Country- India

Total Page:16

File Type:pdf, Size:1020Kb

Country- India D AT E – 08/31/12 COUNTRY- INDIA COMMODIT Y – Almonds, Pistachios BOTANICAL NAME – Prunus dulcis, P.amygdalus, P.communis, Pistacia vera PRODUCT FORM – Nuts PHYTO FORM – Fed IMPORT PERMIT – Yes (Almonds) RESTRICTIONS – Restricted No (Pistachios) Net weight of the commodity in metric tons (MT) or kilograms (kg) must be included on Block 9 of the Phytosanitary Certificate. SUMMARY INFO – ALMONDS - Import Permit and Federal Phytosanitary Certificate Required. ALL Shipments MUST be fumigated with phosphine (or approved fumigant) against Ephestia elutella (Tobacco moth), Ephestia kuehniella (Mediterranean flour Moth), and Plodia interpunctella (Indian meal moth) and treatments MUST be recorded on the phyto. -+AD Required: "The shipment is free from EPHESTIA ELUTELLA, EPHESTIA KUEHNIELLA, and PLODIA INTERPUNCTELLA." ACOs are required to witness all fumigations, unless shipper is accredited by USDA-APHIS. When conducting any phosphine treatment to India, the commodity temperature must always (day & night) be at or above 5º Celsius (41º Fahrenheit) during the entire treatment process. There are no exceptions. Commodity temperature Exposure in days 5-9.9 C (41-49.9 F) 10 10-14.9 C (50-58.9 F) 8 15-19.9 C (59-67.9 F) 4 20-24.9 C (68-76.9 F) 3 25.0+ C and above (77 F and above) 2 The use of a phosphine/carbon dioxide mixture, such as Eco2Fume, is allowed but it must meet the same temperature and time durations as stated above for phosphine pellets, tablets, bags or trays . For pellets, tablets, bags, trays and Eco2Fume the application rate is 40gm/1000ft3. Eco2Fume application rate: 40gm/1000ft3 = 4.41 lbs/1000ft3 Note: Box 3 “Chemical” must state the active ingredient of the chemical and not the brand name. Correct: Phosphine. Incorrect: EcoFume. Box 5: “Concentration” must state 40 grams / 1000 cubic feet. PISTACHIOS – Only Federal Phytosanitary Certificate is required for pistachios. SUBSIDIARY INFO - Phyto inspections must take place not more than 30 days before shipment. COUNTRY – INDIA D AT E – 8/31/12 COMMODIT Y – Citrus fruit BOTANICAL NAME – Citrus sinensis PRODUCT FORM – Fruit PHYTO FORM – Fed IMPORT PERMIT – Yes RESTRICTIONS - Restricted Net weight of the commodity in metric tons (MT) or kilograms (kg) must be included on Block 9 of the Phytosanitary Certificate. SUMMARY INFO - Import Permit and Federal Phytosanitary Certificate Required. REVIEW THE IMPORT PERMIT FOR REQUIREMENTS. AD Required: “Import permit number_____________ was presented.” Or “No Import permit was presented” “The shipment is free from, Aspidiotus nerii (Aucuba scale), Epiphyas postvittana (Light brown applemoth), Metcalfa pruinosa (Frosted moth bug) Panonychus citri (Citrus red mite),Pseudococcus comstocki (Comstock mealy Bug), Pseudococcus calceolariae (Scarlet mealybug), Pseudococcus jackbeardsleyi (Jack Beardsley mealybug), Selenaspidas articulatis ( West Indian red scale), Unaspis citri(Citrus snow scale). “Ceratitis capitata (Mediterranean fruit fly), Anastrepha serpentine (Sapodilla fruit fly), Anastrepha fraterculus (South American fruit fly), Anastrepha suspensa (Caribbean fruit fly), Anastrepha striata (Guava fruit fly), and Anastrepha lundens (Mexican fruit fly) do not occur in the United States.” ***Note: Always review the import permit to make sure that the ADs are correct. SUBSIDIARY INFO – Phyto inspections must take place not more than 30 days before shipment. COUNTRY – INDIA D AT E – 8/31/12 COMMODIT Y – Grapes BOTANICAL NAME – Vitis vinifera PRODUCT FORM – Fruit PHYTO