Genetic Diversity of Selected Petrosiid Sponges
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Architecture of Cell Differentiation in Choanoflagellates And
bioRxiv preprint doi: https://doi.org/10.1101/452185; this version posted October 29, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 The architecture of cell differentiation in choanoflagellates 2 and sponge choanocytes 3 Davis Laundon1,2,6, Ben Larson3, Kent McDonald3, Nicole King3,4 and Pawel 4 Burkhardt1,5* 5 1 Marine Biological Association of the United Kingdom, The Laboratory, Citadel Hill, 6 Plymouth, PL1 2PB, United Kingdom 7 2 Plymouth University, Drake Circus, Plymouth, PL4 8AA, United Kingdom 8 3 Department of Molecular and Cell Biology, University of California, Berkeley, USA 9 4 Howard Hughes Medical Institute 10 5 Sars International Centre for Molecular Marine Biology, University of Bergen, 11 Thormohlensgate 55, 5020 Bergen, Norway 12 6 Current Affiliation: University of East Anglia, Norwich, NR4 7TJ, United Kingdom 13 14 *Correspondence [email protected] 15 16 17 18 19 20 21 22 23 24 25 bioRxiv preprint doi: https://doi.org/10.1101/452185; this version posted October 29, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 26 SUMMARY 27 Collar cells are ancient animal cell types which are conserved across the animal 28 kingdom [1] and their closest relatives, the choanoflagellates [2]. -
1 Microbiome Diversity and Host Immune Functions May Define the Fate of Sponge Holobionts
bioRxiv preprint doi: https://doi.org/10.1101/2021.06.20.449181; this version posted June 20, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Microbiome diversity and host immune functions may define the fate of sponge holobionts 2 under future ocean conditions 3 4 Running title: Sponge holobionts under future ocean conditions 5 6 Niño Posadas1, Jake Ivan P. Baquiran1, Michael Angelou L. Nada1, Michelle Kelly2, 7 Cecilia Conaco1* 8 9 1Marine Science Institute, University of the Philippines Diliman, Quezon City, 1101, 10 Philippines 11 2National Institute of Water and Atmospheric Research, Ltd., Auckland, New Zealand 12 13 *Corresponding author: 14 Cecilia Conaco 15 E-mail: [email protected] 16 17 18 19 20 21 22 23 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.06.20.449181; this version posted June 20, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 24 Abstract 25 26 The sponge-associated microbial community contributes to the overall health and 27 adaptive capacity of the sponge holobiont. This community is regulated by the 28 environment, as well as the immune system of the host. However, little is known about 29 the effect of environmental stress on the regulation of host immune functions and how 30 this may, in turn, affect sponge-microbe interactions. -
Taxonomy and Diversity of the Sponge Fauna from Walters Shoal, a Shallow Seamount in the Western Indian Ocean Region
Taxonomy and diversity of the sponge fauna from Walters Shoal, a shallow seamount in the Western Indian Ocean region By Robyn Pauline Payne A thesis submitted in partial fulfilment of the requirements for the degree of Magister Scientiae in the Department of Biodiversity and Conservation Biology, University of the Western Cape. Supervisors: Dr Toufiek Samaai Prof. Mark J. Gibbons Dr Wayne K. Florence The financial assistance of the National Research Foundation (NRF) towards this research is hereby acknowledged. Opinions expressed and conclusions arrived at, are those of the author and are not necessarily to be attributed to the NRF. December 2015 Taxonomy and diversity of the sponge fauna from Walters Shoal, a shallow seamount in the Western Indian Ocean region Robyn Pauline Payne Keywords Indian Ocean Seamount Walters Shoal Sponges Taxonomy Systematics Diversity Biogeography ii Abstract Taxonomy and diversity of the sponge fauna from Walters Shoal, a shallow seamount in the Western Indian Ocean region R. P. Payne MSc Thesis, Department of Biodiversity and Conservation Biology, University of the Western Cape. Seamounts are poorly understood ubiquitous undersea features, with less than 4% sampled for scientific purposes globally. Consequently, the fauna associated with seamounts in the Indian Ocean remains largely unknown, with less than 300 species recorded. One such feature within this region is Walters Shoal, a shallow seamount located on the South Madagascar Ridge, which is situated approximately 400 nautical miles south of Madagascar and 600 nautical miles east of South Africa. Even though it penetrates the euphotic zone (summit is 15 m below the sea surface) and is protected by the Southern Indian Ocean Deep- Sea Fishers Association, there is a paucity of biodiversity and oceanographic data. -
