Amnwr 2018/13 Biological Monitoring at Saint Lazaria

Total Page:16

File Type:pdf, Size:1020Kb

Amnwr 2018/13 Biological Monitoring at Saint Lazaria AMNWR 2018/13 BIOLOGICAL MONITORING AT SAINT LAZARIA ISLAND, ALASKA IN 2018 Stacie A. Evans, Daniel J. Schultz, and Brie A. Drummond Key words: Alaska, Cepphus columba, Cerorhinca monocerata, common murre, diet, food habits, fork- tailed storm-petrel, Fratercula cirrhata, glaucous-winged gull, Larus glaucescens, Leach’s storm-petrel, Oceanodroma furcata, Oceanodroma leucorhoa, pelagic cormorant, Phalacrocorax pelagicus, pigeon guillemot, population trends, productivity, rhinoceros auklet, St. Lazaria Island, thick-billed murre, tufted puffin, Uria aalge, Uria lomvia U.S. Fish and Wildlife Service Alaska Maritime National Wildlife Refuge 95 Sterling Highway, Suite 1 Homer, AK 99603 November 2018 Cite as: Evans, S. A., D. J. Schultz, and B. A. Drummond. 2018. Biological monitoring at Saint Lazaria Island, Alaska in 2018. U.S. Fish and Wildl. Serv. Rep., AMNWR 2018/13. Homer, Alaska. St. Lazaria tide pools are endlessly fascinating, colorful, and beautiful. (Photo credit: Daniel Schultz) A piece of driftwood provides substrate for goose barnacles (Lepas anatifera). (Photo credit: Stacie Evans) Cover photo: Opalescent nudibranch (Hermissenda crassicornis). An abundant species in St. Lazaria tide pools in 2018. (Photo credit: Daniel Schultz) i TABLE OF CONTENTS Page INTRODUCTION ........................................................................................................................................... 1 STUDY AREA ............................................................................................................................................... 2 METHODS .................................................................................................................................................... 3 INTERESTING OBSERVATIONS ................................................................................................................ 5 ACKNOWLEDGEMENTS ............................................................................................................................. 8 REFERENCES .............................................................................................................................................. 8 ISLAND MAPS ............................................................................................................................................ 11 FIGURES AND TABLES ............................................................................................................................. 13 Black oystercatcher .............................................................................................................................. 14 Breeding chronology ...................................................................................................................... 14 Reproductive performance ............................................................................................................. 16 Populations .................................................................................................................................... 18 Food habits .................................................................................................................................... 19 Common murre .................................................................................................................................... 21 Breeding chronology ...................................................................................................................... 21 Reproductive performance ............................................................................................................. 24 Thick-billed murre ................................................................................................................................ 28 Breeding chronology ...................................................................................................................... 28 Reproductive performance ............................................................................................................. 32 All murres ............................................................................................................................................. 36 Populations .................................................................................................................................... 36 Pigeon guillemot .................................................................................................................................. 44 Populations .................................................................................................................................... 44 Rhinoceros auklet ................................................................................................................................ 46 Breeding chronology ...................................................................................................................... 46 Reproductive performance ............................................................................................................. 50 Populations .................................................................................................................................... 53 Chick growth .................................................................................................................................. 57 Food habits .................................................................................................................................... 59 Tufted puffin ......................................................................................................................................... 68 Reproductive performance ............................................................................................................. 68 Populations .................................................................................................................................... 70 Glaucous-winged gull ........................................................................................................................... 73 Breeding chronology ...................................................................................................................... 73 Reproductive performance ............................................................................................................. 77 Populations .................................................................................................................................... 