FORM – Fed IMPORT PERMIT – Yes RESTRICTIONS - Restricted Net weight of the commodity in metric tons (MT) or kilograms (kg) must be included on Block 9 of the Phytosanitary Certificate. SUMMARY INFO - Import Permit and Federal Phytosanitary Certificate Required. ***REVIEW THE IMPORT PERMIT FOR REQUIREMENTS. AD Required: “Import permit number_____________ was presented.” Or “No Import permit was presented” AND “The shipment is free from Aspidiotus nerii, Epiphyas postvittana, Frankliniella occidentalis, Selenaspidus articulatus, Pseudococcus calceolariae, and Peridroma saucia.” “Ceratitis capitata, and Anastrepha fraterculus do not occur in the United States.” ***Note: Always review the import permit to make sure that the ADs are correct. SUBSIDIARY INFO – Phyto inspections must take place not more than 30 days before shipment. COUNTRY – INDIA D AT E – 8/31/12 COMMODIT Y – Plums, Peaches, Nectarines, Apricots BOTANICAL NAME – Prunus domestica, Prunus persica, Prunus persica Var. nucipersica, Prunus armeniaca PRODUCT FORM – Fruit PHYTO FORM – Fed IMPORT PERMIT – Yes RESTRICTIONS – Restricted Net weight of the commodity in metric tons (MT) or kilograms (kg) must be included on Block 9 of the Phytosanitary Certificate. SUMMARY INFO - Fresh Fruit from areas of non-quarantine for Ceratitis capitata and areas free from Rhagolettis spp. (cherry fruit flies). Import Permit and Federal Phytosanitary Certificate Required. AD Required: “Import Permit number _______ was presented” OR: “No import permit was presented” AND: “The shipment is free from Cydia molesta, Cydia packardi, Cydia prunivora, Lymantria dispar, and Rhagoletis spp. Ceratitis capitata, Cydia inopinata, Carposina niponensis, and Bactrocera tryoni do not occur in the United States.” **If fruit is from an area known to have Ceratitis capitata Rhagolettis spp. (cherry fruit flies), please call the office for AD and treatment required. SUBSIDIARY INFO – Phyto inspections must take place not more than 30 days before shipment. .
Recommended publications
  • £Arasites Associated with Lepidopterous Pests of Alfalfa in .Qklahoma
    £ARASITES ASSOCIATED WITH LEPIDOPTEROUS PESTS OF ALFALFA IN .QKLAHOMA By KATHLEEN MARY SENST I' Bachelor of Arts Wartburg College Waverly, Iowa 1974 Master of Science Oklahoma State University Stillwater, Oklahoma 1978 Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY July, 1982 PARASITES ASSOCIATED WITH LEPIDOPTEROUS PESTS OF ALFALFA IN OKLAHOMA Thesis Approved: . ~ \ . ii 1143730 j ACKNOWLEDGMENTS I w.isb. to expres.s. my deep appreciation to my major adviser, Dr. Ricb.ard Berberet, for hi:s willi.ngness. to advise and help, and for his friendsb.i.p duri.ng thi:s: s:tudy and preparation of this manuscript. Appreciation is. expressed to Ors. Ray Eikenbary, Jerry Young, Robert Burton, and John Caddel for serving as members of my graduate committee, and to Or. Ron McNeu for his help in analyzing the data. Thanks. are extended to Mary Hininger, Melinda Davis, Donna Ridge, Phoebe Courtney, and Debbie Lauchner for their assistance in the lab­ oratory, and to Doug Sander and Kevin Mussett for their assistance in the fi.el d. Special thanks goes to Ms. Anne Hunt for clerical review and typing of this manuscript. My most sincere appreciation is reserved for my husband, John (Soteres}, for his encouragement, understanding, and patience while I was completing this work. I share the credit for this work with my family, whose love and support have been a constant source of encourage­ ment in my life. iii TABLE OF CONTENTS Chapter Page I. GENERAL INTRODUCTION 1 II.
