<<

ACCURACY OF INTRAOCULAR POWER CALCULATIONS USING THE ZEISS IOL MASTER. A PROSPECTIVE STUDY

VERHULST E.*, VRIJGHEM J.C.**

ABSTRACT Conclusions power calculations using the Zeiss Purpose IOL Master are easy to perform and result in excel- Partial Coherence Interferometry (PCI) is a fast, non- lent refractive outcomes. A-scan biometry is still contact method to calculate lens implant power for needed in case of mature cataract. cataract surgery. It has been reported as a poten- tially more accurate method than ultrasound bio- metry. RÉSUMÉ Prospective study of the refractive outcomes of a con- secutive series of patients undergoing phacoemul- Objet sification surgery with preoperative biometry by both Partial Coherence Interferometry (PCI) est une mé- ultrasound A-scan and PCI. thode rapide, non-contact, pour calculer la dioptrie Methods de l’implant lors de la chirurgie de la cataracte. Cette A series of 50 of 35 patients underwent small- méthode serait plus fiable que la biométrie aux ul- incision phacoemulsification cataract surgery and trasons. lens implantation by one single surgeon. All patients Etude prospective des résultats réfractifs d’une sé- had preoperative biometry performed by both ultra- rie consécutive de patients qui subissent une chi- sound using the Sonomed and IOL Master optical rurgie de la cataracte. La biométrie pré-opératoire a biometry. The IOL Master results were included in été faite aux ultrasons A-scan et au PCI. the SRK II formula to calculate the lens implant pow- Méthodes er. Postoperative refractive assessment was per- formed 4 weeks after surgery. 50 yeux de 35 patients ont subi la chirurgie de la cataracte par phaco-émulsification avec implanta- Results tion de lentille intra-oculaire. Les interventions ont The mean difference in axial length between ultra- été exécutées par un seul chirurgien. Chez tous les sound and optical biometry was 0.2 mm. The IOL patients la biométrie pré-opératoire a été faite aux Master measures a longer axial length. The mean ultrasons en utilisant le Sonomed et à l’interférométrie keratometric power using the Javal instrument was en utilisant le IOL Master. Les résultats du IOL Mas- 43.4D and for the Zeiss IOL Master it was 42.9D. ter ont été incorporés dans la formule SRK II afin de At the week 4 postsurgery assessment, the overall calculer la valeur dioptrique de l’implant. La réfrac- refractive outcome was in the range of ±1D. Five tion postopératoire a été déterminée après 4 se- patients were unable to undergo PCI biometry due maines. to the density of cataract. Résultats La différence moyenne de la longueur axiale entre zzzzzz la biométrie aux ultrasons et au PCI était de 0.2 mm. Le IOL Master mesure une longueur axiale plus longue. * Department of La valeur kératometrique moyenne du Javal était de University of Leuven, Belgium ** Department of Ophthalmology 43.4D comparée à une valeur moyenne du IOL mas- St Jean Hospital, Brussels, Belgium ter de 42.9D. La réfraction postopératoire après 4 semaines chez tous les patients se situait entre ±1D. received: 06.04.01 La biométrie au PCI était impossible chez 5 patients accepted: 30.06.01 à cause de la densité de la cataracte.

