Impact of Biotec's Output
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Taxonomy and Diversity of the Sponge Fauna from Walters Shoal, a Shallow Seamount in the Western Indian Ocean Region
Taxonomy and diversity of the sponge fauna from Walters Shoal, a shallow seamount in the Western Indian Ocean region By Robyn Pauline Payne A thesis submitted in partial fulfilment of the requirements for the degree of Magister Scientiae in the Department of Biodiversity and Conservation Biology, University of the Western Cape. Supervisors: Dr Toufiek Samaai Prof. Mark J. Gibbons Dr Wayne K. Florence The financial assistance of the National Research Foundation (NRF) towards this research is hereby acknowledged. Opinions expressed and conclusions arrived at, are those of the author and are not necessarily to be attributed to the NRF. December 2015 Taxonomy and diversity of the sponge fauna from Walters Shoal, a shallow seamount in the Western Indian Ocean region Robyn Pauline Payne Keywords Indian Ocean Seamount Walters Shoal Sponges Taxonomy Systematics Diversity Biogeography ii Abstract Taxonomy and diversity of the sponge fauna from Walters Shoal, a shallow seamount in the Western Indian Ocean region R. P. Payne MSc Thesis, Department of Biodiversity and Conservation Biology, University of the Western Cape. Seamounts are poorly understood ubiquitous undersea features, with less than 4% sampled for scientific purposes globally. Consequently, the fauna associated with seamounts in the Indian Ocean remains largely unknown, with less than 300 species recorded. One such feature within this region is Walters Shoal, a shallow seamount located on the South Madagascar Ridge, which is situated approximately 400 nautical miles south of Madagascar and 600 nautical miles east of South Africa. Even though it penetrates the euphotic zone (summit is 15 m below the sea surface) and is protected by the Southern Indian Ocean Deep- Sea Fishers Association, there is a paucity of biodiversity and oceanographic data. -
Giant Barrel Sponge) Population on the Southeast Florida Reef Tract Alanna D
Nova Southeastern University NSUWorks HCNSO Student Theses and Dissertations HCNSO Student Work 7-25-2019 Spatial and temporal trends in the Xestospongia muta (giant barrel sponge) population on the Southeast Florida Reef Tract Alanna D. Waldman student, [email protected] Follow this and additional works at: https://nsuworks.nova.edu/occ_stuetd Part of the Marine Biology Commons, and the Oceanography and Atmospheric Sciences and Meteorology Commons Share Feedback About This Item NSUWorks Citation Alanna D. Waldman. 2019. Spatial and temporal trends in the Xestospongia muta (giant barrel sponge) population on the Southeast Florida Reef Tract. Master's thesis. Nova Southeastern University. Retrieved from NSUWorks, . (514) https://nsuworks.nova.edu/occ_stuetd/514. This Thesis is brought to you by the HCNSO Student Work at NSUWorks. It has been accepted for inclusion in HCNSO Student Theses and Dissertations by an authorized administrator of NSUWorks. For more information, please contact [email protected]. Thesis of Alanna D. Waldman Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science M.S. Marine Biology Nova Southeastern University Halmos College of Natural Sciences and Oceanography July 2019 Approved: Thesis Committee Major Professor: David Gilliam, Ph.D. Committee Member: Jose Lopez, Ph.D. Committee Member: Charles Messing, Ph.D. This thesis is available at NSUWorks: https://nsuworks.nova.edu/occ_stuetd/514 HALMOS COLLEGE OF NATURAL SCIENCES AND OCEANOGRAPHY Spatial and temporal trends in the Xestospongia muta (giant barrel sponge) population on the Southeast Florida Reef Tract By Alanna Denbrook Waldman Submitted to the Faculty of Halmos College of Natural Sciences and Oceanography in partial fulfillment of the requirements for the degree of Master of Science with a specialty in: Marine Biology Nova Southeastern University August 2019 Table of Contents List of Figures ............................................................................................................................... -
59 Sarcopodium
