Family Composition and Temperature in Fly Assemblages: Community Temperature Index Using Family Temperature Index

Total Page:16

File Type:pdf, Size:1020Kb

Family Composition and Temperature in Fly Assemblages: Community Temperature Index Using Family Temperature Index Accepted Manuscript Family composition and temperature in fly assemblages: Community temperature index using family temperature index Tae-Sung Kwon PII: S2287-884X(17)30078-X DOI: 10.1016/j.japb.2017.07.003 Reference: JAPB 242 To appear in: Journal of Asia-Pacific Biodiversity Received Date: 13 June 2017 Revised Date: 30 June 2017 Accepted Date: 6 July 2017 Please cite this article as: Kwon T-S, Family composition and temperature in fly assemblages: Community temperature index using family temperature index, Journal of Asia-Pacific Biodiversity (2017), doi: 10.1016/j.japb.2017.07.003. This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. ACCEPTED MANUSCRIPT 1 Title: Family composition and temperature in fly assemblages: Community temperature index 2 using family temperature index 3 4 Short running title: Family temperature index of flies 5 6 Paper Type: Research Paper 7 8 Address: Forest Insect Pests and Diseases Division, National Institute of Forest Science, 57 9 Hoegi-ro, Dongdaemun-gu, Seoul 02455, Republic of Korea 10 11 Author: Tae-Sung Kwon 12 Tel: 82-2-961-2655 13 Fax: 82-2-961-2679 14 E-mail: [email protected] 15 16 17 18 19 20 MANUSCRIPT 21 22 23 24 25 26 27 28 29 30 31 32 ACCEPTED 33 34 35 36 37 38 ACCEPTED MANUSCRIPT 39 Abstract 40 This study aimed to examine relationship between temperature and family composition of 41 fly assemblages. Flies were surveyed at six locations in the Baekdudaegan mountain range 42 (South Korea) of which mean annual temperature (MAT) ranged from 7.3 to 9.3 . Ten 43 sampling sites were selected at each location, and flies were sampled at each site by ten 44 pitfall traps with an interval of 5 m in August 2009. Flies were identified in family level. 45 Family temperature index was used to calculate community temperature indexes (CTI) of six 46 locations. Through the sampling, 8526 flies in 41 families were collected. Phoridae was most 47 abundant in six locations. Sciaridae, Muscidae, Heleomyzidae, and Mycetophilidae were also 48 abundant. Values of CTI were positively related with values of MAT. Difference of 49 temperature between locations influenced more on the family composition of fly assemblages 50 compared to distance (km) between locations. These findings indicate a significant influence 51 of temperature on fly assemblages. 52 53 Key words : fly, family temperature index, community temperature index, climate warming, 54 pitfall trap 55 MANUSCRIPT 56 Introduction 57 58 Global warming has significantly influenced biota in the world such as range shifts, 59 phenological shifts, shits in species composition, and shifts of interactions (Parmesan and 60 Yohe 2003). Range shifts have been mostly studied among the climate change researches, but 61 its results were mainly obtained from the well-studied groups with long-term robust data such 62 as birds, plants, and butterflies. The range shifts are likely to lead to change of biotic 63 assemblages, but the studies on community levels were rare compared to range shifts (Kwon 64 et al 2010). In addition, most studies on the climate change influences are conducted in 65 Europe and NorthACCEPTED America. Therefore, influences of climate warming on the ecosphere 66 remains uncertain due to the limitation of studied groups and regions. 67 Insects are most diverse organisms in the world, comprising 56% of total species 68 (McGavin 2001). As insects are cold-blooded animal, growth and performance of insects are 69 heavily dependent on change of temperature. In addition, insects perform main ecological 70 functions such as pests, natural enemies, nutrient cycling, pollination, food production for ACCEPTED MANUSCRIPT 71 animals in the terrestrial and aquatic ecosystem (McGavin 2001). Therefore, studies on the 72 influence of climate warming on insects are very important to understand and predict change 73 of ecosphere in the warming future. However, majority of studies are on the handful flagship 74 insects such as butterflies. Butterflies are hervivorous insects, and heavily dependent on 75 plants. Therefore, it is questionable that butterflies can represent the overall response of 76 insects to climate warming. Flies (Diptera) are one of most diverse insects groups, and they 77 conduct various ecological functions such as detritivores, herbivores, pollinators, parasites, 78 and predators. Therefore, flies are likely to be one of candidate insects to represent the overall 79 response of insects (Hövemeyer 2000). 