    [Show full text]
  • Natural Distribution of Parasitoids of Larvae of the Fall Armyworm, <I
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Faculty Publications: Department of Entomology Entomology, Department of 2009 Natural distribution of parasitoids of larvae of the fall armyworm, Spodoptera frugiperda, in Argentina M Gabriela Murua Estación Experimental Agroindustrial Obispo Colombres, CONICET Jamie Molina Ochoa Universidad de Colima, University of Nebraska-Lincoln Patricio Fidalgo CRILAR Follow this and additional works at: http://digitalcommons.unl.edu/entomologyfacpub Part of the Entomology Commons Murua, M Gabriela; Ochoa, Jamie Molina; and Fidalgo, Patricio, "Natural distribution of parasitoids of larvae of the fall armyworm, Spodoptera frugiperda, in Argentina" (2009). Faculty Publications: Department of Entomology. 384. http://digitalcommons.unl.edu/entomologyfacpub/384 This Article is brought to you for free and open access by the Entomology, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Faculty Publications: Department of Entomology by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Journal of Insect Science: Vol. 9 | Article 20 Murúa et al. Natural distribution of parasitoids of larvae of the fall armyworm, Spodoptera frugiperda, in Argentina M. Gabriela Murúaa,b, Jaime Molina-Ochoac,d and Patricio Fidalgoe aEstación Experimental Agroindustrial Obispo Colombres, Sección Zoología Agrícola, CC 9, Las Talitas (T4101XAC), Tucumán, Argentina bCONICET cUniversidad de Colima, Facultad de Ciencias Biológicas y Agropecuarias, Km. 40, autopista Colima-Manzanillo, Tecomán, Colima (28100), México dDepartment of Entomology, University of Nebraska-Lincoln, Lincoln, NE 68583-0816, USA eCRILAR (CONICET), entre Ríos y Mendoza s/n, Anillaco (5301), La Rioja, Argentina Abstract To develop a better understanding of the natural distribution of the fall armyworm, Spodoptera frugiperda (Smith) (Lepidoptera: Noctuidae), and to update the knowledge of the incidence of its complex of parasitoids.
    [Show full text]
  • Cutworms & Armyworms
    Cutworms andArmyworms O & T Guide [T-#03] Carol A. Sutherland Extension and State Entomologist Cooperative Extension Service z College of Agriculture and Home Economics z October 2006 Cutworms and armyworms are drab, rangelands in the lower elevations. nocturnal, “hairless” caterpillar pests of Feeding as temperatures permit over the grass crowns, roots and blades as well as a fall and winter, army cutworms mature variety of crops, landscape and rangeland and pupate in late winter. As temperatures plants. The night-flying adult stages are called “miller moths” because they congregate around outdoor lights. They can be annoying then and also when adults seek shelter during the day in homes and buildings. Their shed wing scales can cause allergic reactions in some people. Metamorphosis: Complete Mouth Parts: chewing (larvae) Pest Stage: larvae, adults (minor) Fall armyworm larva, Spodoptera frugiperda. Typical Life Cycle: Eggs are laid in the Photo: Clemson Univ., USDA-Cooperative Extension Slide Series, www.forestryimages.org soil around shallow roots of host plants, on grass crowns or blades, or higher on host plants, depending upon species. Æ Series of Larvae. Larvae feed and disperse at night, hiding by day in soil crevices, thatch or other cover. ÆPupae are usually found in surface litter or several inches below the surface in soil not far from host plants; most require 7-14 days to mature in summer temperatures. ÆAdults typically emerge, fly, mate and lay eggs at night, seeking shelter by day. Depending upon species, one to many life cycles may be Fall armyworm, showing inverted Y on the completed annually. Adults of some head.