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Universidade do Minho: RepositoriUM 59 Sarcopodium Dongyou Liu and R.R.M. Paterson contents 59.1 Introduction ..................................................................................................................................................................... 485 59.1.1 Classification and Morphology ............................................................................................................................ 485 59.1.2 Clinical Features .................................................................................................................................................. 486 59.1.3 Diagnosis ............................................................................................................................................................. 486 59.2 Methods ........................................................................................................................................................................... 486 59.2.1 Sample Preparation .............................................................................................................................................. 486 59.2.2 Detection Procedures ........................................................................................................................................... 486 59.3 Conclusion ...................................................................................................................................................................... -
Chemical and Bioactive Diversities of Marine Sponge Neopetrosia Mini
A Journal of the Bangladesh Pharmacological Society (BDPS) Bangladesh J Pharmacol 2016; 11: 433-452 Journal homepage: www.banglajol.info Abstracted/indexed in Academic Search Complete, Asia Journals Online, Bangladesh Journals Online, Biological Abstracts, BIOSIS Previews, CAB Abstracts, Current Abstracts, Directory of Open Access Journals, EMBASE/Excerpta Medica, Google Scholar, HINARI (WHO), International Pharmaceutical Abstracts, Open J-gate, Science Citation Index Expanded, SCOPUS and Social Sciences Citation Index; ISSN: 1991-0088 review - Chemical and bioactive diversities of marine sponge Neopetrosia Mini Haitham Qaralleh Department of Medical Support, Al-Balqa Applied University, Al-Karak University College, Al-Karak, Jordan. Article Info Abstract Received: 26 January 2016 The marine sponge Neopetrosia contains about 27 species that is highly Accepted: 21 March 2016 distributed in Indian Ocean, Atlantic Ocean (Caribbean Sea) and Pacific Available Online: 3 April 2016 Ocean. It has proven to be valuable to the discovery of medicinal products DOI: 10.3329/bjp.v11i2.26611 due to the presence of various types of compounds with variable bio- activities. More than 85 compounds including alkaloids, quinones, sterols and terpenoids were isolated from this genus. Moreover, the crude extracts and Cite this article: the isolated compounds revealed activities such as antimicrobial, anti-fouling, Qaralleh H. Chemical and bioactive anti-HIV, cytotoxic, anti-tumor, anti-oxidant, anti-protozoal, anti-inflamma- diversities of the marine sponge Neo- tory. Because only 9 out of 27 species of the genus Neopetrosia have been petrosia. Bangladesh J Pharmacol. chemically studied thus far, there are significant opportunities to find out new 2016; 11: 433-52. chemical constituents from this genus. -
Two New Haplosclerid Sponges from Caribbean Panama with Symbiotic Filamentous Cyanobacteria, and an Overview of Sponge-Cyanobacteria Associations
PORIFERA RESEARCH: BIODIVERSITY, INNOVATION AND SUSTAINABILITY - 2007 31 Two new haplosclerid sponges from Caribbean Panama with symbiotic filamentous cyanobacteria, and an overview of sponge-cyanobacteria associations Maria Cristina Diaz'12*>, Robert W. Thacker<3), Klaus Rutzler(1), Carla Piantoni(1) (1) Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, D.C. 20560-0163, USA. [email protected] (2) Museo Marino de Margarita, Blvd. El Paseo, Boca del Rio, Margarita, Edo. Nueva Esparta, Venezuela. [email protected] <3) Department of Biology, University of Alabama at Birmingham, Birmingham, AL 35294-1170, USA. [email protected] Abstract: Two new species of the order Haplosclerida from open reef and mangrove habitats in the Bocas del Toro region (Panama) have an encrusting growth form (a few mm thick), grow copiously on shallow reef environments, and are of dark purple color from dense populations of the cyanobacterial symbiont Oscillatoria spongeliae. Haliclona (Soestella) walentinae sp. nov. (Chalinidae) is dark purple outside and tan inside, and can be distinguished by its small oscules with radial, transparent canals. The interior