80 Despite the ecological importance of Diptera, studies on fly assemblages are rare due to the 81 difficulty of species identification of flies (Frouz 1999). Therefore, studies of dipteran 82 assemblages are mainly conducted in Europe where species identification of Diptera is well- 83 established. Although 66 families are listed in the checklist of Korea insects (Paek et al 2010), 84 the non-taxonomists are nearly impossible to identify species in most dipteran families due to 85 the scarcity of species identification resources. In reality, only family specialists (taxonomists) 86 can identify species of each family. Even the dipteran taxonomists are only capable to 87 identify species in his (or her) and related families.MANUSCRIPT Therefore, studies in family level can be 88 alternative to the difficult species level studies of flies. 89 This study aimed to examine relationship between family composition of fly assemblages 90 in forests and temperature. I sampled flies with standardized method (pitfall traps) in six 91 forested areas with different thermal conditions ranging from 7.3 to 9.3 . Pitfall traps 92 are an easy and efficient method to collect flies, but this method is not widely used for 93 ecological studies of fly assemblages. However, two studies (Kwon et al 2013, Lee et al 2015) 94 suggest that pitfall traps are very efficient to collect diverse flies. In recent, community 95 temperature index (CTI) using species temperature index (STI, species optimum temperature) 96 is increasingly used to study range shifts of butterflies, birds, and plants in Europe. Each 97 family would haveACCEPTED family-specific temperature optima according to their evolution origin and 98 family specific range. Therefore, the family temperature index can be also used to calculate 99 CTI using family composition of fly assemblages. I used data of 66 family temperature index 100 provided by Lee et al (2015), and examined the relationship between CTI using FTI and 101 temperature. In addition, I examined whether distance between locations or temperature 102 difference between locations determined more the family composition of fly assemblages. ACCEPTED MANUSCRIPT 103 Material and Methods 104 105 Sampling of flies was once conducted in August 2009 in six uphill passes (locations) of the 106 Baekdudaegan mountain range (Table 1). Ten sampling sites were selected at each location: 5 107 sites in northern forests from motor road, and 5 sites in southern forest. The sites are located 108 in healthy deciduous forests (S, J, E, U, Y) or larch plantation (H). Tree ages were 30-40 109 years old with 8-15 m heights. Understory vegetation (herbs and shrubs) was well developed 110 and litters covered the surface. Five sites (each five in northern side from road and each five 111 in southern side) were selected at 10 m, 50 m, 100 m, 200 m, and 300 m away from motor 112 roads. The distance was not linearly measured, but crudely measured by number of walks 113 (about 50 cm per a walk) along the trail. Ten pitfall traps were linearly set up (flush with 114 surface) with 5 m interval at each site, and lasted for ten days. The survey design was 115 graphically provided by Kwon (2015). Polyethylen glycol was used for preservative, and 116 filled one third of each trap. Fly bodies were sorted and stored in 100% ethyl alcohol. Fly 117 adults were identified to family by the adult family keys (Papp and Shumann 2000, 118 Triplehorn and Johnson 2005). The fly samples were deposited at the insect diversity 119 laboratory of the National Institute of Forest Science.MANUSCRIPT 120 Mean annual temperature of six locations was measured by the multiple regression model 121 of Kwon et al. (2012) from data of latitude, longitude, and altitude. Determination index (R 2) 122 of the regression temperature model is 91%. Non-metric multidimensional scaling (NMDS) 123 was used for ordination of fly assemblages. Data of 60 sampling sites (10 sites per location) 124 were used for NMDS. Dissimilarity of fly assemblages (pooled 10 sites) between locations 125 was calculated by the Bray-Curtis index (Oksanen et al 2015), and distances (km) between 126 locations was measured by Google Earth (http://www.google.com/intl/ko/earth). Family 127 temperature index ( ) was provided by Lee et al. (2015), in which the fly sampling was 128 conducted at 299 forest sites in the whole region of South Korea using pitfall traps. Family 129 temperature indexACCEPTED was average of MATs of recorded sites in the national fly survey. 130 Community temperature index ( ) of fly assemblages was calculated by the following Μ 131 equation, CTI = (∑ΗͰͥ Ai ∗ Fi )/N, where Ai = abundance of i family, Fi = FTI value of i family, 132 and N=number of total individuals. Adonis was used to examine influence of environmental 133 factors on family composition of fly assemblages (Oksanen et al 2015), and ANCOVA was 134 used for abundance (number individuals) and richness (number of families).