81 Food habits .................................................................................................................................... 85 Fork-tailed storm-petrel ....................................................................................................................... 95 Breeding chronology ...................................................................................................................... 95 Reproductive performance ........................................................................................................... 100 Chick growth ................................................................................................................................ 104 Food habits .................................................................................................................................. 106 Adult measurements .................................................................................................................... 112 Leach’s storm-petrel .......................................................................................................................... 113 Breeding chronology .................................................................................................................... 113 Reproductive performance ........................................................................................................... 117 ii TABLE OF CONTENTS (continued) Page Leach’s storm-petrel (continued) .......................................................................................................113 Chick growth ...............................................................................................................................121 Food habits ................................................................................................................................123 Adult measurements ...................................................................................................................129 All storm-petrels .................................................................................................................................130 Populations .................................................................................................................................130 Pelagic cormorant ..............................................................................................................................136 Reproductive performance ..........................................................................................................136 Populations .................................................................................................................................138 Food habits .................................................................................................................................141 Miscellaneous ...................................................................................................................................145
Recommended publications
  • Black Oystercatcher
    Alaska Species Ranking System - Black Oystercatcher Black Oystercatcher Class: Aves Order: Charadriiformes Haematopus bachmani Review Status: Peer-reviewed Version Date: 08 April 2019 Conservation Status NatureServe: Agency: G Rank:G5 ADF&G: Species of Greatest Conservation Need IUCN: Audubon AK: S Rank: S2S3B,S2 USFWS: Bird of Conservation Concern BLM: Final Rank Conservation category: V. Orange unknown status and either high biological vulnerability or high action need Category Range Score Status -20 to 20 0 Biological -50 to 50 11 Action -40 to 40 -4 Higher numerical scores denote greater concern Status - variables measure the trend in a taxon’s population status or distribution. Higher status scores denote taxa with known declining trends. Status scores range from -20 (increasing) to 20 (decreasing). Score Population Trend in Alaska (-10 to 10) 0 Suspected stable (ASG 2019; Cushing et al. 2018), but data are limited and do not encompass this species' entire range. We therefore rank this question as Unknown. Distribution Trend in Alaska (-10 to 10) 0 Unknown. Habitat is dynamic and subject to change as a result of geomorphic and glacial processes. For example, numbers expanded on Middleton Island after the 1964 earthquake (Gill et al. 2004). Status Total: 0 Biological - variables measure aspects of a taxon’s distribution, abundance and life history. Higher biological scores suggest greater vulnerability to extirpation. Biological scores range from -50 (least vulnerable) to 50 (most vulnerable). Score Population Size in Alaska (-10 to 10) -2 Uncertain. The global population is estimated at 11,000 individuals, of which 45%-70% breed in Alaska (ASG 2019).
    [Show full text]
  • CHAPTER 1 General Introduction 1.1 Shorebirds in Australia Shorebirds
    CHAPTER 1 General introduction 1.1 Shorebirds in Australia Shorebirds, sometimes referred to as waders, are birds that rely on coastal beaches, shorelines, estuaries and mudflats, or inland lakes, lagoons and the like for part of, and in some cases all of, their daily and annual requirements, i.e. food and shelter, breeding habitat. They are of the suborder Charadrii and include the curlews, snipe, plovers, sandpipers, stilts, oystercatchers and a number of other species, making up a diverse group of birds. Within Australia, shorebirds account for 10% of all bird species (Lane 1987) and in New South Wales (NSW), this figure increases marginally to 11% (Smith 1991). Of these shorebirds, 45% rely exclusively on coastal habitat (Smith 1991). The majority, however, are either migratory or vagrant species, leaving only five resident species that will permanently inhabit coastal shorelines/beaches within Australia. Australian resident shorebirds include the Beach Stone-curlew (Esacus neglectus), Hooded Plover (Charadrius rubricollis), Red- capped Plover (Charadrius ruficapillus), Australian Pied Oystercatcher (Haematopus longirostris) and Sooty Oystercatcher (Haematopus fuliginosus) (Smith 1991, Priest et al. 2002). These species are generally classified as ‘beach-nesting’, nesting on sandy ocean beaches, sand spits and sand islands within estuaries. However, the Sooty Oystercatcher is an island-nesting species, using rocky shores of near- and offshore islands rather than sandy beaches. The plovers may also nest by inland salt lakes. Shorebirds around the globe have become increasingly threatened with the pressure of predation, competition, human encroachment and disturbance and global warming. Populations of birds breeding in coastal areas which also support a burgeoning human population are under the highest threat.