is tan, while the consistency is soft and elastic. The species thrives on some shallow reefs, profusely overgrowing fire corals (Millepora spp.), soft corals, scleractinians, and coral rubble. Xestospongia bocatorensis sp. nov. (Petrosiidae) is dark purple, inside and outside, and its oscules are on top of small, volcano-shaped mounds and lack radial canals. The sponge is crumbly and brittle. It is found on live coral and coral rubble on reefs, and occasionally on mangrove roots. The two species have three characteristics that make them unique among the families Chalinidae and Petrosiidae: filamentous, multicellular cyanobacterial symbionts rather than unicellular species; high propensity to overgrow other reef organisms and, because of their symbionts, high rate of photosynthetic production. -
Mycosphere Essays 2. Myrothecium
Mycosphere 7 (1): 64–80 (2016) www.mycosphere.org ISSN 2077 7019 Article Doi 10.5943/mycosphere/7/1/7 Copyright © Guizhou Academy of Agricultural Sciences Mycosphere Essays 2. Myrothecium Chen Y1, Ran SF1, Dai DQ2, Wang Y1, Hyde KD2, Wu YM3 and Jiang YL1 1 Department of Plant Pathology, Agricultural College of Guizhou University, Huaxi District, Guiyang City, Guizhou Province 550025, China 2 Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand 3 Department of Plant Pathology, Shandong Agricultural University, Taian, 271018, China Chen Y, Ran SF, Dai DQ, Wang Y, Hyde KD, Wu YM, Jiang YL 2016 – Mycosphere Essays 2. Myrothecium. Mycosphere 7(1), 64–80, Doi 10.5943/mycosphere/7/1/7 Abstract Myrothecium (family Stachybotryaceae) has a worldwide distribution. Species in this genus were previously classified based on the morphology of the asexual morph, especially characters of conidia and conidiophores. Morphology-based identification alone is imprecise as there are few characters to differentiate species within the genus and, therefore, molecular sequence data is important in identifying species. In this review we discuss the history and significance of the genus, illustrate the morphology and discuss its role as a plant pathogen and biological control agent. We illustrate the type species Myrothecium inundatum with a line diagram and M. uttaradiensis with photo plates and discuss species numbers in the genus. The genus is re-evaluated based on molecular analyses of ITS and EF1-α sequence data, as well as a combined ATP6, EF1-α, LSU, RPB1 and SSU dataset. The combined gene analysis proved more suitable for resolving the taxonomic placement of this genus. -
Marine Rare Actinomycetes: a Promising Source of Structurally Diverse and Unique Novel Natural Products
Review Marine Rare Actinomycetes: A Promising Source of Structurally Diverse and Unique Novel Natural Products Ramesh Subramani 1 and Detmer Sipkema 2,* 1 School of Biological and Chemical Sciences, Faculty of Science, Technology & Environment, The University of the South Pacific, Laucala Campus, Private Mail Bag, Suva, Republic of Fiji; [email protected] 2 Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands * Correspondence: [email protected]; Tel.: +31-317-483113 Received: 7 March 2019; Accepted: 23 April 2019; Published: 26 April 2019 Abstract: Rare actinomycetes are prolific in the marine environment; however, knowledge about their diversity, distribution and biochemistry is limited. Marine rare actinomycetes represent a rather untapped source of chemically diverse secondary metabolites and novel bioactive compounds. In this review, we aim to summarize the present knowledge on the isolation, diversity, distribution and natural product discovery of marine rare actinomycetes reported from mid-2013 to 2017. A total of 97 new species, representing 9 novel genera and belonging to 27 families of marine rare actinomycetes have been reported, with the highest numbers of novel isolates from the families Pseudonocardiaceae, Demequinaceae, Micromonosporaceae and Nocardioidaceae. Additionally, this study reviewed 167 new bioactive compounds produced by 58 different rare actinomycete species representing 24 genera. Most of the compounds produced by the marine rare actinomycetes present antibacterial, antifungal, antiparasitic, anticancer or antimalarial activities. The highest numbers of natural products were derived from the genera Nocardiopsis, Micromonospora, Salinispora and Pseudonocardia. Members of the genus Micromonospora were revealed to be the richest source of chemically diverse and unique bioactive natural products. -