Recommended publications
  • Appendix a Table A.1. Information About Sampling and Management
    Appendix A Table A.1. Information about sampling and management types of the organic olive orchards. Orchard ID Type Year Month Sampling Locality DG1 Tilled 2011 6 1 Granada ON Tilled 2011 6 1 Deifontes DG2 Mowed 2011 6 1 Granada ODM Mowed 2011 6 1 Deifontes DG1 Tilled 2011 7 2 Granada ON Tilled 2011 7 2 Deifontes DG2 Mowed 2011 7 2 Granada ODM Mowed 2011 7 2 Deifontes DGA1 Tilled 2012 6 1 Granada DGB1 Tilled 2012 6 1 Granada ONA Tilled 2012 6 1 Deifontes ONB Mowed 2012 6 1 Deifontes ODM Mowed 2012 6 1 Deifontes DGA1 Tilled 2012 7 2 Granada DGB1 Tilled 2012 7 2 Granada ONA Tilled 2012 7 2 Deifontes ODM Mowed 2012 7 2 Deifontes ONB Mowed 2012 7 2 Deifontes DG1A Tilled 2013 6 1 Granada DG1B Tilled 2013 6 1 Granada DG3A Mowed 2013 6 1 Granada DG3B Mowed 2013 6 1 Granada ODM Mowed 2013 6 1 Deifontes ONB Mowed 2013 6 1 Deifontes ONA Mowed 2013 6 1 Deifontes DG1A Tilled 2013 7 2 Granada DG1B Tilled 2013 7 2 Granada DG3B Mowed 2013 7 2 Granada DG3A Mowed 2013 7 2 Granada ODM Mowed 2013 7 2 Deifontes ONA Mowed 2013 7 2 Deifontes ONB Mowed 2013 7 2 Deifontes Table A.2. Summary and formula* of the fitted generalized linear mixed-effects model (GLMM) with nested random effects fit by maximum likelihood with Laplace Approximation, including egg predation, type of management, and abundance of natural enemies (package “lme4”). Estimated Variable Variance SD coefficient SE z p Fixed effects: Intercept 4.723 0.3980 11.86 0.001 Management (tilled and mowed) 1.127 0.5299 2.12 0.033 Natural enemy 0.0002 0.00009 2.41 0.015 Random effects: Year : Site 1.100 1.049 * glmer (predated.eggs ~ management + natural.enemies + (1 | annual / ID), family = poisson) Table A.3.
    [Show full text]
  • Diptera Chamaemyiidae), an Overlooked Family of Biological Control Agents
    Bulletin of Insectology 68 (2): 173-180, 2015 ISSN 1721-8861 Seasonal habits of predation and prey range in aphidophagous silver flies (Diptera Chamaemyiidae), an overlooked family of biological control agents 1 2 3 1 4 2 Serdar SATAR , Alfio RASPI , Işıl ÖZDEMIR , Adnan TUSUN , Mehmet KARACAOĞLU , Giovanni BENELLI 1Department of Plant Protection, Faculty of Agriculture, University of Çukurova, Balcali, Adana, Turkey 2Department of Agriculture, Food and Environment, Insect Behaviour Group, University of Pisa, Italy 3Plant Health Central Research Institute, Yenimahalle, Ankara, Turkey 4Biological Control Research Station, Yüreğir, Adana, Turkey Abstract Aphids are among the most widespread and serious groups of pests in agro-ecosystems, and predaceous arthropods have been proposed as biological control agents against them, including parasitic Hymenoptera, lacewings, ladybugs, hoverflies and silver flies (Diptera Chamaemyiidae). Chamaemyiidae is a small family of predaceous flies, including aphidophagous and coccido- phagous species. Little is known about their ecology, and partial failures of Chamaemyiidae-based biological control programs against aphids may be due to poor synchronization of predator-prey seasonal habits. In this study, we investigated seasonality of predation and prey range of aphidophagous Chamaemyiidae. A field survey was conducted on crops and indigenous flora in seven agricultural sites in southern Turkey. Seventeen host plant families were surveyed for Chamaemyiidae presence and 371 silver flies were studied. All Chamaemyiidae larvae were observed to prey on adult and young instar aphids in the field. Silver fly total larval abundance reached a maximum in autumn and early winter. Six species were identified: Leucopis annulipes, L. formosana, L. glyphinivora, L. revisenda, L. rufithorax and L.