    [Show full text]
  • Introduction
    BlackOystercatcher — BirdsofNorthAmericaOnline Page1of2 From the CORNELL LAB OF ORNITHOLOGY and the AMERICAN ORNITHOLOGISTS'UNION. species or keywords Search Home Species Subscribe News & Info FAQ Already a subscriber? Sign in Don'thave a subscription? Subscribe Now Black Oystercatcher Haematopus bachmani Order CHARADRIIFORMES –Family HAEMATOPODIDAE Issue No.155 Authors:Andres, Brad A.,and Gary A.Falxa • Articles • Multimedia • References Articles Introduction Welcome to the Birds of North America Online! Welcome to BNA Online, the leading source of life history information for North American breeding birds.This free, Distinguishing Characteristics courtesy preview is just the first of 14articles that provide detailed life history information including Distribution, Migration, Distribution Habitat, Food Habits, Sounds, Behavior and Breeding.Written by acknowledged experts on each species, there is also a comprehensive bibliography of published research on the species. Systematics Migration A subscription is needed to access the remaining articles for this and any other species.Subscription rates start as low as $5USD for 30days of complete access to the resource.To subscribe, please visit the Cornell Lab of Ornithology E-Store. Habitat Food Habits If you are already a current subscriber, you will need to sign in with your login information to access BNA normally. Sounds Subscriptions are available for as little as $5for 30days of full access!If you would like to subscribe to BNA Online, just Behavior visit the Cornell Lab of Ornithology E-Store. Breeding Introduction Demography and Populations Conservation and Management Appearance Measurements Priorities for Future Research Acknowledgments About the Author(s) Black Oystercatcher in flight, Pt.Pinos, Monterey, California, 18February 2007. http://bna.birds.cornell.edu/bna/species/155/articles/introduction 11/14/2015 BlackOystercatcher — BirdsofNorthAmericaOnline Page2of2 Fig.1.Distribution of the Black Oystercatcher.
    [Show full text]
  • Black Oystercatcher Foraging ­ Hollenberg and Demers 35
    Black Oystercatcher foraging ­ Hollenberg and Demers 35 Black Oystercatcher (Haematopus bachmani) foraging on varnish clams (Nuttallia obscurata) in Nanaimo, British Columbia Emily J. R. Hollenberg 1 and Eric Demers 2 1 406­3905 Quadra St., Victoria, B.C., V8X 1J1; email: [email protected] 2 Corresponding author: Biology Department, Vancouver Island University, 900 Fifth St., Nanaimo, B.C., V9R 5S5; email: [email protected] Abstract: In this study, we investigated whether Black Oystercatchers (Haematopus bachmani) feed on the recently intro­ duced varnish clam (Nuttallia obscurata), and whether they selectively feed on specific size classes of varnish clams. Sur­ veys were conducted at Piper’s Lagoon and Departure Bay in Nanaimo, British Columbia, between October 2013 and February 2014. Foraging oystercatchers were observed, and the number and size of varnish clams consumed were recor­ ded. We also determined the density and size of varnish clams available at both sites using quadrats. Our results indicate that Black Oystercatchers consumed varnish clams at both sites, although feeding rates differed slightly between sites. We also found that oystercatchers consumed almost the full range of available clam sizes, with little evidence for size­selective foraging. We conclude that Black Oystercatchers can successfully exploit varnish clams and may obtain a significant part of their daily energy requirements from this non­native species. Key Words: Black Oystercatcher, Haematopus bachmani, varnish clam, Nuttallia obscurata, foraging, Nanaimo. Hollenberg, E.J.R. and E. Demers. 2017. Black Oystercatcher (Haematopus bachmani) foraging on varnish clams (Nuttallia obscurata) in Nanaimo, British Columbia. British Columbia Birds 27:35–41. Campbell et al.
    [Show full text]
  • AFRICAN Black OYSTERCATCHER
    1 1 2 2 3 3 4 African Black Oystercatcher 4 5 5 6 6 7 7 8 Between 8 9 9 10 10 11 the tides 11 12 Text by Phil Hockey 12 13 13 14 he African Black Oystercatcher’s 14 15 15 first entry into the scientific ‘led- 16 16 17 ger’ happened only 141 years 17 18 T 18 19 ago, when a specimen collected at the 19 20 Cape of Good Hope was described by 20 21 21 22 Bonaparte. Bonaparte named the bird 22 23 moquini after the French botanist, 23 24 24 25 Horace Benedict Alfred Moquin Tandon, 25 26 director of the Toulouse Botanical 26 27 27 28 Gardens. Its first entry into the litera- 28 29 29 ture, however, predates this by more 30 30 31 than 200 years. 31 32 32 33 In 1648, Étienne de Flacourt, the 33 34 Governor-General of Madagascar, 34 35 35 36 visited Saldanha Bay. He wrote: ‘There 36 37 are birds like blackbirds, with a very shrill 37 38 38 39 and clear cry, as large as partridges, with 39 40 40 a long sharp beak and red legs: they are 41 41 42 very good to eat and when young they 42 43 43 44 taste like Woodcock’. The first descrip- 44 45 tions of the bird’s biology date from the 45 46 46 47 late 19th century – much of what was 47 48 written then was culled from knowledge 48 49 49 50 of the European Oystercatcher, and much 50 51 51 of it was wrong! 52 52 53 Now, at the end of the 20th century, it 53 54 54 55 seems as though this striking bird may 55 56 be moving from a confused past into an 56 57 57 58 uncertain future.