Blue Barrel Sponge Fact Sheet
Blue Barrel Sponge Fact Sheet Common Name: Blue Barrel Sponge, Giant Barrel Sponge, Marine Sponges, Siliceous Sponges, Volcano Sponge Scientific Name: Xestospongia muta Wild Status: Least Concern Habitat: Found on coral and rocky reef flats Country: Caribbean Sea, Bahamas, Bermuda, Florida, Gulf of Mexico Shelter: Shallow water, Under-hangs, Caves Life Span: 2000 years Size: Diameter of 6 feet Details The Blue Barrel Sponge is one of the largest species of sponge and lives mostly in the Caribbean. They can grow up to 35 feet and have a diameter of 6 feet and live up to 2000 years. As the sponge ages it begins to grow slower and take a long time to finally reach it's full size. Sponges do not have a cardiovascular system and have to have a constant water flow in order to have food, remove waste and have oxygen. They are filter feeders. The body of the sponge has many canals which helps filter the water through their bodies. The canals are lined with cells called Choanocytes which are flagellated. The Flagellum creates a rhythmical beating so water can move easily and food can become trapped. Blue Barrel Sponge can reproduce asexually or sexually because it's a hermaphrodite. They are important to the coral reef in that they provide a habitat for crabs, shrimps, gobies, etc. Cool Facts • The Blue Barrel Sponge dominates coral reef communities. • The Blue Barrel Sponge community in Florida Keys from Conch Reef has been studied since 1997. • The Blue Barrel Sponge is a filter feeder. • The Blue Barrel Sponges' tissues contains photosynthetic symbiotic cyanobacteria which gives it its color. -
Mtdna Diversity of the Indonesian Giant Barrel Sponge Xestospongia Testudinaria
Journal of the Marine Biological Association of the United Kingdom, 2016, 96(2), 323–332. # Marine Biological Association of the United Kingdom, 2015 doi:10.1017/S0025315415001149 MtDNA diversity of the Indonesian giant barrel sponge Xestospongia testudinaria (Porifera: Haplosclerida) – implications from partial cytochrome oxidase 1 sequences edwin setiawan1,2,3, nicole j. de voogd3, thomas swierts3, john n.a. hooper4,5, gert wo¤rheide1,6,7 and dirk erpenbeck1,6 1Department of Earth and Environmental Sciences, Palaeontology & Geobiology, Ludwig-Maximilians-Universita¨tMu¨nchen, Munich, Germany, 2Zoology lab, Biology Department, Mathematic and Natural Science Faculty, Sepuluh November Institute of Technology, Surabaya, Indonesia, 3Naturalis Biodiversity Center, Leiden, the Netherlands, 4Biodiversity Program, Queensland Museum, South Brisbane, Australia, 5Eskitis Institute for Drug Discovery, Griffith University, Nathan, Queensland 4111, Australia, 6GeoBio-CenterLMU Ludwig-Maximilians-Universita¨tMu¨nchen, Munich, Germany, 7SNSB – Bayerische Staatssammlung fu¨r Pala¨ontologie und Geologie, Munich, Germany The Indonesian archipelago is a ‘hotspot’ for invertebrate biodiversity (‘Coral Triangle’). In this area of ‘peak’ biodiversity, the origins of this high species diversity have often been debated. Xestospongia testudinaria is one of the sponge species that dom- inates coral reef sponge communities in this region. The role of the so-called ‘giant barrel sponge’ for the reef ecosystem has been studied repeatedly, as have its various bioactive compounds. However, the genetic variation of this iconic sponge in the region remains unknown. We investigate over 200 barrel sponge samples from Indonesia, and neighbouring as well as more distant localities (Saudi Arabia, Tanzania, Thailand, Taiwan, Java, Sulawesi and the Great Barrier Reef, Australia) using the mitochondrial cytochrome oxidase subunit 1. -
Hypocreales, Sordariomycetes) from Decaying Palm Leaves in Thailand
Mycosphere Baipadisphaeria gen. nov., a freshwater ascomycete (Hypocreales, Sordariomycetes) from decaying palm leaves in Thailand Pinruan U1, Rungjindamai N2, Sakayaroj J2, Lumyong S1, Hyde KD3 and Jones EBG2* 1Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand 2BIOTEC Bioresources Technology Unit, National Center for Genetic Engineering and Biotechnology, NSTDA, 113 Thailand Science Park, Paholyothin Road, Khlong 1, Khlong Luang, Pathum Thani, 12120, Thailand 3School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand Pinruan U, Rungjindamai N, Sakayaroj J, Lumyong S, Hyde KD, Jones EBG 2010 – Baipadisphaeria gen. nov., a freshwater ascomycete (Hypocreales, Sordariomycetes) from decaying