    [Show full text]
  • INSECTS of MICRONESIA Diptera: Bibionidae and Scatopsidae 1
    INSECTS OF MICRONESIA Diptera: Bibionidae and Scatopsidae 1 By D. ELMO HARDY UNIVERSITY OF HAWAII AGRICULTURAL EXPERIMENT STATION The United States Office of Naval Research, the Pacific Science Board (National Research Council), the National Science Foundation, and Bishop Museum have made the Micronesian Insect Survey possible. Field research was aided by a contract between the Office of Naval Research, Department of the Navy, and the National Academy of Sciences, NR 160-175. Also I am greatly indebted to Dr. Edwin F. Cook for the kind assistance he has given me in working out the Scatopsidae. The drawings were made by Marian S. Adachi, University of Hawaii. The following symbols indicate the Museums in which specimens are stored: US (United States National Museum), CM (Chicago Natural History Museum), and BISHOP (Bernice P. Bishop Museum). FAMILY BIBIONIDAE Previously Bibionidae have been unrecorded from either Micronesia or Polynesia. Numerous species occur in all of the fringe areas of the Pacific but have been completely lacking in that part of Oceania inside a line from New Zealand, through New Caledonia, the New Hebrides, New Guinea, the Philippine Islands, Formosa, and Japan. A single species of Plecia is repre­ sented in the collection from the Palau Islands. It shows affinity with Plecia from Indonesia, and it is most probable that it originally came from there. Genus Plecia Wiedemann Plecia Wiedemann, 1828, Aussereur. Zweifl. Ins. 1: 72. Rhinoplecia Bellardi, 1859, Saggio Ditterol. Messicana 1: 16. Penthera Philippi, 1865, Zool.-bot. Ges. Wien, Verh. 15: 639. 1 Published with the approval of the Director of the University of Hawaii Agricultural Experiment Station as Technical Paper 363.
    [Show full text]
  • Notable Invertebrates Associated with Fens
    Notable invertebrates associated with fens Molluscs (Mollusca) Vertigo moulinsiana BAP Priority RDB3 Vertigo angustior BAP Priority RDB1 Oxyloma sarsi RDB2 Spiders and allies (Arachnida:Araeae/Pseudoscorpiones) Clubiona rosserae BAP Priority RDB1 Dolomedes plantarius BAP Priority RDB1 Baryphyma gowerense RDBK Carorita paludosa RDB2 Centromerus semiater RDB2 Clubiona juvensis RDB2 Enoplognatha tecta RDB1 Hypsosinga heri RDB1 Neon valentulus RDB2 Pardosa paludicola RDB3 Robertus insignis RDB1 Zora armillata RDB3 Agraecina striata Nb Crustulina sticta Nb Diplocephalus protuberans Nb Donacochara speciosa Na Entelecara omissa Na Erigone welchi Na Gongylidiellum murcidum Nb Hygrolycosa rubrofasciata Na Hypomma fulvum Na Maro sublestus Nb Marpissa radiata Na Maso gallicus Na Myrmarachne formicaria Nb Notioscopus sarcinatus Nb Porrhomma oblitum Nb Saloca diceros Nb Sitticus caricis Nb Synageles venator Na Theridiosoma gemmosum Nb Woodlice (Isopoda) Trichoniscoides albidus Nb Stoneflies (Plecoptera) Nemoura dubitans pNotable Dragonflies and damselflies (Odonata ) Aeshna isosceles RDB 1 Lestes dryas RDB2 Libellula fulva RDB 3 Ceriagrion tenellum N Grasshoppers, crickets, earwigs & cockroaches (Orthoptera/Dermaptera/Dictyoptera) Stethophyma grossum BAP Priority RDB2 Now extinct on Fenland but re-introduction to undrained Fenland habitats is envisaged as part of the Species Recovery Plan. Gryllotalpa gryllotalpa BAP Priority RDB1 (May be extinct on Fenland sites, but was once common enough on Fenland to earn the local vernacular name of ‘Fen-cricket’.)