    [Show full text]
  • Pepper Pest Management
    Pepper Pest Management Kaushalya Amarasekare Ph.D. Assistant Professor of Entomology Dept. of Agricultural and Environmental Sciences College of Agriculture Tennessee State University University of Maryland Nashville, Tennessee Extension snaped.fns.usda.gov Goal The goal of this training is to educate stakeholders on arthropods (pest insects and mites) that damage peppers and methods to manage them using integrated pest management (IPM) techniques Objectives Upon completion of this training, the participants will be able to 1) teach, 2) demonstrate and 3) guide growers, small farmers, backyard and community gardeners, master gardeners, and other stakeholders on management of pest arthropods in peppers Course Outline 1. Introduction: background information on bell and chili pepper 2. Pests of pepper a) Seedling Pests b) Foliage Feeders c) Pod Feeders 3. Summary 4. References Introduction Bell /sweet pepper Peppers • Family Solanaceae • Capsicum annum L. • Bell/sweet peppers and chili agmrc.org Peppers: consumed as • Fresh • Dried chili pepper • Ground as spices • Processed (canned, pickled, brined or in salsas) 570cjk, Creative Commons wifss.ucdavis.edu Bell Pepper • 2017: U.S. consumption of fresh bell peppers ~ 11.4 lbs./person • High in vitamin C and dietary fiber • Provide small amounts of several vitamins and minerals • Usually sold as fresh produce Maturity Sugar Content Chili Pepper • 2017: U.S. consumption of chili peppers ~ 7.7 lbs./person • High in vitamin C • Small amounts of vitamin A and B-6, iron and magnesium 570cjk, Creative Commons wifss.ucdavis.edu • Sold as fresh produce and dried (whole peppers, crushed or powdered) pepperscale.com Myscha Theriault U.S. green pepper production • U.S.
    [Show full text]
  • EXTERNAL GENITALIC MORPHOLOGY and COPULATORY MECHANISM of CYANOTRICHA NECYRIA (FELDER) (DIOPTIDAE) Genitalic Structure Has Been
    Journal of the Lepidopterists' Society 42(2). 1988, 103-115 EXTERNAL GENITALIC MORPHOLOGY AND COPULATORY MECHANISM OF CYANOTRICHA NECYRIA (FELDER) (DIOPTIDAE) JAMES S. MILLER Curatorial Fellow, Department of Entomology, American Museum of Natural History, Central Park West at 79th Street, New York, New York 10024 ABSTRACT. External genitalia of Cyanotricha necyria (Felder) exhibit characters that occur in the Notodontidae and Dioptidae. These provide further evidence that the two groups are closely related. Dissection of two C. necyria pairs in copula revealed two features unique among copulatory mechanisms described in Lepidoptera. First, only the male vesica, rather than the aedoeagus and vesica, are inserted into the female. Secondly, during copulation the female is pulled into the male abdomen, and his eighth segment applies dorsoventral pressure on the female's seventh abdominal segment. This mechanism is facilitated by a long membrane between the male eighth and ninth abdominal segments. The first trait is probably restricted to only some dioptid species, while the second may represent a synapomorphy for a larger group that would include all dioptids, and all or some notodontids. Additional key words: Noctuoidea, Notodontidae, Josiinae, functional morphology. Genitalic structure has been one of the most important sources of character information in Lepidoptera systematics. Taxonomists often use differences in genitalic morphology to separate species, and ho­ mologous similarities have provided characters for defining higher cat­ egories in Lepidoptera classification (Mehta 1933, Mutuura 1972, Dug­ dale 1974, Common 1975). Unfortunately, we know little concerning functional morphology of genitalia. A knowledge of function may aid in determining homology of genitalic structures, something that has proved to be extremely difficult and controversial.