Appendix: Some Important Early Collections of West Indian Type Specimens, with Historical Notes
Appendix: Some important early collections of West Indian type specimens, with historical notes Duchassaing & Michelotti, 1864 between 1841 and 1864, we gain additional information concerning the sponge memoir, starting with the letter dated 8 May 1855. Jacob Gysbert Samuel van Breda A biography of Placide Duchassaing de Fonbressin was (1788-1867) was professor of botany in Franeker (Hol published by his friend Sagot (1873). Although an aristo land), of botany and zoology in Gent (Belgium), and crat by birth, as we learn from Michelotti's last extant then of zoology and geology in Leyden. Later he went to letter to van Breda, Duchassaing did not add de Fon Haarlem, where he was secretary of the Hollandsche bressin to his name until 1864. Duchassaing was born Maatschappij der Wetenschappen, curator of its cabinet around 1819 on Guadeloupe, in a French-Creole family of natural history, and director of Teyler's Museum of of planters. He was sent to school in Paris, first to the minerals, fossils and physical instruments. Van Breda Lycee Louis-le-Grand, then to University. He finished traveled extensively in Europe collecting fossils, especial his studies in 1844 with a doctorate in medicine and two ly in Italy. Michelotti exchanged collections of fossils additional theses in geology and zoology. He then settled with him over a long period of time, and was received as on Guadeloupe as physician. Because of social unrest foreign member of the Hollandsche Maatschappij der after the freeing of native labor, he left Guadeloupe W etenschappen in 1842. The two chief papers of Miche around 1848, and visited several islands of the Antilles lotti on fossils were published by the Hollandsche Maat (notably Nevis, Sint Eustatius, St. -
Caribbean Wildlife Undersea 2017
Caribbean Wildlife Undersea life This document is a compilation of wildlife pictures from The Caribbean, taken from holidays and cruise visits. Species identification can be frustratingly difficult and our conclusions must be checked via whatever other resources are available. We hope this publication may help others having similar problems. While every effort has been taken to ensure the accuracy of the information in this document, the authors cannot be held re- sponsible for any errors. Copyright © John and Diana Manning, 2017 1 Angelfishes (Pomacanthidae) Corals (Cnidaria, Anthozoa) French angelfish 7 Bipinnate sea plume 19 (Pomacanthus pardu) (Antillogorgia bipinnata) Grey angelfish 8 Black sea rod 20 (Pomacanthus arcuatus) (Plexaura homomalla) Queen angelfish 8 Blade fire coral 20 (Holacanthus ciliaris) (Millepora complanata) Rock beauty 9 Branching fire coral 21 (Holacanthus tricolor) (Millepora alcicornis) Townsend angelfish 9 Bristle Coral 21 (Hybrid) (Galaxea fascicularis) Elkhorn coral 22 Barracudas (Sphyraenidae) (Acropora palmata) Great barracuda 10 Finger coral 22 (Sphyraena barracuda) (Porites porites) Fire coral 23 Basslets (Grammatidae) (Millepora dichotoma) Fairy basslet 10 Great star coral 23 (Gramma loreto) (Montastraea cavernosa) Grooved brain coral 24 Bonnetmouths (Inermiidae) (Diploria labyrinthiformis) Boga( Inermia Vittata) 11 Massive starlet coral 24 (Siderastrea siderea) Bigeyes (Priacanthidae) Pillar coral 25 Glasseye snapper 11 (Dendrogyra cylindrus) (Heteropriacanthus cruentatus) Porous sea rod 25 (Pseudoplexaura -
Prokaryotic Communities of Indo-Pacific Giant Barrel Sponges Are More Strongly Influenced by Geography Than Host Phylogeny
