Direct Spectrum of the Benchmark T Dwarf HD 19467 B

Total Page:16

File Type:pdf, Size:1020Kb

Direct Spectrum of the Benchmark T Dwarf HD 19467 B Direct Spectrum of the Benchmark T dwarf HD 19467 B Justin R. Crepp1, Emily L. Rice2,5, AAron Veicht5, Laurent Pueyo3,4, Jonathan Aguilar3,4, Paige Giorla2,5,12, Ricky Nilsson5,13, Statia H. Cook5, Rebecca Oppenheimer5, Sasha Hinkley6,7, Douglas Brenner5, Gautam Vasisht8, Eric Cady8, Charles A. Beichman9, Lynne A. Hillenbrand6, Thomas Lockhart8, Christopher T. Matthews1, Lewis C. Roberts, Jr.8, Anand Sivaramakrishnan3, Remi Soummer3, Chengxing Zhai8 [email protected] ABSTRACT HD 19467 B is presently the only directly imaged T dwarf companion known to induce a measurable Doppler acceleration around a solar type star. We present spectroscopy measurements of this important benchmark object taken with the Project 1640 integral field unit at Palomar Observatory. Our high-contrast R ≈ 30 observations obtained simultaneously across the JH bands confirm the cold nature of the companion as reported from the discovery article and determine its spectral type for the first time. Fitting the measured spectral energy distribution to SpeX/IRTF T dwarf standards and synthetic spectra from BT-Settl atmospheric models, we find +20 that HD 19467 B is a T5.5±1 dwarf with effective temperature Teff = 978−43 K. Our observations reveal significant methane absorption affirming its substellar nature. HD 19467 B shows promise to become the first T dwarf that simultaneously reveals its mass, age, and metallicity independent from the spectrum of light that it emits. Subject headings: keywords: techniques: high angular resolution; astrometry; stars: individual (HD 19467), brown dwarfs 1. INTRODUCTION 1Department of Physics, University of Notre Dame, 225 Nieuwland Science Hall, Notre Dame, IN, 46556, USA HD 19467 B is a faint co-moving companion 2 College of Staten Island, CUNY, 2800 Victory Boule- to the nearby G3V star HD 19467 that was re- vard, Staten Island, NY 10314, USA cently discovered as part of the TrenDS high- 3Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218, USA contrast imaging program (Crepp et al. 2012b, 4Department of Physics and Astronomy, Johns Hopkins 2014). Prior to its direct imaging detection, the existence of HD 19467 B was first inferred arXiv:1412.6101v1 [astro-ph.SR] 18 Dec 2014 University, Baltimore, MD 21218, USA 5American Museum of Natural History, Central Park from 16.9 years of precise stellar radial velocity West at 79th Street, New York, NY 10024, USA (RV) measurements that revealed a long-term 6 Department of Astronomy, California Institute of Tech- systemic acceleration of dv/dt = −1.37 ± 0.09 nology, 1200 E. California Blvd., Pasadena, CA 91125, USA −1 −1 7 m s yr . HD 19467 B’s intrinsic brightness University of Exeter, Department of Physics and As- ± tronomy, Prince of Wales Road, Exeter, Devon UK (MJ = 17.61 0.11) and blue near-infrared colors 8 − − ± − − ± Jet Propulsion Laboratory, California Institute of (J H = 0.29 0.15, J Ks = 0.36 0.14) Technology, 4800 Oak Grove Drive, Pasadena, CA 91109, USA ingley Road, Cambridge CB3 0HA, UK 9 NASA Exoplanet Science Institute, California Institute 12Department of Physics, The Graduate Center, City of Technology, Pasadena, CA 91125, USA University of New York, 365 5th Ave, New York, NY 10016 10 Caltech Optical Observatories, California Institute of 13Department of Astronomy, Stockholm University, Al- Technology, 1200 E. California Blvd., Pasadena, CA 91125, baNova University Center, Roslagstullsbacken 21, 106 91 USA Stockholm, Sweden 11Institute of Astronomy, University of Cambridge, Mad- 1 suggest that it is non-hydrogen-fusing. A lower for follow-up integral field spectroscopy measure- +3.6 mass limit of M ≥ 51.9−4.3MJup derived from the ments (e.g., Bowler et al. 2010; Konopacky et al. RV acceleration and projected orbital separation 2013; Oppenheimer et al. 2013). In this Letter, we of 51.1 ± 1.0 AU is consistent with the model- use the Project 1640 high-contrast instrument at +4.6 dependent mass estimate, M = 56.7−7.2MJup, Palomar to measure HD 19467 B’s spectral-energy and supports the interpretation that HD 19467 B distribution in the JH bands and assess its physi- is a cold brown dwarf. Crepp et al. 2014 assigned cal properties. Spectral standard comparisons and a preliminary spectral-type of ≈T5–T7 based on theoretical model fits to the data allow us to as- the object’s location in color-magnitude diagrams sign a spectral type and directly study the object’s but spectroscopic observations have yet to be re- atmosphere for the first time. ported. HD 19467 B is an important benchmark object. 