Bull. Soc. belge Ophtalmol., 281, 61-65, 2001. 61 Conclusion INTRODUCTION: Le calcul de la valeur dioptrique de l’implant par le Zeiss IOL Master est facile à faire et donne des ré- EMMETROPIA IS THE sultats réfractifs excellents. A-scan biométrie reste GOAL nécessaire en cas de cataracte mature. Cataract extraction and artificial intraocular lens (IOL) implantation is one of the most frequent- SAMENVATTING ly and successfully ophthalmic surgical proce- Onderwerp dures carried out today. One of the remaining Partial Coherence Interferometry (PCI) is een snel- problems, however, is accurate calculation of le, non-contact methode om de dioptrie van het lens- IOL power, in order to obtain the desired post- implant bij cataract chirurgie te bepalen. Deze me- operative refraction. thode is mogelijks nauwkeuriger dan echografische While techniques in cataract surgery are con- biometrie. stantly improving, the demand of patients and Prospectieve studie van de refractieve resultaten na phacoemulsificatie bij een serie opeenvolgende pa- surgeons for a high predictability in the refrac- tienten waarbij de preoperatieve biometrie gebeur- tive result increases dramatically. de met A-scan echografie en met PCI. At a time where multifocal foldable lenses could be the future, a precise calculation of the po- Methode wer of intraocular lenses becomes even more Bij 50 ogen van 35 patienten werd phacoemulsifi- critical. catie met lensimplant uitgevoerd door één chirurg. The data required for accurate intraocular lens Bij alle patienten werd de pre-operatieve biometrie calculations include axial length, corneal cur- bepaald door middel van de Sonomed echograaf én vature and anterior chamber depth. These data de IOL Master interferometer. De waarden van de IOL Master werden gebruikt in de SRK II formule om de are integrated in calculation formula’s. The most dioptrie van het lensimplant te bepalen. De post- commonly used are the SRK II, SRK-T and Hol- operatieve refractie werd bepaald 4 weken na de in- laday formula. greep. In ultrasound biometry (1) measurements of Resultaten axial length can be obtained either by an ap- Het gemiddelde verschil in aslengte tussen A-scan planation or an immersion technique. With the echografie en optische biometrie bedroeg 0.2 mm. applanation technique, the sterile probe is di- De IOL Master meet een langere aslengte. De ge- rectly placed on the locally anaesthetized . middelde keratometrie waarde bedroeg 43.4D bij de Javal en 42.9D bij de Zeiss IOL Master. De postope- With the immersion technique, the probe is ratieve refractie na 4 weken lag voor alle patienten coupled to the eye using a medium of methyl- tussen ±1D. Bij 5 patienten was het onmogelijk om cellulose or water. The resolution in axial length PCI biometrie uit te voeren wegens de densiteit van measurements is about 0.1 mm, correspond- de cataract. ing to a mean postoperative error of 0.25 D. When considering the SRK II formula:P= Conclusie (A+C) - 2.5AL - 0.9K it is obvious that axial Bepaling van de intraoculaire lens sterkte door mid- length is the biggest source of error in IOL po- del van de Zeiss IOL Master is eenvoudig uit te voe- wer calculations (4). Immersion scans are more ren en geeft uitstekende refractieve resultaten. A-scan biometrie blijft nodig in geval van matuur cataract. precise because there is no corneal indenta- tion. Furthermore, ultrasound does not always KEY-WORDS measure the optical axis. Keratometry is the second most important parameter leading to Partial coherence interferometry, ultrasound possible errors due to calibration and patient biometry fixation. Recently, optical biometry (2,3) techniques of- MOTS-CLÉS fer new possibilities. The technology of an in- Partial coherence interferometry, biométrie strument like the Zeiss IOL Master is based on aux ultrasons. laser interferometry with partial coherent , often termed as partial coherence interfero-

62 metry (PCI). Some important features of the IOL path difference of twice the optical length (OL) Master are the fact that it is a non-contact mea- of the eye between the two beams reflected at surement with higher speed and higher accu- the and the two beams reflected at the racy with a resolution going up to 0.01 mm. , respectively. If the coherence length of The measurement results are operator indepen- the laser is shorter than 2 OL, the wave fronts dent: the reproducibility is high. Axial length from the retina and the cornea do not inter- can be measured in phakic, pseudophakic and fere. However, if the two path differences 2d aphakic eyes. The IOL Master still gives re- and 2 OL equal each other, two of the four re- liable results in pseudophakic eyes, in eyes with flected beams will interfere. The interference silicone in the vitreous and in eyes with aster- pattern that results will be seen with a detec- oid hyalosis. tor. In principle, the eye length can be mea- sured by a shift of the interferometer plates. interferometer The diode laser emits infrared light with a wave laser diode length of 780 ηm. The time needed for mea- beamspitter surements is about 0.5 sec. The IOL Master dOLprovides a measuring range of 14 to 39 mm. SUBJECTS AND METHODS detector The purpose of the study was to compare IOL Fig. 1 Diagram of the laser interferometer for measuring power calculations using the IOL Master ver- the axial length of the eye. sus ultrasound biometry and standard kerato- d: plate spacing of the interferometer OL: optical length of the eye metry. In a prospective study, optical and applanation Light from a laser diode (Fig. 1) passes an in- ultrasound biometry were preoperatively per- terferometer that splits the beams into two par- formed on 50 cataractous eyes. We used the allel beams: a direct beam and a second beam optical biometry data given by the Zeiss IOL that is reflected once at both interferometer Master to calculate the desired IOL power with plates and hence is retarded by a path differ- the SRK II formula in order to obtain an em- ence of twice the plate spacing d. Both beams metropia or slight . illuminate the eye through a beamsplitter. They In all patients the Allergan SI40 NB silicone serve as measuring beams as well as a fixation foldable intraocular lens (A-cte 118.0) was im- target. The two coaxial beams are reflected at planted through a self-sealing 2,5 mm tempo- both the cornea and the retina yielding four re- ral incision after phacoemulsification. All inter- flected beams. This introduces an additional ventions were performed by the same surgeon

Km AXL 28 48

26 46

24 44

22 42

20 40 N=50 N=50 A scan IOL master Javal IOL Master

Fig. 2 The mean difference in axial length between ultra- Fig. 3: The mean keratometric power using the Javal in- sound and optical biometry was 0.2 mm. The IOL strument was 43.4 D and for the Zeiss IOL Master Master measures a longer axial length. it was 42.9 D.