    [Show full text]
  • A Global Assessment of the Conservation Status of the Black Oystercatcher Haematopus Bachmani
    A global assessment of the conservation status of the Black Oystercatcher Haematopus bachmani David F. Tessle r1, James A. Johnso n2, Brad A. Andres 3, Sue Thoma s4 & Richard B. Lancto t2 1Alaska Department of Fish and Game, Division of Wildlife Conservation, Wildlife Diversity Program, 333 Raspberry Road, Anchorage, Alaska 99518 USA. [email protected] 2United States Fish and Wildlife Service, Division of Migratory Bird Management, 1011 East Tudor Road, MS 201, Anchorage, Alaska 99503 USA 3United States Fish and Wildlife Service, Division of Migratory Bird Management, 755 Parfet Street, Suite 235, Lakewood, Colorado 80215 USA 4United States Fish and Wildlife Service, Washington Maritime National Wildlife Refuge Complex, 715 Holgerson Road, Sequim, Washington 98382 USA Tessler, D.F., J.A. Johnson, B.A. Andres, S. Thomas, & R.B. Lanctot. 2014. A global assessment of the conser - vation status of the Black Oystercatcher Haematopus bachmani . International Wader Studies 20: 83 –96. The Black Oystercatcher Haematopus bachmani , a monotypic species, is one of the less studied members of the genus. The global population of roughly 10,000 individuals is scattered unevenly along the North American Pacific Ocean coast from the Aleutian Islands to Baja California, with the vast majority (about 80%) in Alaska and British Columbia. Favouring rocky shorelines in areas of high tidal variation, they forage exclusively on intertidal macroinvertebrates (e.g. limpets and mussels). Because they are completely dependent on marine shorelines, the Black Oystercatcher is considered a sensitive indicator of the health of the rocky intertidal community. Breeding oystercatchers are highly territorial, and nesting densities are generally low; however, during the winter months they tend to aggregate in groups of tens to hundreds.
    [Show full text]
  • Conservation Assessment of the Variable Oystercatcher Haematopus Unicolor
    Conservation assessment of the Variable Oystercatcher Haematopus unicolor John E. Dowding DM Consultants, P.O. Box 36-274, Merivale, Christchurch 8146, New Zealand. [email protected] Dowding, J.E. 2014. Conservation assessment of the Variable Oystercatcher Haematopus unicolor. Interna - tional Wader Studies 20: 182 –190. The Variable Oystercatcher Haematopus unicolor is a polymorphic species endemic to New Zealand. There are no recognized subspecies. Plumage varies, apparently continuously, from a black-and-white pied morph, through a series of intermediate stages, to an all-black morph. Where they co-occur, the different phases inter- breed freely and randomly. The breeding biology of the species is outlined, but there have been few detailed studies. The species is non-migratory. Some juveniles remain at their natal sites and some disperse. Once paired and established on a territory, adults are typically site- and mate-faithful. There have been no detailed demographic studies, but preliminary data from one region suggest that the population has the potential to grow at about 4% per annum. Variable Oystercatchers are almost entirely coastal in distribution. They are found around much of the mainland of New Zealand and its offshore islands, but are sparsely distributed in some regions. They have not been recorded from outlying island groups. Over the past 40 years, the population has increased rapidly and is currently thought to number about 4,500 –5,000 individuals. Counts from different regions suggest that the increase has occurred throughout the range of the species. Like other oystercatchers in New Zealand, H. unicolor was previously shot for food, and legal protection is thought to be the main reason for the increase.
