Review of the Hydrodynamic Challenges in the Design Of
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
2006 EXECUTIVE COMMITTEE Kenneth J
2006 EXECUTIVE COMMITTEE Kenneth J. Wright, PE Thomas G. Leech, PE, SE HDR Engineering, Inc. Gannett Fleming, Inc. General Chair Magazine Chair M. Myint Lwin, PE, SE Herbert M. Mandel, PE Federal Highway GAI Consultants, Inc. Administration Technical Program Chair Matthew P. McTish, PE McTish, Kunkel & Associates Al M. Ahmed, PE Exhibits Chair A&A Consultants Inc. Gerald Pitzer, PE Michael J. Alterio GAI Consultants, Inc. Alpha Structures Inc. Gary Runco, PE Carl Angeloff, PE Paul C. Rizzo Associates, Inc. Bayer MaterialScience, LLC Seminars Chair Awards Chair Helena Russell Victor E. Bertolina, PE Bridge, design & engineering SAI Consulting Engineers Awards – Vice Chair Budget Chair Louis J. Ruzzi, PE Enrico T. Bruschi, PE Pennsylvania Department DMJM Harris of Transportation Jeffrey J. Campbell, PE Thomas J. Vena, PE Michael Baker, Jr., Inc. Allegheny County Department of Public Works Richard Connors, PE, PMP McCormick Taylor, Inc. Lisle E. Williams, PE, PLS Rules Chair DMJM Harris Attendance & Co-Sponsors James D. Dwyer Chair STV, Inc. Emeritus Committee Gary L. Graham, PE Members Pennsylvania Turnpike Joel Abrams, PhD Commission Consultant Kent A. Harries, PhD, PEng Reidar Bjorhovde, PhD University of Pittsburgh The Bjorhovde Group Student Awards Chair Steven Fenves, PhD Donald W. Herbert, PE NIST Pennsylvania Department of Transportation Arthur W. Hedgren, Jr., PhD, PE Donald Killmeyer, Jr., PE Consultant ms consultants, inc. Tour Chair John F. Graham, Jr., PE Graham Consulting Inc. Eric S. Kline KTA-Tator, Inc. Keynote & Special Interest Session Chair ADVANCING BRIDGE TECHNOLOGY GLOBALLY ○○○○○○ ○○○○○○○○○○○○○○○○○○○○○○○○ 1 2006 CHAIRMAN’S MESSAGE Kenneth J. Wright, PE HDR Engineering, Inc. 2006 IBC General Chairman As this year’s General Chairman, I am pleased to wel- come you to the 2006 International Bridge Conference in Pittsburgh, the “City of Bridges”. -
Sea State in Marine Safety Information Present State, Future Prospects
Sea State in Marine Safety Information Present State, future prospects Henri SAVINA – Jean-Michel LEFEVRE Météo-France Rogue Waves 2004, Brest 20-22 October 2004 JCOMM Joint WMO/IOC Commission for Oceanography and Marine Meteorology The future of Operational Oceanography Intergovernmental body of technical experts in the field of oceanography and marine meteorology, with a mandate to prepare both regulatory (what Member States shall do) and guidance (what Member States should do) material. TheThe visionvision ofof JCOMMJCOMM Integrated ocean observing system Integrated data management State-of-the-art technologies and capabilities New products and services User responsiveness and interaction Involvement of all maritime countries JCOMM structure Terms of Reference Expert Team on Maritime Safety Services • Monitor / review operations of marine broadcast systems, including GMDSS and others for vessels not covered by the SOLAS convention •Monitor / review technical and service quality standards for meteo and oceano MSI, particularly for the GMDSS, and provide assistance and support to Member States • Ensure feedback from users is obtained through appropriate channels and applied to improve the relevance, effectiveness and quality of services • Ensure effective coordination and cooperation with organizations, bodies and Member States on maritime safety issues • Propose actions as appropriate to meet requirements for international coordination of meteorological and related communication services • Provide advice to the SCG and other Groups of JCOMM on issues related to MSS Chair selected by Commission. OPEN membership, including representatives of the Issuing Services for GMDSS, of IMO, IHO, ICS, IMSO, and other user groups GMDSS Global Maritime Distress & Safety System Defined by IMO for the provision of MSI and the coordination of SAR alerts on a global basis. -
Headland Sediment Bypassing Processes