    [Show full text]
  • Volume 2, Chapter 12-19: Terrestrial Insects: Holometabola-Diptera
    Glime, J. M. 2017. Terrestrial Insects: Holometabola – Diptera Nematocera 2. In: Glime, J. M. Bryophyte Ecology. Volume 2. 12-19-1 Interactions. Ebook sponsored by Michigan Technological University and the International Association of Bryologists. eBook last updated 19 July 2020 and available at <http://digitalcommons.mtu.edu/bryophyte-ecology2/>. CHAPTER 12-19 TERRESTRIAL INSECTS: HOLOMETABOLA – DIPTERA NEMATOCERA 2 TABLE OF CONTENTS Cecidomyiidae – Gall Midges ........................................................................................................................ 12-19-2 Mycetophilidae – Fungus Gnats ..................................................................................................................... 12-19-3 Sciaridae – Dark-winged Fungus Gnats ......................................................................................................... 12-19-4 Ceratopogonidae – Biting Midges .................................................................................................................. 12-19-6 Chironomidae – Midges ................................................................................................................................. 12-19-9 Belgica .................................................................................................................................................. 12-19-14 Culicidae – Mosquitoes ................................................................................................................................ 12-19-15 Simuliidae – Blackflies
    [Show full text]
  • Diptera) Diversity in a Patch of Costa Rican Cloud Forest: Why Inventory Is a Vital Science
    Zootaxa 4402 (1): 053–090 ISSN 1175-5326 (print edition) http://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2018 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4402.1.3 http://zoobank.org/urn:lsid:zoobank.org:pub:C2FAF702-664B-4E21-B4AE-404F85210A12 Remarkable fly (Diptera) diversity in a patch of Costa Rican cloud forest: Why inventory is a vital science ART BORKENT1, BRIAN V. BROWN2, PETER H. ADLER3, DALTON DE SOUZA AMORIM4, KEVIN BARBER5, DANIEL BICKEL6, STEPHANIE BOUCHER7, SCOTT E. BROOKS8, JOHN BURGER9, Z.L. BURINGTON10, RENATO S. CAPELLARI11, DANIEL N.R. COSTA12, JEFFREY M. CUMMING8, GREG CURLER13, CARL W. DICK14, J.H. EPLER15, ERIC FISHER16, STEPHEN D. GAIMARI17, JON GELHAUS18, DAVID A. GRIMALDI19, JOHN HASH20, MARTIN HAUSER17, HEIKKI HIPPA21, SERGIO IBÁÑEZ- BERNAL22, MATHIAS JASCHHOF23, ELENA P. KAMENEVA24, PETER H. KERR17, VALERY KORNEYEV24, CHESLAVO A. KORYTKOWSKI†, GIAR-ANN KUNG2, GUNNAR MIKALSEN KVIFTE25, OWEN LONSDALE26, STEPHEN A. MARSHALL27, WAYNE N. MATHIS28, VERNER MICHELSEN29, STEFAN NAGLIS30, ALLEN L. NORRBOM31, STEVEN PAIERO27, THOMAS PAPE32, ALESSANDRE PEREIRA- COLAVITE33, MARC POLLET34, SABRINA ROCHEFORT7, ALESSANDRA RUNG17, JUSTIN B. RUNYON35, JADE SAVAGE36, VERA C. SILVA37, BRADLEY J. SINCLAIR38, JEFFREY H. SKEVINGTON8, JOHN O. STIREMAN III10, JOHN SWANN39, PEKKA VILKAMAA40, TERRY WHEELER††, TERRY WHITWORTH41, MARIA WONG2, D. MONTY WOOD8, NORMAN WOODLEY42, TIFFANY YAU27, THOMAS J. ZAVORTINK43 & MANUEL A. ZUMBADO44 †—deceased. Formerly with the Universidad de Panama ††—deceased. Formerly at McGill University, Canada 1. Research Associate, Royal British Columbia Museum and the American Museum of Natural History, 691-8th Ave. SE, Salmon Arm, BC, V1E 2C2, Canada. Email: [email protected] 2.