    [Show full text]
  • 1 Modern Threats to the Lepidoptera Fauna in The
    MODERN THREATS TO THE LEPIDOPTERA FAUNA IN THE FLORIDA ECOSYSTEM By THOMSON PARIS A THESIS PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE UNIVERSITY OF FLORIDA 2011 1 2011 Thomson Paris 2 To my mother and father who helped foster my love for butterflies 3 ACKNOWLEDGMENTS First, I thank my family who have provided advice, support, and encouragement throughout this project. I especially thank my sister and brother for helping to feed and label larvae throughout the summer. Second, I thank Hillary Burgess and Fairchild Tropical Gardens, Dr. Jonathan Crane and the University of Florida Tropical Research and Education center Homestead, FL, Elizabeth Golden and Bill Baggs Cape Florida State Park, Leroy Rogers and South Florida Water Management, Marshall and Keith at Mack’s Fish Camp, Susan Casey and Casey’s Corner Nursery, and Michael and EWM Realtors Inc. for giving me access to collect larvae on their land and for their advice and assistance. Third, I thank Ryan Fessendon and Lary Reeves for helping to locate sites to collect larvae and for assisting me to collect larvae. I thank Dr. Marc Minno, Dr. Roxanne Connely, Dr. Charles Covell, Dr. Jaret Daniels for sharing their knowledge, advice, and ideas concerning this project. Fourth, I thank my committee, which included Drs. Thomas Emmel and James Nation, who provided guidance and encouragement throughout my project. Finally, I am grateful to the Chair of my committee and my major advisor, Dr. Andrei Sourakov, for his invaluable counsel, and for serving as a model of excellence of what it means to be a scientist.
    [Show full text]
  • A Wasp Parasitoid, Cotesia Marginiventris (Cresson) (Insecta: Hymenoptera: Braconidae)1 Andrei Sourakov and Everett Mitchell2
    EENY-123 A Wasp Parasitoid, Cotesia marginiventris (Cresson) (Insecta: Hymenoptera: Braconidae)1 Andrei Sourakov and Everett Mitchell2 Distribution This species was originally described from Cuba and is native to the West Indies. It also occurs in the United States: Delaware south to Florida, west to Indiana, Kansas and Texas, Wisconsin, Arizona, California, Hawaii. It is also present in Mexico and South America. Description Egg Oval, three times longer than wide, with a small projection. Figure 1. Early and late larval stages of Cotesia marginiventris (Cresson), It is clear and shiny, like a piece of glass. Size increases after a wasp parasitoid. the egg is laid. Larva hatches two days after oviposition by Credits: Andrei Sourakov, Florida Museum of Natural History the adult. Larva When dissected from the host, the Cotesia larvae are soft-skinned and bear a “bubble”—a caudal vesicle—in the posterior region. If not submerged in water, the larva dries out shortly after being dissected. Larvae are located in the host’s posterior end. The first instar larvae are only 0.06 mm long, while mature (third instar) larvae are 5.5 mm long. When they emerge from the host, they are much more rug- ged and immediately begin spinning a tight silky cocoon. Figure 2. Cocoon of Cotesia marginiventris (Cresson), a wasp parasitoid. Pupa Credits: Andrei Sourakov, Florida Museum of Natural History The cocoon is white, tight and 4 mm long. 1. This document is EENY-123, one of a series of the Department of Entomology and Nematology, UF/IFAS Extension. Original publication date March 2000.