FEMS Microbiology Ecology, 94, 2018, fiy194 doi: 10.1093/femsec/fiy194 Advance Access Publication Date: 4 October 2018 Research Article RESEARCH ARTICLE Prokaryotic communities of Indo-Pacific giant barrel sponges are more strongly influenced by geography than host phylogeny TSwierts1,2,*, DFR Cleary3 and NJ de Voogd1,2 1Marine Biodiversity, Naturalis Biodiversity Center, PO Box 9517, 2300 RA, Leiden, the Netherlands, 2Institute of Environmental Sciences, Leiden University, PO Box 9518, 2300 RA, Leiden, the Netherlands and 3Departamento de Biologia CESAM, Centro de Estudos do Ambiente e do Mar, Universidade de Aveiro, Aveiro, Portugal ∗Corresponding author: Marine Biodiversity, Naturalis Biodiversity Center, PO Box 9517, 2300 RA, Leiden, the Netherlands. Tel: +31 (0)71 7519615. E-mail: [email protected] One sentence summary: The prokaryotic communities of multiple giant barrel sponge species in the Indo-Pacific are more strongly influenced by geography than host phylogeny. Editor: Julie Olson ABSTRACT Sponges harbor complex communities of microorganisms that carry out essential roles for the functioning and survival of their hosts. In some cases, genetically related sponges from different geographic regions share microbes, while in other cases microbial communities are more similar in unrelated sponges collected from the same location. To better understand how geography and host phylogeny cause variation in the prokaryotic community of sponges, we compared the prokaryotic community of 44 giant barrel sponges (Xestospongia spp.). These sponges belonged to six reproductively isolated genetic groups from eight areas throughout the Indo-Pacific region. Using Illumina sequencing, we obtained 440 000 sequences of the 16S rRNA gene V3V4 variable region that were assigned to 3795 operational taxonomic units (OTUs). -
Review of the Mineralogy of Calcifying Sponges
Dickinson College Dickinson Scholar Faculty and Staff Publications By Year Faculty and Staff Publications 12-2013 Not All Sponges Will Thrive in a High-CO2 Ocean: Review of the Mineralogy of Calcifying Sponges Abigail M. Smith Jade Berman Marcus M. Key, Jr. Dickinson College David J. Winter Follow this and additional works at: https://scholar.dickinson.edu/faculty_publications Part of the Paleontology Commons Recommended Citation Smith, Abigail M.; Berman, Jade; Key,, Marcus M. Jr.; and Winter, David J., "Not All Sponges Will Thrive in a High-CO2 Ocean: Review of the Mineralogy of Calcifying Sponges" (2013). Dickinson College Faculty Publications. Paper 338. https://scholar.dickinson.edu/faculty_publications/338 This article is brought to you for free and open access by Dickinson Scholar. It has been accepted for inclusion by an authorized administrator. For more information, please contact [email protected]. © 2013. Licensed under the Creative Commons http://creativecommons.org/licenses/by- nc-nd/4.0/ Elsevier Editorial System(tm) for Palaeogeography, Palaeoclimatology, Palaeoecology Manuscript Draft Manuscript Number: PALAEO7348R1 Title: Not all sponges will thrive in a high-CO2 ocean: Review of the mineralogy of calcifying sponges Article Type: Research Paper Keywords: sponges; Porifera; ocean acidification; calcite; aragonite; skeletal biomineralogy Corresponding Author: Dr. Abigail M Smith, PhD Corresponding Author's Institution: University of Otago First Author: Abigail M Smith, PhD Order of Authors: Abigail M Smith, PhD; Jade Berman, PhD; Marcus M Key Jr, PhD; David J Winter, PhD Abstract: Most marine sponges precipitate silicate skeletal elements, and it has been predicted that they would be among the few "winners" in an acidifying, high-CO2 ocean. -
Giant Barrel Sponge) Population on the Southeast Florida Reef Tract Alanna D
Nova Southeastern University NSUWorks HCNSO Student Theses and Dissertations HCNSO Student Work 7-25-2019 Spatial and temporal trends in the Xestospongia muta (giant barrel sponge) population on the Southeast Florida Reef Tract Alanna D. Waldman student, [email protected] Follow this and additional works at: https://nsuworks.nova.edu/occ_stuetd Part of the Marine Biology Commons, and the Oceanography and Atmospheric Sciences and Meteorology Commons Share Feedback About This Item NSUWorks Citation Alanna D. Waldman. 