UNIVERSIDADE DE LISBOA FACULDADE DE CIÊNCIAS HEADLAND SEDIMENT BYPASSING PROCESSES Doutoramento em Geologia Especialidade em Geodinâmica Externa Mónica Sofia Afonso Ribeiro Tese orientada por: Professor Doutor Rui Pires de Matos Taborda Doutora Aurora da Conceição Coutinho Rodrigues Bizarro Documento especialmente elaborado para a obtenção do grau de doutor 2017 UNIVERSIDADE DE LISBOA FACULDADE DE CIÊNCIAS HEADLAND SEDIMENT BYPASSING PROCESSES Doutoramento em Geologia Especialidade em Geodinâmica Externa Mónica Sofia Afonso Ribeiro Tese orientada por: Professor Doutor Rui Pires de Matos Taborda Doutora Aurora da Conceição Coutinho Rodrigues Bizarro Júri: Presidente: ● Doutora Maria da Conceição Pombo de Freitas Vogais: ● Doutor António Henrique da Fontoura Klein ● Doutor Óscar Manuel Fernandes Cerveira Ferreira ● Doutora Anabela Tavares Campos Oliveira ● Doutor César Augusto Canelhas Freire de Andrade ● Doutor Rui Pires de Matos Taborda Documento especialmente elaborado para a obtenção do grau de doutor Fundação para a Ciência e Tecnologia, no âmbito da Bolsa de Doutoramento com a referência SFRH/BD/79126/2011 2017 Em memória do meu irmão Luís Acknowledgments | Agradecimentos O doutoramento é um processo exigente, por vezes solitário, mas que só é possível com o apoio e a colaboração de outras pessoas e instituições. Portanto, resta-me agradecer a todos os que contribuíram para a conclusão deste trabalho. Em primeiro lugar agradeço aos meus orientadores, Rui Taborda e Aurora Bizarro, que têm acompanhado o meu trabalho desde os meus primeiros passos na Geologia Marinha, já lá vão 10 anos! A eles agradeço o incentivo para iniciar este projeto, o apoio demonstrado em todas as fases do trabalho, a confiança e a amizade. Ao Rui agradeço, em particular, a partilha e discussão de ideias e os desafios constantes que me permitiram evoluir. -
North Pacific Ocean
468 ¢ U.S. Coast Pilot 7, Chapter 11 31 MAY 2020 Chart Coverage in Coast Pilot 7—Chapter 11 124° NOAA’s Online Interactive Chart Catalog has complete chart coverage 18480 http://www.charts.noaa.gov/InteractiveCatalog/nrnc.shtml 126° 125° Cape Beale V ANCOUVER ISLAND (CANADA) 18485 Cape Flattery S T R A I T O F Neah Bay J U A N D E F U C A Cape Alava 18460 48° Cape Johnson QUILLAYUTE RIVER W ASHINGTON HOH RIVER Hoh Head 18480 QUEETS RIVER RAFT RIVER Cape Elizabeth QUINAULT RIVER COPALIS RIVER Aberdeen 47° GRAYS HARBOR CHEHALIS RIVER 18502 18504 Willapa NORTH PA CIFIC OCEAN WILLAPA BAY South Bend 18521 Cape Disappointment COLUMBIA RIVER 18500 Astoria 31 MAY 2020 U.S. Coast Pilot 7, Chapter 11 ¢ 469 Columbia River to Strait of Juan De Fuca, Washington (1) This chapter describes the Pacific coast of the State (15) of Washington from the Washington-Oregon border at the ENCs - US3WA03M, US3WA03M mouth of the Columbia River to the northwesternmost Chart - 18500 point at Cape Flattery. The deep-draft ports of South Bend and Raymond, in Willapa Bay, and the deep-draft ports of (16) From Cape Disappointment, the coast extends Hoquiam and Aberdeen, in Grays Harbor, are described. north for 22 miles to Willapa Bay as a low sandy beach, In addition, the fishing port of La Push is described. The with sandy ridges about 20 feet high parallel with the most outlying dangers are Destruction Island and Umatilla shore. Back of the beach, the country is heavily wooded. -
Introduction to SDUST and the Academic Tel: Programs We Offer
Shandong University of Science and Technology 2019 SDUST Our Location SDUST is located in Qingdao West Coast New Beijing-Tianjin-Hebei Urban Circle Area which connects the Korea Beijing-Tianjin-Hebei urban Japan circle with the Yangtze We're located in Qingdao River Delta region. The New Silk Road Economic Belt West Coast New Area Area is the main access of Yangtze River Delta the Yellow River Basin to Yangtze River Basin Economic Belt Economic Belt the sea and an important terminal in the east part of Eurasia Land Bridge, facing Korea and Japan across the sea, which forms a strategic location of radiating the inland, connecting northern and southern China and facing the Pacific Ocean. ASEAN Free Trade Zone A beautiful coastal city and a major tourist destination in China. A noted historic and cultural city. A key transportation hub for East China. One of the fastest growing economies in China with a GDP ranking 12th. Ranks 79th in the Global Financial Centers Index of 2016. The home of extensive investments from 126 of the World Top 500 enterprises. One of China's Most Livable Cities and a National Garden City. THE CITY OF An important seaport city with the world's second longest cross-sea bridge and the world's Top 5 longest undersea QINGDAO tunnel. Hosts the Qingdao International Beer Festival annually, the second largest beer festival in the world. Co-hosted the 29th Olympic Games with Beijing. About the Region Qingdao West Coast New Area New Area Basics On June 3, 2014, Qingdao West New Area was approved by the State Council as the 9th national level new area. -