    [Show full text]
  • Attraction of Pest Moths (Lepidoptera: Noctuidae, Crambidae) to Floral Lures on the Island of Hawaii
    AProceedingsttrAction of of P theest hMawaiianoths to e fntomologicallorAl lures society (2011) 43:49–58 49 Attraction of Pest Moths (Lepidoptera: Noctuidae, Crambidae) to Floral Lures on the Island of Hawaii Peter Landolt1, Eric Jang2, Lori Carvalho2, and Michael Pogue3 1USDA, ARS, Yakima Agricultural Research Laboratory, 5230 Konnowac Pass Road, Wapato, Washington 98951 USA (corresponding author, [email protected]) 2USDA, ARS, PBARC, 64 Nowelo St., Hilo, Hawaii 96720, USA, [email protected] 3USDA, ARS, Systematic Entomology Laboratory, MRC-108, Smithsonian Institution, Washington DC 20013, USA, [email protected] Abstract. Traps baited with floral chemicals on the island of Hawaii captured several pest moth species. Chrysodeixis eriosoma (Doubleday) (green garden looper), Au- tographa biloba (Doubleday) (bi-lobed looper), and Mythimna unipuncta (Haworth) (true armyworm), all Noctuidae, as well as Hymenia recurvalis (L.) (beet webworm), a Crambidae, were trapped with phenylacetaldehyde (PAA). There was no response by moths to β-myrcene (BM), methyl salicylate (MS), cis jasmone (CJ), methyl-2-methoxy benzoate (MMB), 2-phenylethanol (2PE), or linalool (LIN) when these chemicals were tested singly. When other floral chemicals were presented in traps with PAA, numbers of C. eriosoma captured were increased by BM, MS, 2PE or MMB. Numbers of A. biloba and Peridroma saucia (Hübner) (variegated cutworm) were increased by including BM with PAA in traps. Numbers of M. unipuncta were increased by BM or 2PE, and numbers of H. recurvalis were increased by MMB or LIN, presented with PAA. Both sexes of these five species of moths were trapped with floral lures, most females captured were mated, and many females possessed mature eggs.
    [Show full text]
  • Identification of Candidate Chemosensory Receptors in the Antennae of the Variegated Cutworm, Peridroma Saucia Hübner, Based On
    fphys-11-00039 January 29, 2020 Time: 17:28 # 1 ORIGINAL RESEARCH published: 31 January 2020 doi: 10.3389/fphys.2020.00039 Identification of Candidate Chemosensory Receptors in the Antennae of the Variegated Cutworm, Peridroma saucia Hübner, Based on a Transcriptome Analysis Ya-Lan Sun1, Jun-Feng Dong1*, Nan Gu1 and Shao-Li Wang2* 1 Forestry College, Henan University of Science and Technology, Luoyang, China, 2 Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China Insect chemoreception, including olfaction and gustation, involves several families of genes, including odorant receptors (ORs), ionotropic receptors (IRs), and gustatory Edited by: receptors (GRs). The variegated cutworm Peridroma saucia Hübner (Lepidoptera: Hadley Wilson Horch, Noctuidae) is a worldwide agricultural pest that causes serious damage to many Bowdoin College, United States crops. To identify such olfactory and gustatory receptors in P. saucia, we performed Reviewed by: Zhongzhen Wu, a systematic analysis of the antennal transcriptome of adult P. saucia through Illumina Zhongkai University of Agriculture sequencing. A total of 103 candidate chemosensory receptor genes were identified, and Engineering, China including 63 putative ORs, 10 GRs, 24 IRs, and 6 ionotropic glutamate receptors Nicolas Montagné, Sorbonne Universités, France (iGluRs). Phylogenetic relationships of these genes with those from other species *Correspondence: were predicted, and specific chemosensory receptor genes were analyzed, including Jun-Feng Dong ORco, pheromone receptors (PRs), sugar receptors, CO2 receptors, and IR co- [email protected]; [email protected] receptors. RT-qPCR analyses of these annotated genes revealed that 6 PRs were Shao-Li Wang predominantly expressed in male antennae; 3 ORs, 1 GR, 2 IRs, and 2 iGluRs had [email protected] higher expression levels in male than in female antennae; and 14 ORs, 1 GR, and 3 IRs Specialty section: had higher expression levels in female than in male antennae.
    [Show full text]
  • The Relation of Wild Parsnip, Pastinaca Sativa L., to Parasitoid Populations Associated with Soybean Pests in Central Iowa
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1983 The elr ation of wild parsnip, Pastinaca sativa L., to parasitoid populations associated with soybean pests in central Iowa Linda Anne Buntin Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Entomology Commons Recommended Citation Buntin, Linda Anne, "The er lation of wild parsnip, Pastinaca sativa L., to parasitoid populations associated with soybean pests in central Iowa " (1983). Retrospective Theses and Dissertations. 8455. https://lib.dr.iastate.edu/rtd/8455 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS This reproduction was made from a copy of a document sent to us for microfilming. While the most advanced technology has been used to photograph and reproduce this document, the quality of the reproduction is heavily dependent upon the quality of the material submitted. The following explanation of techniques is provided to help clarify markings or notations which may appear on this reproduction. 1.The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting through an image and duplicating adjacent pages to assure complete continuity.