    [Show full text]
  • Threatened Species PROGRAMME Threatened Species: a Guide to Red Lists and Their Use in Conservation LIST of ABBREVIATIONS
    Threatened Species PROGRAMME Threatened Species: A guide to Red Lists and their use in conservation LIST OF ABBREVIATIONS AOO Area of Occupancy BMP Biodiversity Management Plan CBD Convention on Biological Diversity CITES Convention on International Trade in Endangered Species DAFF Department of Agriculture, Forestry and Fisheries EIA Environmental Impact Assessment EOO Extent of Occurrence IUCN International Union for Conservation of Nature NEMA National Environmental Management Act NEMBA National Environmental Management Biodiversity Act NGO Non-governmental Organization NSBA National Spatial Biodiversity Assessment PVA Population Viability Analysis SANBI South African National Biodiversity Institute SANSA South African National Survey of Arachnida SIBIS SANBI's Integrated Biodiversity Information System SRLI Sampled Red List Index SSC Species Survival Commission TSP Threatened Species Programme Threatened Species: A guide to Red Lists and their use in conservation OVERVIEW The International Union for Conservation of Nature (IUCN)’s Red List is a world standard for evaluating the conservation status of plant and animal species. The IUCN Red List, which determines the risks of extinction to species, plays an important role in guiding conservation activities of governments, NGOs and scientific institutions, and is recognized worldwide for its objective approach. In order to produce the IUCN Red List of Threatened Species™, the IUCN Species Programme, working together with the IUCN Species Survival Commission (SSC) and members of IUCN, draw on and mobilize a network of partner organizations and scientists worldwide. One such partner organization is the South African National Biodiversity Institute (SANBI), who, through the Threatened Species Programme (TSP), contributes information on the conservation status and biology of threatened species in southern Africa.
    [Show full text]
  • AFRICAN OYSTERCATCHER (AFRICAN BLACK OYSTERCATCHER) | Haematopus Moquini
    AFRICAN OYSTERCATCHER (AFRICAN BLACK OYSTERCATCHER) | Haematopus moquini A Leseberg | Reviewed by: J Kemper; H Kolberg; RE Simmons © Jessica Kemper Conservation Status: Near Threatened Southern African Range: Coastal Namibia, South Africa Area of Occupancy: 16,000 km2 Population Estimate: 2,860 individuals Population Trend: Stable to increasing Habitat: Rocky and sandy coastal shores, islands, bays and lagoons Threats: Human disturbance at islands, human and vehicle disturbance at nurseries DISTRIBUTION AND ABUNDANCE Kemper unpubl. data). The most important of these islands is Possession Island with up to 199 breeding pairs (MFMR The African Oystercatcher has a breeding range unpubl. data). Smaller numbers of breeding pairs have extending from just north of Lüderitz on the southern been recorded at localities farther south, but are likely to Namibian coast to Port Edward, KwaZulu-Natal, South be underestimates, given that no concerted nest searches Africa (Hockey 2005c). Vagrants occur as far north as have been done during the breeding season at these Lobito, Angola (Hockey 1983a) and about 35 birds occur localities. Few oystercatchers breed along the mainland, at Baia dos Tigres, Angola (Dean et al. 2002, Simmons et where they are likely to be subjected to disturbance al. 2006b). Its range extends eastwards as far as Inhaca and predation by jackals (RE Simmons unpubl. data). Island, Mozambique (de Boer & Bento 1999). A large Extralimital breeding attempts north of Lüderitz, at the proportion of the population is found on some of the 18 Hoanib River mouth (Braine 1987) and at Mercury Island islands and rocks that occur just off south-west Namibia (MFMR unpubl. data) have been unsuccessful.