Waves and Tides the Preceding Sections Have Dealt with the Types Of
CHAPTER XIV Waves and Tides .......................................................................................................... Introduction The preceding sections have dealt with the types of motion in the ocean that bring about transport of water massesin a definite direction during a considerable length of time. They have also dealt with the random motion, the turbulence, which is superimposed upon the general flow. Besidesthese types, one has also to consider the oscillating motion characteristic of waves. In general, this motion manifests itself to the observer more by the riseand fall of the sea surface than by the motion of the individual water particles. Waves have attracted attention since before the beginning of recorded history, and in recent years they have been the subject of extensive theoretical studies. Surveys of our knowledge as to the character of ocean waves have been presented by Cornish (1912, 1934), Krtimmel (1911), Patton and Mariner (1932) and by Defant (1929). Lamb (1932) has discussed the hydrodynamic theories of waves, and Thorade (1931) has given a comprehensive review of the theoretical studies of ocean waves and has compiled a long list of literature covering the period from 1687 to 1930. Our understanding of the waves of the ocean, how they are formed and how they travel, is as yet by no means complete. The reason is, in the first place, that actual observations at sea are so difficult that the characteristicsof the waves cannot easily be determined. In the second place, the theories that serve to bring the observed sequence of events in nature into intimate connection with experience gained by other methods of study are still incomplete, particularly because most theories are based on classicalhydrodynamics, which deal with wave motion in an idealized fluid. -
SHOCK CONTROL of BRIDGES in CHINA USING TAYLOR DEVICES’ FLUID VISCOUS DEVICES 1 1 2 2 Chen Yongqi Ma Liangzhe Cao Tiezhu1 Robert Schneider Craig Winters
th The 14 World Conference on Earthquake Engineering October 12-17, 2008, Beijing, China SHOCK CONTROL OF BRIDGES IN CHINA USING TAYLOR DEVICES’ FLUID VISCOUS DEVICES 1 1 2 2 Chen Yongqi Ma Liangzhe Cao Tiezhu1 Robert Schneider Craig Winters 1Beijing Qitai Shock Control and Scientific Development Co.,Ltd , Beijing 100037, China 2Taylor Devices, Inc. North Tonawanda, NY 14120, USA Email: [email protected], ABSTRACT : Fluid Viscous Devices are a successful structural protective system for bridge vibration. The structural protective technique and the dampers have been introduced to China since 1999. The Taylor Devices’ damper systems has already been successfully installed or will be installed in large or the super large bridges in China for protection from earthquake, wind. vehicle and other vibration. Seventeen different bridge projects introduced here include the Sutong Yangtze River Bridge, the longest cable stayed bridge in the world, the Nanjing 3rd Yangtze River Bridge, the fifth longest suspension bridge in the world, and the Xihoumen Across Sea Bridge, the second longest suspension bridge in the world. The performance of the bridges and dampers have been reported as “very good” during the May 12, 2008 Wenchuan earthquake. All of the dampers produced have been subjected to rigorous static and dynamic testing, which show the dampers will perform well for the next 50 years and possibly a lot longer. KEYWORDS: Lock-Up Devices, Fluid Viscous Dampers, Limited Displacement Damper 1. INTRODUCTION Along with the rapid economic development in China over the past two decades, a large number of highways and bridges have been built in China. By 2004 China constructed 1.81 millions kilometers of roads and 30 thousand kilometers of highways. -