    [Show full text]
  • Diptera Chamaemyiidae) Described by Camillo Rondani: a Revision of Eight Silver Fly Species
    Bulletin of Insectology 69 (2): 199-219, 2016 ISSN 1721-8861 On the identity of Leucopis (Diptera Chamaemyiidae) described by Camillo Rondani: a revision of eight silver fly species Alfio RASPI, Giovanni BENELLI Department of Agriculture, Food and Environment, University of Pisa, Italy Abstract The dipterologist Camillo Rondani described a wide number of new Diptera species, including 12 species of silver flies (Diptera Chamaemyiidae). The first Rondani description of Chamaemyiidae was carried out in 1847 in his research “Osservazioni sopra parecchie specie di esapodi afidicidi e sui loro nemici”. Among them, Ochtiphila obscuripes Rondani 1875 was considered by Czerny (1936) synonymous of Chamaemyia geniculata (Zetterstedt 1838). Later on, Raspi shed light on the identity of Leucopis palumbii Rondani 1872 (Raspi, 1983b; 1988); Leucopis bursaria Rondani 1848 (Raspi, 2003) and Ochtiphila frontella Rondani 1875 (Raspi, 2006). In this research, the identity of the other Leucopis species described by Rondani is estabilished. The valid species are Leucopis (Leucopis) aphidivora Rondani 1847, of which Leucopis fiorii Raspi 1986 is a new synonym; Leucopis (Leucopis) aphidiperda Rondani 1848; Leucopis (Leucopis) misaphida Rondani 1848; Leucopis (Leucopis) minuscula Rondani 1875; Leucopis (Leucopis) talaria Rondani 1875; Leucopomyia palliditarsis (Rondani 1875), of which Leucopis alticeps Czerny 1936 is a new synonym. Leucopis (Leucopis) armillata Rondani 1875 is a new synonym of Leucopis palumbii Rondani 1872, and Leucopis ballestrerii Rondani 1875 is a new synonym of Leucopomyia silesiaca (Egger 1862). Overall, concerning the twelve species of Chamaemyiidae described by Camillo Rondani, nine of them are still considered valid species. This study adds basic knowledge to silver fly systematics and has helpful implications concerning Chamaemyiidae-based biological control programs.
    [Show full text]
  • The Effect of Ambient Temperature on Larvae of Scatopsciara Cunicularius (Diptera: Sciaridae) Feeding on the Thallose Liverwort Marchantia Polymorpha
    EUROPEAN JOURNAL OF ENTOMOLOGYENTOMOLOGY ISSN (online): 1802-8829 Eur. J. Entomol. 113: 259–264, 2016 http://www.eje.cz doi: 10.14411/eje.2016.030 ORIGINAL ARTICLE The effect of ambient temperature on larvae of Scatopsciara cunicularius (Diptera: Sciaridae) feeding on the thallose liverwort Marchantia polymorpha WEERACHON SAWANGPROH 1, JOHAN EKROOS 2 and NILS CRONBERG 1 1 Biodiversity, Department of Biology, Ecology Building, Lund University, 223 62 Lund, Sweden; e-mails: [email protected], [email protected] 2 Centre for Environmental and Climate Research, Lund University, Box 117, 221 00 Lund, Sweden; e-mail: [email protected] Key words. Diptera, Sciaridae, Scatopsciara cunicularius, gnat larva, sciarid fl y, biological control, Marchantia polymorpha Abstract. Herbivory on liverworts is rarely reported. We studied the effects of feeding by larvae of the sciarid fl y Scatopsciara cunicularius on the growth of the thalloid liverwort Marchantia polymorpha at two different constant temperatures, 12°C and 22°C. Larvae reared at the lower temperature fed slower and over a longer period of time, which resulted in more damage and a greater reduction in the growth of the liverwort than that caused by those reared at the higher temperature. The reduction in growth of the liverwort was positively density-dependent in terms of number of larvae at both temperatures. These results indicate that the larvae of S. cunicularius are likely to be an effective means of controlling M. polymorpha, which is a common weed in plant nurser- ies and greenhouse cultures. INTRODUCTION Sadof, 2010). Larval stages have different feeding prefer- Somewhat unexpectedly, we recently observed dipter- ences.