2019. Spatial and temporal trends in the Xestospongia muta (giant barrel sponge) population on the Southeast Florida Reef Tract. Master's thesis. Nova Southeastern University. Retrieved from NSUWorks, . (514) https://nsuworks.nova.edu/occ_stuetd/514. This Thesis is brought to you by the HCNSO Student Work at NSUWorks. It has been accepted for inclusion in HCNSO Student Theses and Dissertations by an authorized administrator of NSUWorks. For more information, please contact [email protected]. Thesis of Alanna D. Waldman Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science M.S. Marine Biology Nova Southeastern University Halmos College of Natural Sciences and Oceanography July 2019 Approved: Thesis Committee Major Professor: David Gilliam, Ph.D. Committee Member: Jose Lopez, Ph.D. Committee Member: Charles Messing, Ph.D. This thesis is available at NSUWorks: https://nsuworks.nova.edu/occ_stuetd/514 HALMOS COLLEGE OF NATURAL SCIENCES AND OCEANOGRAPHY Spatial and temporal trends in the Xestospongia muta (giant barrel sponge) population on the Southeast Florida Reef Tract By Alanna Denbrook Waldman Submitted to the Faculty of Halmos College of Natural Sciences and Oceanography in partial fulfillment of the requirements for the degree of Master of Science with a specialty in: Marine Biology Nova Southeastern University August 2019 Table of Contents List of Figures ............................................................................................................................... -
DEEP SEA LEBANON RESULTS of the 2016 EXPEDITION EXPLORING SUBMARINE CANYONS Towards Deep-Sea Conservation in Lebanon Project
DEEP SEA LEBANON RESULTS OF THE 2016 EXPEDITION EXPLORING SUBMARINE CANYONS Towards Deep-Sea Conservation in Lebanon Project March 2018 DEEP SEA LEBANON RESULTS OF THE 2016 EXPEDITION EXPLORING SUBMARINE CANYONS Towards Deep-Sea Conservation in Lebanon Project Citation: Aguilar, R., García, S., Perry, A.L., Alvarez, H., Blanco, J., Bitar, G. 2018. 2016 Deep-sea Lebanon Expedition: Exploring Submarine Canyons. Oceana, Madrid. 94 p. DOI: 10.31230/osf.io/34cb9 Based on an official request from Lebanon’s Ministry of Environment back in 2013, Oceana has planned and carried out an expedition to survey Lebanese deep-sea canyons and escarpments. Cover: Cerianthus membranaceus © OCEANA All photos are © OCEANA Index 06 Introduction 11 Methods 16 Results 44 Areas 12 Rov surveys 16 Habitat types 44 Tarablus/Batroun 14 Infaunal surveys 16 Coralligenous habitat 44 Jounieh 14 Oceanographic and rhodolith/maërl 45 St. George beds measurements 46 Beirut 19 Sandy bottoms 15 Data analyses 46 Sayniq 15 Collaborations 20 Sandy-muddy bottoms 20 Rocky bottoms 22 Canyon heads 22 Bathyal muds 24 Species 27 Fishes 29 Crustaceans 30 Echinoderms 31 Cnidarians 36 Sponges 38 Molluscs 40 Bryozoans 40 Brachiopods 42 Tunicates 42 Annelids 42 Foraminifera 42 Algae | Deep sea Lebanon OCEANA 47 Human 50 Discussion and 68 Annex 1 85 Annex 2 impacts conclusions 68 Table A1. List of 85 Methodology for 47 Marine litter 51 Main expedition species identified assesing relative 49 Fisheries findings 84 Table A2. List conservation interest of 49 Other observations 52 Key community of threatened types and their species identified survey areas ecological importanc 84 Figure A1. -
Sequence from B4 Sponge with (A) the First BLAST Hit Asbestopluma Lycopodium and (B) the Sequence of M
Supplementary Material Figure S1. Alignments of CO1 (PorCOI2fwd/PorCOI2rev) sequence from B4 sponge with (A) the first BLAST hit Asbestopluma lycopodium and (B) the sequence of M. acerata displaying low query cover. 1 Figure S2. Alignment of CO1 (dgLCO1490/dgHCO2198) sequence from B4 sponge with the first BLAST hit (M. acerata). 2 Figure S3. Alignment of CO1 (dgLCO1490/dgHCO2198) sequence from D4 sponge with the first BLAST hit (H. pilosus). 3 Figure S4. Taxonomy Bar Plot, reporting the relative frequencies (in percentage, %) of the bacteria taxons more representative for each of the four sponges under analysis . Sample code: B4= M. (Oxymycale) acerata; D4= H. pilosus, D6= M. sarai, C6= H. (Rhizoniera) dancoi. Each taxon is highlighted by a different color. 4 Figure S5. Krona plot at the seven increasing complexity levels: (a) Regnum, (b) Phylum, (c) Class, (d) Order, (e) Family, (f) Genus and (g) Species. a) 5 b) 6 c) 7 d) 8 e) 9 f) 10 g) 11 Figure S6. Distribution of ASV’s frequencies. 12 Figure S7. Distribution of ASV’s frequencies for each sample (reported as a blue bar). 13 Table S1. BLAST results from B4 sponge (Mycale (Oxymycale) acerata). The primer names, sequence length in base pairs (bp), first hits (highlighted in bold), hits at low significance displaying the correct species (where present), query cover and identity percentages (%) were reported. Sequence Query Identity Primers BLAST results length (bp) cover (%) (%) Mycale macilenta voucher 0CDN7203‐O small subunit 18S A/B 1700 99 98 ribosomal RNA gene, partial sequence Mycale -