    [Show full text]
  • Crop Profile for Tobacco in West Virginia
    Crop Profile for Tobacco in West Virginia Prepared: March 14, 1999 General Production Information ● West Virginia ranked 15th in United States tobacco production in 1996 (1) ● West Virginia contributed 0.18% to total U.S. tobacco production in 1996 (2) ● Burley tobacco area harvested a total of 17,000 acres with yields averaging 1,200 pounds per acre and production totaling 2.04 million pounds in 1996 (1) ● Tobacco production value was $3,923,000 in 1996 (1) Production Regions West Virginia's tobacco crop is mainly concentrated in the southwestern region of the state. Mason County is the leading tobacco producing county with 560,000 pounds, followed by Putnam (460,000), Lincoln (440,000), Cabell (290,000), and Jackson counties (110,000). Tobacco production of the aforementioned counties accounted for over 91 percent of the state total in 1996 (1). Cultural Practices A good source of transplants is required to produce a satisfactory tobacco crop. Proper site selection is essential in producing transplants available for field planting when suitable conditions exist (3 and 4). Common characteristics of a good plant bed include: ● A deep, fertile, and well drained soil high in organic matter The Crop Profile/PMSP database, including this document, is supported by USDA NIFA. ● Soil with a slight (5%) southern or western slope ● Exposure to sunshine from 9 a.m. to 3 p.m ● A clean water supply for irrigation ● Being located away from tobacco barns and tobacco trash ● Being located away from tobacco fields to minimize the spread of common pests General Plant Bed Management ● Apply no more than 50 pounds of 12-6-6 tobacco plant bed fertilizer per 100 square yards before fumigation ● Fumigate with methyl bromide when soil moisture is suitable for cultivation and the soil temperature is at least 50 degrees ● Seed bed 70 to 75 days before the normal transplanting date using 0.17 ounce of seed per 100 square yard General Field Management Tobacco field sites should be level to gently rolling with good internal soil drainage.
    [Show full text]
  • Black Cutworm, Agrotis Ipsilon Bronzed Cutworm, Nephelodes Minians Variegated Cutworm, Peridroma Saucia Order Lepidoptera, Family Noctuidae; Noctuid Moths Native Pest
    Turf Pests Cutworms Black cutworm, Agrotis ipsilon Bronzed cutworm, Nephelodes minians Variegated cutworm, Peridroma saucia Order Lepidoptera, Family Noctuidae; Noctuid moths Native pest Pest information: Turfgrasses, blade feeding larvae; adults do not feed. Description: Full-grown cutworm larvae are about 40 mm long. The variegated cutworm’s color ranges from brown to gray. The black cutworm larvae are dark gray above and light gray below with black dots along the side of the body. The bronzed cutworm’s color is a mottled burgundy brown. When disturbed cutworms roll into a ball. Bronzed cutworm larva. (W111) Photo: Whitney Cranshaw Life history: Black cutworm adults arrive in summer on southerly winds and larvae cannot overwinter. In golf courses, they are often found on greens surrounded by dense rough. The larvae feed on the grass blades or cut the grass off at the soil surface at night. During the day they hide in the soil or under debris. Aeration holes in greens are often utilized by cutworms as burrows. How- ever, the presence of these aeration holes does not increase the number of cutworms. It is possible to have 1–3 generations per year. Overwintering: Pupae in soil. Damage symptoms: Blades are removed and hiding holes are made in the sod; birds and skunks dig up the sod searching for larvae. Monitoring: Look for larvae during the day in the soil or Cutworm larva in ball. (277) under debris. Photo: John Davidson Cultural control: Maintain healthy grass by fertilizing in the spring and fall and watering during periods of drought. Chemical control: Black and variegated cutworms are the most common pests on home lawns.
    [Show full text]