    [Show full text]
  • Bradysia Difformis Frey and Bradysia Ocellaris (Comstock): Two
    SYSTEMATICS Bradysia difformis Frey and Bradysia ocellaris (Comstock): Two Additional Neotropical Species of Black Fungus Gnats (Diptera: Sciaridae) of Economic Importance: A Redescription and Review 1 2 FRANK MENZEL, JANE E. SMITH, AND NELSON B. COLAUTO Deutsches Entomologisches Institut, ZALF e.V., PF 100238, D-16202 Eberswalde, Germany Ann. Entomol. Soc. Am. 96(4): 448Ð457 (2003) ABSTRACT The Þrst records for Brazil of two sciarid species, Bradysia difformis Frey, 1948 [ϭ paupera (Tuomikoski, 1960)] and Bradysia ocellaris (Comstock, 1882) [ϭ tritici (Coquillett, 1895)] (Diptera, Sciaridae) are presented. These are the Þrst records of these species for the Neotropical region. Males and females of both species are fully described and illustrated. Information is given about synonymy and the location of the type material. Bradysia agrestis Sasakawa, 1978 is a new synonym of Bradysia difformis. Information about the zoogeographic distribution and habitats, of Bradysia difformis and Bradysia ocellaris is provided. KEY WORDS Diptera, sciaridae, Bradysia difformis Frey, Bradysia ocellaris (Comstock), descrip- tions, new synonym, new records, mushroom pests THE DIPTEROUS FAMILY SCIARIDAE (Black Fungus Gnats) signiÞcant losses in crop production (Menzel and is found on every continent and is characterized by its Mohrig 2000). high number of species and individuals. According to Some species belonging to Bradysia Winnertz, a species inventory by Menzel and Mohrig (2000), 1867 s. l. [species group of the Bradysia amoena (Win- Ͼ1,700 valid species have been described in the world. nertz, 1867) species group], and Lycoriella Frey, 1948 Despite their ecological importance, these micro- s. str. are common pests in mushroom cultures and in Diptera have largely been neglected because of their glasshouses (Binns 1976; Menzel and Mohrig 2000; small body size (1Ð7 mm), their often cryptic mode of White et al.
    [Show full text]
  • Sciarid Pests (Diptera: Sciaridae) from Undercover Crop Production in South Africa
    Sciarid pests (Diptera: Sciaridae) from undercover AUTHORS: crop production in South Africa Agil Katumanyane1 Aquillah M. Kanzi2 Antoinette P. Malan1 Fungus gnats (sciarids) are among the most important pests in undercover crop production. They cause direct physical damage to plant roots, transfer fungal pathogens and create entry points for soil-borne plant AFFILIATIONS: 1Department of Conservation Ecology pathogens. In 2007, Bradysia impatiens, an important fungus gnat pest was found in association with major and Entomology, Stellenbosch tree nursery beds in the Mpumalanga and KwaZulu-Natal Provinces of South Africa and was considered University, Stellenbosch, South Africa 2Department of Biochemistry, invasive. In this study, eight greenhouses were surveyed in the Western Cape Province and B. impatiens was Genetics and Microbiology, Forestry found to be present in all the greenhouses. Similar to the results of the previous studies, a high haplotype and Agricultural Biotechnology Institute, University of Pretoria, diversity was identified for B. impatiens, which may indicate multiple strain introductions into South Africa. Pretoria, South Africa Two other fungus gnat species, Lycoriella sativae and Lycoriella ingenua – globally important sciarid pests of mushroom cultures – were identified as new from South Africa. Through a laboratory culture, the life cycle of CORRESPONDENCE TO: B. impatiens was observed to be approximately 21 days at 25 °C. Females laid between 100 and 250 eggs. Agil Katumanyane Possible introduction sources include contaminated vegetative material and growth media, thus there maybe EMAIL: need to revise the importation restrictions on these commodities. The identification of two novel species of [email protected] sciarid pests that have only previously been identified in the Holarctic region could further emphasise this need.