China's Major Bridges Summary 1. Background
China’s Major Bridges Maorun FENG Maorun Feng, born in 1942, graduated from the Tangshan Professor Railway Institute with a Master’s Chairman of Technical degree, has been engaged in the Consultative Committee, design and research of bridges for 40 Ministry of years. He is the Chairman of Technical Consultative Committee Communications and the Former Chief Engineer of the Beijing, China State Ministry of Communications. He is also the current Chairman of China Association of Highway and Waterway Engineering Consultants. [email protected] . Summary In response to continuous economic development over the past 30 years, China has mobilized a program of large scale bridge construction. The technology of various types of bridges, including girder bridges, arch bridges, and cable-supported bridges, has been developed rapidly. Bridge spanning capacity has been continuously improved. Girder bridges with main span of 330 m, arch bridges with main span of 550 m, cable-stayed bridges with main span of 1088 m and suspension bridges with main span of 1650 m have already been built. Moreover, two sea-crossing bridges with overall length over 30 km have also been opened to traffic. This paper briefly introduces China’s major bridges, including girder bridges with spans greater than 200 m, arch bridges with spans greater than 400 m, cable-stayed bridges with spans greater than 600 m, and suspension bridges with spans greater than 1200 m. These bridges represent technological progress in such aspects as structural system, materials, as well as construction methods and equipment. Key words: girder bridge, arch bridge, cable-supported bridge, cable-stayed bridge, suspension bridge, steel-concrete composite bridge 1. -
Ocean Wave Forecasting at ECMWF
Ocean Wave Forecasting at ECMWF Jean-Raymond Bidlot Marine Aspects Section Predictability Division of the Research Department European Centre for Medium-range Weather Forecasts (E.C.M.W.F.) Reading, UK Slide 1 Ocean waves: We are dealing with wind generated waves at the surface of the oceans, from gentle to rough … Ocean wave Forecasting at ECMWF Slide 2 Ocean Waves Forcing: earthquake wind moon/sun Restoring: gravity surface tension Coriolis force 10.0 1.0 0.03 3x10-3 2x10-5 1x10-5 Frequency (Hz) Ocean wave Forecasting at ECMWF Slide 3 What we are dealing with? Water surface elevation, η Wave Period, T Wave Length, λ Wave Height, H Ocean wave Forecasting at ECMWF Slide 4 Wave Spectrum l The irregular water surface can be decomposed into (infinite) number of simple sinusoidal components with different frequencies (f) and propagation directions (θ ). l The distribution of wave energy among those components is called: “wave spectrum”, F(f,θ). Ocean wave Forecasting at ECMWF Slide 5 l Modern ocean wave prediction systems are based on statistical description of oceans waves (i.e. ensemble average of individual waves). l The sea state is described by the two-dimensional wave spectrum F(f,θ). Ocean Wave Modelling Ocean Wave Modelling Ocean wave Forecasting at ECMWF Slide 6 Ocean Wave Modelling l For example, the mean variance of the sea surface elevation η due to waves is given by: 〈η2〉 = F( f ,θ)dfdθ ∫∫ l The mean energy associated with those waves is: 2 energy= ρηw g l The statistical measure for wave height, called the significant wave height (Hs): 2 H s = 4 η The term significant wave height is historical as this value appeared to be well correlated with visual estimates of wave height from experienced observers. -
Remote Sensing
remote sensing Article Contribution of Remote Sensing Technologies to a Holistic Coastal and Marine Environmental Management Framework: A Review Badr El Mahrad 1,2,3,* , Alice Newton 3, John D. Icely 3,4 , Ilias Kacimi 2, Samuel Abalansa 3 and Maria Snoussi 5 1 Murray Foundation, Brabners LLP, Horton House, Exchange Street, Liverpool L2 3YL, UK 2 Laboratory of Geoscience, Water and Environment, (LG2E-CERNE2D), Department of Earth Sciences, Faculty of Sciences, Mohammed V University of Rabat, Rabat 10000, Morocco; [email protected]. 