................................................... -
Forest Vegetation Cover in Binh Chau - Phuoc Buu Nature Reserve in Southern Vietnam
E3S Web of Conferences 175, 14016 (2020) https://doi.org/10.1051/e3sconf/202017514016 INTERAGROMASH 2020 Forest Vegetation Cover in Binh Chau - Phuoc Buu Nature Reserve in Southern Vietnam Viet Hung Dang¹ʾ²*, Alexander Potokin¹, Thi Lan Anh Dang², Thi Ha Nguyen², and Van Son Le³ 1 Saint-Petersburg State Forest Technical University, Instytutskiy 5U, 194021, St. Petersburg, Russia 2 Vietnam National University of Forestry - Dong Nai Campus, Vietnam, Dong Nai Province, Trang Bom District, Trang Bom town, Tran Phu st., 54 3 Binh Chau - Phuoc Buu Nature Reserve, Ba Ria - Vung Tau Province, Xuyen Moc District, Vietnam Abstract. Binh Chau - Phuoc Buu Nature Reserve is located in the tropical rainforest zone of southeast Vietnam. The obtained results from the study undertaken on the composition of plant species and forest vegetation in Binh Chau - Phuoc Buu Nature Reserve indicated a record of 743 species, 423 genera and 122 families that belongs to the three divisions of vascular plants. These includes: Polypodiophyta, Pinophyta and Magnoliophyta. Useful plants of 743 taxonomy species listed consists of 328 species of medicinal plants, 205 species of timber plants, 168 species of edible plants, 159 species of ornamental plants, 56 species of industrial plants, 10 species of fiber plants and 29 species of unknown use plants, respectively. During the duration of investigation, Nervilia aragoana Gaudich. was newly recorded in the forest vegetation of Binh Chau - Phuoc Buu Reserve. A variety of forest vegetations in the area under study is described. In this study, two major vegetation types of forest were identified in Binh Chau - Phuoc Buu Reserve. -
Studies in Malesian Gentianaceae III: Cyrtophyllum Reapplied to the Fagraea Fragrans Alliance
Gardens’ Bulletin Singapore 64(2): 497–510. 2012 497 Studies in Malesian Gentianaceae III: Cyrtophyllum reapplied to the Fagraea fragrans alliance K.M. Wong1 and M. Sugumaran2 1Singapore Botanic Gardens, 1 Cluny Road, Singapore 259569 [email protected] 2Rimba Ilmu Botanic Garden, Institute of Biological Sciences, University of Malaya, 50603 Kuala Lumpur, Malaysia [email protected] ABSTRACT. Cyrtophyllum Reinw., one of several distinct lineages among the Fagraea complex, is the correct genus to which five species of Southeast Asian trees should be assigned, including the widespread F. fragrans. Cyrtophyllum minutiflorum K.M.Wong is a new species described here. Two new combinations are made: C. caudatum (Ridl.) K.M.Wong and C. wallichianum (Benth.) M.Sugumaran & K.M.Wong. Keywords. Cyrtophyllum, Fagraea fragrans, Gentianaceae, Malesia, Potalieae, Potaliinae, Southeast Asia Introduction The results of a molecular phylogenetic study of the Fagraea complex (Sugumaran & Wong 2012) demonstrated the distinctness of a number of generic lineages from Fagraea Thunb. s.s. (Wong & Sugumaran 2012). Among these, Cyrtophyllum Reinw. and Picrophloeus Blume were readily distinguished from Fagraea s.s., Limahlania K.M.Wong & M.Sugumaran and Utania G.Don because the first two genera have flowers with conspicuously exserted styles (typically more than 40% of their length) and filaments (greater than 70% of their length) (Sugumaran & Wong 2012). Also, Cyrtophyllum and Picrophloeus frequently have cymes bearing numerous small flowers (corollas narrow, the mouth often not more than 10 mm wide), compared to the other genera, which typically have larger flowers (corollas typically much wider) in variable numbers. However, Cyrtophyllum has axillary cymes and Aubréville’s tree architectural model, whereas Picrophloeus and the other three genera all have terminal cymes and consistently other architectural models (Scarrone’s in Picrophloeus and Fagraea s.s., Fagerlind’s in Limahlania, Roux’s in Utania) (Sugumaran & Wong 2012; Wong & Sugumaran 2012).