Supplementary Materials: Patterns of Sponge Biodiversity in the Pilbara, Northwestern Australia
Diversity 2016, 8, 21; doi:10.3390/d8040021 S1 of S3 9 Supplementary Materials: Patterns of Sponge Biodiversity in the Pilbara, Northwestern Australia Jane Fromont, Muhammad Azmi Abdul Wahab, Oliver Gomez, Merrick Ekins, Monique Grol and John Norman Ashby Hooper 1. Materials and Methods 1.1. Collation of Sponge Occurrence Data Data of sponge occurrences were collated from databases of the Western Australian Museum (WAM) and Atlas of Living Australia (ALA) [1]. Pilbara sponge data on ALA had been captured in a northern Australian sponge report [2], but with the WAM data, provides a far more comprehensive dataset, in both geographic and taxonomic composition of sponges. Quality control procedures were undertaken to remove obvious duplicate records and those with insufficient or ambiguous species data. Due to differing naming conventions of OTUs by institutions contributing to the two databases and the lack of resources for physical comparison of all OTU specimens, a maximum error of ± 13.5% total species counts was determined for the dataset, to account for potentially unique (differently named OTUs are unique) or overlapping OTUs (differently named OTUs are the same) (157 potential instances identified out of 1164 total OTUs). The amalgamation of these two databases produced a complete occurrence dataset (presence/absence) of all currently described sponge species and OTUs from the region (see Table S1). The dataset follows the new taxonomic classification proposed by [3] and implemented by [4]. The latter source was used to confirm present validities and taxon authorities for known species names. The dataset consists of records identified as (1) described (Linnean) species, (2) records with “cf.” in front of species names which indicates the specimens have some characters of a described species but also differences, which require comparisons with type material, and (3) records as “operational taxonomy units” (OTUs) which are considered to be unique species although further assessments are required to establish their taxonomic status. -
A New Species of the Calcareous Sponge Genus Leuclathrina (Calcarea: Calcinea: Clathrinida) from the Maldives
Zootaxa 4382 (1): 147–158 ISSN 1175-5326 (print edition) http://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2018 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4382.1.5 http://zoobank.org/urn:lsid:zoobank.org:pub:B222C2D8-82FB-414C-A88F-44A12A837A21 A new species of the calcareous sponge genus Leuclathrina (Calcarea: Calcinea: Clathrinida) from the Maldives OLIVER VOIGT1,5, BERNHARD RUTHENSTEINER2, LAURA LEIVA1, BENEDETTA FRADUSCO1 & GERT WÖRHEIDE1,3,4 1Department of Earth and Environmental Sciences, Palaeontology and Geobiology, Ludwig-Maximilians-Universität München, Rich- ard-Wagner-Str. 10, 80333 München, Germany 2 SNSB - Zoologische Staatssammlung München, Sektion Evertebrata varia, Münchhausenstr. 21, 81247 München, Germany 3 GeoBio-Center, Ludwig-Maximilians-Universität München, Richard-Wagner-Str. 10, 80333 München, Germany 4SNSB - Bayerische Staatssammlung für Paläontologie und Geologie, Richard-Wagner-Str. 10, 80333 München, Germany 5Corresponding author. E-mail: [email protected], Tel.: +49 (0) 89 2180 6635; Fax: +49 (0) 89 2180 6601 Abstract The diversity and phylogenetic relationships of calcareous sponges are still not completely understood. Recent integrative approaches combined analyses of DNA and morphological observations. Such studies resulted in severe taxonomic revi- sions within the subclass Calcinea and provided the foundation for a phylogenetically meaningful classification. However, several genera are missing from DNA phylogenies and their relationship to other Calcinea remain uncertain. One of these genera is Leuclathrina (family Leucaltidae). We here describe a new species from the Maldives, Leuclathrina translucida sp. nov., which is only the second species of the genus. Like the type species Leuclathrina asconoides, the new species has a leuconoid aquiferous system and lacks a specialized choanoskeleton.