3 CIMA, FCT-Gambelas Campus, University of Algarve, 8005-139 Faro, Portugal; [email protected] (A.N.); [email protected] (J.D.I.); [email protected] (S.A.) 4 Sagremarisco, Apartado 21, 8650-999 Vila do Bispo, Portugal 5 Department of Earth Sciences, Faculty of Sciences, Mohammed V University of Rabat, Rabat 10000, Morocco; [email protected] * Correspondence: [email protected] Received: 1 May 2020; Accepted: 13 July 2020; Published: 18 July 2020 Abstract: Coastal and marine management require the evaluation of multiple environmental threats and issues. However, there are gaps in the necessary data and poor access or dissemination of existing data in many countries around the world. This research identifies how remote sensing can contribute to filling these gaps so that environmental agencies, such as the United Nations Environmental Programme, European Environmental Agency, and International Union for Conservation of Nature, can better implement environmental directives in a cost-effective manner. Remote sensing (RS) techniques generally allow for uniform data collection, with common acquisition and reporting methods, across large areas. Furthermore, these datasets are sometimes open-source, mainly when governments finance satellite missions. -
Capitalism from Below
CAPITALISM FROM BELOW Angemeldet | [email protected] Heruntergeladen am | 22.05.13 14:32 Angemeldet | [email protected] Heruntergeladen am | 22.05.13 14:32 CAPITALISM FROM BELOW Markets and Institutional Change in China VICTOR NEE SONJA OPPER HARVARD UNIVERSITY PRESS Cambridge, Massachusetts, and London, England 2012 Angemeldet | [email protected] Heruntergeladen am | 22.05.13 14:32 Copyright © 2012 by the President and Fellows of Harvard College All rights reserved Printed in the United States of America Library of Congress Cataloging- in- Publication Data Nee, Victor Capitalism from below : markets and institutional change in China / Victor Nee, Sonja Opper. p. cm. Includes bibliographical references and index. ISBN 978- 0- 674- 05020-4 (alk. paper) 1. Capitalism— China. 2. Entrepreneurship— China. 3. Industrial policy— China. 4. China—Economic policy. 5. China— Politics and government. I. Opper, Sonja. II. Title. HC427.95.N44 2012 330.951—dc23 2011042367 Angemeldet | [email protected] Heruntergeladen am | 22.05.13 14:32 To Margaret Nee (1919– 2011) and Fanny de Bary (1922– 2009) Margret and Herbert Opper Angemeldet | [email protected] Heruntergeladen am | 22.05.13 14:32 Angemeldet | [email protected] Heruntergeladen am | 22.05.13 14:32 Contents List of Figures and Tables ix Acknowledgments xiii 1 Where Do Economic Institutions Come From? 1 2 Markets and Endogenous Institutional Change 12 3 Th e Epicenter of Bottom-Up Capitalism 41 4 Entrepreneurs and Institutional Innovation 72 5 Legitimacy and Or gan i za tion -
Chongming-Qidong Yangtze River Highway Bridge (Hereinafter “Chongqi Bridge”) Has a Length of 6.84Km
Address (no P.O. Box ): Building A, 85, Deshengmenwai Street, Xicheng District, Beijing City with postal code: Beijing, 10088 Country: China Phone (with country code): +86-10-82017778 Fax:+86-10-82017738 E-mail for communication on the submission: [email protected] Name of contact person, if different than CEO: [email protected] Date and signature of CEO: May 15th, 2015 Questions to be responded to by the firm submitting the application Why do you think this project should receive an award? How does it demonstrate: z innovation, quality, and professional excellence z transparency and integrity in the management and project implementation z sustainability and respect for the environment Chongming-Qidong Yangtze River Highway Bridge (hereinafter “Chongqi Bridge”) has a length of 6.84km. It was scheduled to be completed by April, 2012, but eventually opened to traffic on December 24th, 2011. By now it has been in operation for 3 years and 4 months. The client is Jiangsu Province Chongqi Bridge Construction Headquarters. The main bridge of Chongqi Bridge is a six-span continuous steel box girder bridge with span arrangement of 102m+4×185m+102m=944m. The bridge deck structure is formed by double haunched continuous steel box girders with vertical webs. The width of single girder is 16.1m. The girder depth varies in parabolic, 3.5m at the ends of side spans, 4.8m at the mid span and 9.0m at main piers. The girders were erected span by span with one single segment in each span without any stitching segment between them.