palm leaves in Thailand. Mycosphere 1, 53–63. Baipadisphaeria spathulospora gen. et sp. nov., a freshwater ascomycete is characterized by black immersed ascomata, unbranched, septate paraphyses, unitunicate, clavate to ovoid asci, lacking an apical structure, and fusiform to almost cylindrical, straight or curved, hyaline to pale brown, unicellular, and smooth-walled ascospores. No anamorph was observed. The species is described from submerged decaying leaves of the peat swamp palm Licuala longicalycata. Phylogenetic analyses based on combined small and large subunit ribosomal DNA sequences showed that it belongs in Nectriaceae (Hypocreales, Hypocreomycetidae, Ascomycota). Baipadisphaeria spathulospora constitutes a sister taxon with weak support to Leuconectria clusiae in all analyses. Based -
A Worldwide List of Endophytic Fungi with Notes on Ecology and Diversity
Mycosphere 10(1): 798–1079 (2019) www.mycosphere.org ISSN 2077 7019 Article Doi 10.5943/mycosphere/10/1/19 A worldwide list of endophytic fungi with notes on ecology and diversity Rashmi M, Kushveer JS and Sarma VV* Fungal Biotechnology Lab, Department of Biotechnology, School of Life Sciences, Pondicherry University, Kalapet, Pondicherry 605014, Puducherry, India Rashmi M, Kushveer JS, Sarma VV 2019 – A worldwide list of endophytic fungi with notes on ecology and diversity. Mycosphere 10(1), 798–1079, Doi 10.5943/mycosphere/10/1/19 Abstract Endophytic fungi are symptomless internal inhabits of plant tissues. They are implicated in the production of antibiotic and other compounds of therapeutic importance. Ecologically they provide several benefits to plants, including protection from plant pathogens. There have been numerous studies on the biodiversity and ecology of endophytic fungi. Some taxa dominate and occur frequently when compared to others due to adaptations or capabilities to produce different primary and secondary metabolites. It is therefore of interest to examine different fungal species and major taxonomic groups to which these fungi belong for bioactive compound production. In the present paper a list of endophytes based on the available literature is reported. More than 800 genera have been reported worldwide. Dominant genera are Alternaria, Aspergillus, Colletotrichum, Fusarium, Penicillium, and Phoma. Most endophyte studies have been on angiosperms followed by gymnosperms. Among the different substrates, leaf endophytes have been studied and analyzed in more detail when compared to other parts. Most investigations are from Asian countries such as China, India, European countries such as Germany, Spain and the UK in addition to major contributions from Brazil and the USA. -
Lasionectriopsis, a New Genus in the Bionectriaceae, Based on the New Species L
Lasionectriopsis, a new genus in the Bionectriaceae, based on the new species L. germanica Christian LECHAT Abstract: Lasionectriopsis germanica gen. and sp. nov. is described and illustrated based on a collection from Pierre-Arthur MOREAU germany. The asexual morph of this fungus was obtained in culture and the culture was sequenced. The Hans BENDER genus is placed in the Bionectriaceae based on ascomata not changing colour in 3% KOH or lactic acid, and phylogenetic comparison of LSU sequences with species in 14 genera of the Bionectriaceae. Lasionectriopsis is primarily characterized by whitish to pale orange, globose ascomata, semi-immersed in a subiculum, and Ascomycete.org, 11 (1) : 1–4 verruculose ascospores. Based on molecular data, two species known only as asexual morphs, Acremonium Mise en ligne le 16/02/2019 pteridii and A. spinosum, are recombined in Lasionectriopsis. 10.25664/ART-0250 Keywords: acremonium-like, ascomycota, Hypocreales, ribosomal Dna, taxonomy. Résumé : Lasionectriopsis germanica gen. et sp. nov. est décrit et illustré d’après une récolte effectuée en al- lemagne. La forme asexuée de ce champignon a été obtenue en culture et cette dernière a été séquencée. Le genre est placé dans les Bionectriaceae d’après les ascomes ne changeant pas de couleur dans KOH à 3% ou dans l’acide lactique et la comparaison des séquences LSU avec des espèces représentant 14 genres de Bionectriaceae. Lasionectriopsis est caractérisé par des ascomes globuleux, semi-immergés dans un subicu- lum, blanchâtre à orange pâle et des ascospores verruculeuses. Deux espèces connues jusqu’à présent par leur seul stade asexué, Acremonium pteridii et A.