    [Show full text]
  • Diptera) Collected in Southern Spain
    Entomologiske M eddelelser 37 (1969) 97 Some Lonchopteridae and Chamaemyiidae (Diptera) collected in Southern Spain. With an appendix. By Kenneth G. V. Smith British Museum (Natural History), Loudon. The family Lonchopteridae has only one genus, Lonchoptera Meigen, which is represented in the Palaearctic region by 14 spe­ cies. The species are very variable in colour and numerous varie­ ties have been described and named, but these are ignored in the present paper since they have no true taxonomic status. Three species have been recorded from Spain (Strobl1899, 1906; Czerny and Strobl, 1909). Two of these are present in the material report­ ed upon. The family Chamaemyiidae is represented in the Palaearctic region by 9 genera and subgenera containing some 72 described species. There was much confusion in the determination of species until modern workers, notably Tanasijtshuk in the U.S.S.R., began biological studies coupled with detailed descriptions and illustra­ tions of the male genitalia. In the present author's opinion the genus Leucopis in particular should be regarded by Dipterists in the same way that Hymenopterists regard many Chalcidoidea, and descriptions or even determinations of some groups of species should be avoided unless reared series are available for study. The immature stages should be sought among colonies of Hemip­ tera-Homoptera of the families Aphididae, Adelgidae and Coccidae upon which the larvae are predaceous. Eleven species have previously been recorded from Spain of which 6 are present in the collections reported upon. The recorded species not present are Chamaemyia flavipalpis Haliday (= ma­ ritima Zetterstedt) and C. geniculata Zetterstedt (Strobl, 1900); Leucopis grise.ola Fallen, L.
    [Show full text]
  • Arthropods of Canadian Grasslands
    Arthropods of Canadian Grasslands Number 11 2005 Contents Contributions welcome . inside front cover Grasslands project action Grassland Project Key Site 2005: Waterton Lakes National Park . 1 Aweme Bioblitz 2004 . 3 Restoration project for the Criddle laboratory . 4 Long term research: Norman Criddle, John Merton Aldrich and the grass fl ies of Aweme . 5 Immigrant insects help restore Canada’s grassland communities . 14 Ants of the South Okanagan grasslands, British Columbia. 17 Web watch: Ants of the tallgrass prairie . 23 Some recent publications . 24 Mailing list for the Grasslands Newsletter . 25 Arthropods of Canadian Grasslands supports the grasslands project of the Biological Survey of Canada (Terrestrial Arthropods) by providing information relevant to the study of grassland arthropods in Canada. Chloropid fl ies are common in grasslands, and historical records from early in the 20th century, available because of careful recording and preservation of specimens and documents, allow interesting present- day comparisons in the same places, as explained on page 5. 1 Contributions welcome Please consider submitting items to Arthropods of Canadian Grasslands Grassland site Current research – descriptions project reports Short news items Feature articles Grassland species Selected accounts publications Contributions such as these, as well as other items of interest to students of grasslands and their arthropods, are welcomed by the editor. This publication (formerly Newsletter, Arthropods of Canadian Grasslands) appears annually in March; final copy deadline for the next issue is January 31, 2006. Editor: H.V. Danks Biological Survey of Canada (Terrestrial Arthropods) Canadian Museum of Nature P.O. Box 3443, Station “D” Ottawa, ON K1P 6P4 613-566-4787 (tel.) 613-364-4022 (fax) [email protected] Articles without other accreditation are prepared by the Editor.
    [Show full text]