63 45% 31,9%

28,5%

17% 20,5% 12,8% 10,6% 8,5% 6,4% 10,6% 6% 2,1% 0%

-1 D -0,75 D -0,50 D -0,25 D 0 D 0,25 D 0,50 D 0,75 D 1 D Fig. 5 An excellent refractive outcome was obtained at -1,5 D -1 D -0,5 D 0 D week 4 using the data given by the IOL Master to calculate the IOL Fig. 4 The IOL power according to optical biometry minus the IOL power according to ultrasound biometry When using Javal keratometry, the mean cor- neal curvature was 43.4 D while mean IOL (Dr. J.C.V.). Patients were operated on using Master measurement was 42.9 D (Fig. 3). topical anesthesia. Four weeks after surgery, the refractive out- The difference of the IOL power according to come was determined. The preop ultrasound optical biometry and according to US biome- biometry data were retrospectively integrated try is shown in Fig. 4. The IOL Master calcu- in the SRK II formula to determine the refrac- lates an IOL that is 1.5 D or 1D less in about tive outcome. 30% of cases, an IOL that is 0.5 D less in 45% of cases and the same IOL as compared to ul- RESULTS trasound biometry in 20% of cases. Ultrasonic instruments measure the distance Using the data given by the IOL Master to cal- between the anterior surface of the cornea and culate the IOL, we obtained an excellent refrac- the internal limiting membrane, whereas the tive outcome (Fig. 5). About 30% of patients IOL Master measures the distance between the had a spherical equivalent of 0 D, and the over- anterior corneal surface and the pigment epi- all refractive outcome was in the range of ±1 thelium. Due to the thickness of the cell layer, D. the resulting differences of the measured axial length are between 150 - 350 µm. Measure- Retrospectively, we determined the power of the ments using the ultrasonic contact technique IOL that we would have chosen using the US cause additionally an applanation of the eye. biometry for a target emmetropia of 0 D. Then In our study, we had a mean difference in axial we calculated the refractive outcome of this IOL length of 0.2 mm (Fig. 2). power, using the real postoperative refraction and the implanted IOL power (Fig. 6). We con- sidered - by approximation-a1Ddifference in IOL power to result in a 0.7 D difference in 19,1% refractive outcome. In 4% of cases, the refrac- 17% 14,9% tive outcome was higher than 1.5 D in myo- 12,8% 12,8% pia. In these 2 patients, there was an absolute 10,6%

8, 5% difference in axial length measurement of >0.45 mm.

2,1% 2,1% 0% In Fig. 7 we compare the refractive outcome

-2 D -1,75 D -1,50 D -1,25 D -1 D -0,75 D -0,50 D -0,25 D 0 D 0,25 D achieved with ultrasound versus optical or PCI Fig. 6: The refractive outcome, retrospectively calcula- biometry. For each biometric technique, the ted, that would have resulted when using the data percentages of patients with refractive errors given by US biometry less than 0.5 D, 1 D, 1.5 D, etc. are shown.

64 sound biometry is still needed: in our small se- <0.5 D <1.0 D <1.5 D <2.0 D <2.5 D ries this represents 5 patients out of 50 (10%). We may conclude that IOL measurements per- formed with the Zeiss IOL Master, using par- US 40.4 % 72.3 % 95.8 % 97.9 % 100 % tial coherence interferometry, are easy to per- form. The measurement requires minimal coopera- PCI 55.3 % 89.3 % 100 % ...... tiveness and fixation capability of the patient. The refractive outcome obtained was excellent. Fig. 7 Comparison between the refractive outcome REFERENCES achieved with ultrasound and PCI biometry. (1) BINKHORST RD. − The accuracy of ultrasonic measurements of the axial length of the eye. In 90% of patients tested with the IOL Master Ophthal Surg 1981; 12:363-365. we obtained a refractive result of less than 1 D (2) DREXLER W., FINDL O., MENAPACE R., RAI- NER G., VASS C., HITZENBERGER CK., FER- of the spherical target. We obtained the same CHER AF. − Partial coherence interferometry: a good result in only 72% of patients tested with novel approach to biometry in cataract surgery. the standard US measurements. Am J Ophthalmol 1998; 126:524-534. (3) HITZENBERGER CK. − Optical measurement of CONCLUSION the axial eye length by laser doppler interfero- metry. Invest Ophthalmol Vis Sc 1991; 32:616- We evaluated the ease of use of the Zeiss IOL 624. − Master. It scored high as to its user-friendli- (4) OLSEN T. Sources of error in intraocular lens ness and reproducibility, making it an instru- power calculation. J Cat Refract Surg 1992; 18:125-129. ment which can be manipulated by parame- dicals. The measurement itself takes less than a minute. zzzzzz In patients with a very dense cataract howev- Address for correspondence: er, the signal reflected at the retina is so small Dr. Ellen Verhulst that it cannot be used for exact axial length Volmolenlaan 4/202 measurement. In these circumstances ultra- B-3000 Leuven

65