    [Show full text]
  • Birds of Conservation Concern 2021 Migratory Bird Program Table of Contents
    U.S. Fish & Wildlife Service Birds of Conservation Concern 2021 Migratory Bird Program Table Of Contents Executive Summary 4 Acknowledgments 5 Introduction 6 Methods 7 Geographic Scope 7 Birds Considered 7 Assessing Conservation Status 7 Identifying Birds of Conservation Concern 10 Results and Discussion 11 Literature Cited 13 Figures 15 Figure 1. Map of terrestrial Bird Conservation Regions (BCRs) Marine Bird Conservation Regions (MBCRs) of North America (Bird Studies Canada and NABCI 2014). See Table 2 for BCR and MBCR names. 15 Tables 16 Table 1. Island states, commonwealths, territories and other affiliations of the United States (USA), including the USA territorial sea, contiguous zone and exclusive economic zone considered in the development of the Birds of Conservation Concern 2021. 16 Table 2. Terrestrial Bird Conservation Regions (BCR) and Marine Bird Conservation Regions (MBCR) either wholly or partially within the jurisdiction of the Continental USA, including Alaska, used in the Birds of Conservation Concern 2021. 17 Table 3. Birds of Conservation Concern 2021 in the Continental USA (CON), continental Bird Conservation Regions (BCR), Puerto Rico and Virgin Islands (PRVI), and Hawaii and Pacific Islands (HAPI). Refer to Appendix 1 for scientific names of species, subspecies and populations Breeding (X) and nonbreeding (nb) status are indicated for each geography. Parenthesized names indicate conservation concern only exists for a specific subspecies or population. 18 Table 4. Numbers of taxa of Birds of Conservation Concern 2021 represented on the Continental USA (CON), continental Bird Conservation Region (BCR), Puerto Rico and VirginIslands (PRVI), Hawaii and Pacific Islands (HAPI) lists by general taxonomic groups. Also presented are the unique taxa represented on all lists.
    [Show full text]
  • Diet and Habitat Use by the African Black Oystercatcher Haematopus Moquini in De Hoop Nature Reserve, South Africa
    Scott et al.: Diet and habitatContributed use of PapersAfrican Black Oystercatcher 1 DIET AND HABITAT USE BY THE AFRICAN BLACK OYSTERCATCHER HAEMATOPUS MOQUINI IN DE HOOP NATURE RESERVE, SOUTH AFRICA H. ANN SCOTT1,3, W. RICHARD J. DEAN2, & LAURENCE H. WATSON1 1Nelson Mandela Metropolitan University, George Campus, P Bag X6531, George 6530 South Africa 2Percy FitzPatrick Institute, DST/NRF Centre of Excellence, University of Cape Town, Private Bag X3, Rondebosch, 7701 South Africa 3Present address: PO Box 2604, Swakopmund, Namibia ([email protected]) Received 9 December 2009, accepted 17 June 2010 SUMMARY SCOTT, H.A., DEAN, W.R.J. & WATSON, L.H. 2012. Diet and habitat use by the African Black Oystercatcher Haematopus moquini in De Hoop Nature Reserve, South Africa. Marine Ornithology 40: 1–10. A study of the diet and habitat used by African Black Oystercatchers Haematopus moquini at De Hoop Nature Reserve, Western Cape Province, South Africa, showed that the area is important as a mainland habitat for the birds. Within the study site, the central sector, with rocky/mixed habitat and extensive wave-cut platforms, was a particularly important oystercatcher habitat, even though human use of this area was high. This positive association was apparently linked to the diversity of potential food items and the abundance of large brown mussel Perna perna, the major prey. In contrast, the diversity of prey species was lower in mixed/sandy habitat where the dominant prey was white mussel Donax serra. The diversity of prey (28 species) for the combined study area is higher than that recorded at any one site for the African Black Oystercatcher previously.
    [Show full text]
  • Aspects of Foraging in Black
    ASPECTS OF FORAGING IN BLACK OYSTERCATCHERS (AVES: HAEMATOPODIDAE) by SARAH GROVES B. A. Biology, Harvard College, 1973 THESIS SUBMITTED IN PARTIAL FULFILMENT THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in THE FACULTY OF GRADUATE STUDIES (Department of Zoology) We accept this thesis as conforming to the required standard THE UNIVERSITY OF BRITISH COLUMBIA April, 1982 © Sarah Groves, 1982 In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the head of my department or by his or her representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission. Department of 7?:OOL.O Gf)/ The University of British Columbia 2075 Wesbrook Place Vancouver, Canada V6T 1W5 DE-6 (2/79) i i ABSTRACT I studied foraging ecology of black oystercatchers (Haematopus bachmani) in the rocky intertidal. The aims of this study were: 1) to analyze prey choice and patch choice by adult black oystercatchers and evaluate how well their foraging performance was predicted by foraging theory; 2) to study development of foraging in young oystercatchers; 3) to indirectly examine the relationship between parental foraging performance and fitness by measuring chick growth and chick production. The following conclusions were reached: 1) Prey selection by oystercatchers was generally as predicted by theory, but birds showed partial preferences for prey.
    [Show full text]