2. PALOMAR HIGH-CONTRAST OB- It is currently the only directly imaged T dwarf SERVATIONS companion known to cause a measurable Doppler HD 19467 was observed on 2013 October 17 UT acceleration around a nearby solar-type star. In at Palomar Observatory using the Hale 200-inch addition to a precise parallax (32.40 ± 0.62 mas) telescope. The PALM-3000 AO system provides and many years of legacy RV measurements, astro- diffraction-limited images at near-infrared wave- metric observations already show systemic orbital − lengths using a Shack-Hartmann wavefront sen- motion at 22 ± 6 mas yr 1 (van Leeuwen 2007). sor (Dekany et al. 2013). Given the brightness A tight mass constraint from dynamics will be of HD 19467 (V = 7.0), we used 64×64 sub- available once both the astrometry and RV ob- apertures to provide fine spatial wavefront cor- servations reveal curvature (Crepp et al. 2012a). rection while running the AO system at 1 kHz. Further, the chemical composition of HD 19467 B Simultaneous imaging and spectroscopy measure- has been inferred from its Sun-like (G3V) parent ments were acquired by the Project 1640 (here- star. Crepp et al. 2014find that HD 19467A hasa after, P1640) high-contrast integral field spec- sub-solar metallicity of [Fe/H]= −0.15±0.04, thus trometer (IFS) (Hinkley et al. 2011). HD 19467 B should also have relatively low metal ′′ content assuming it formed from the same cloud The seeing was estimated to be 1.3 during the of material. Such model independent mass and time of observations. We acquired 25 individual metallicity measurements are essential for cali- exposures totaling 4,583 seconds of on-source in- brating theoretical spectral and evolutionary mod- tegration time with the star centered behind the els, particularly at cold temperatures. coronagraphic mask. Unocculted images were ac- quired to measure the flux ratio between the pri- The age of the HD 19467 system is currently mary and secondary as a function of wavelength. less certain but forthcoming observations will HD 19467 B resides just inside of the P1640 field place strong constraints on the primary star’s evo- of view (4.2′′ × 4.2′′). The companion can be no- lutionary state. At a distance of only 30.9 ± 0.6 ticed when playing a “color movie” by sequentially pc, the interferometric CHARA array may be able viewing each image of the IFS data cube. Pre- to spatially resolve the surface of the star at near- speckle-suppressed images also show qualitatively infrared wavelengths, providing a direct measure that the companion appears to exhibit methane of its radius (Boyajian et al. 2009). It is expected absorption in the H-band. We demonstrate that that the age could be tightly constrained because HD 19467 B must be a very cold object in the HD 19467 resides ∆M =0.28 above the Hippar- V following analysis. cos median main-sequence, has a subsolar metal- licity, yet is nearly identical to the Sun. Therefore, 2.1. Spectral Extraction we already know that HD 19467 is older than the Sun (> 4.6 Gyr), and a radius constraint, even if Raw frames were converted into data cubes us- only an upper-limit (i.e., marginally spatially re- ing the algorithm described in detail in Zimmerman et al. solved by CHARA interferometry), will eliminate 2010. Each exposure creates 32 separate images ages older than some threshold value. taken at slightly different wavelengths (Hinkley et al. HD 19467 B has an ideal separation (1.65′′) 2011). Although the companion light is initially 2 Fig. 1.— Reconnaissance images of HD 19467 B taken with the Project 1640 integral field unit at Palomar Observatory using the 200-inch telescope on October 17, 2013. High-contrast measurements in multiple bands recover the companion following PSF subtraction. A marked decline in the flux of HD 19467 B in the CH4 band (λshort =1.560 − 1.600 µm, λlong =1.635 − 1.675 µm) reveals significant methane absorption (see text for discussion). A description of H-band methane filter observations can be found in Janson et al. 2013. mixed with stellar speckles, flux in each wave- of non-common-path errors from the P1640 inter- length channel can be retrieved by performing nal wavefront calibration unit, our observations PSF subtraction that takes advantage of color in- resulted in the companion being comparable in formation provided by the IFS (Crepp et al. 2011; brightness to local speckles in frames spanning Pueyo et al. 2012). the JH-bands (Zhai et al. 2012; Cady et al. 2013). Once raw data frames were processed, we em- The relative flux of HD 19467 B was measured us- ployed the techniques presented in Fergus et al. ing aperture photometry with the occulted data 2014 using the Spatial-Spectral model for Speckle cubes following speckle reduction by S4. Residual Suppression (S4) algorithm. S4 uses principal speckle noise was estimated by sampling many components analysis (PCA) to identify a lin- apertures at the same radial distance from the ear combination of orthogonal (KarhunenLoeve) host star but at different azimuthal angles. modes to fit and remove the PSF of HD 19467 A The extracted companion flux was calibrated in each wavelength channel (Fig.
Recommended publications
  • Exoplanet.Eu Catalog Page 1 # Name Mass Star Name
    exoplanet.eu_catalog # name mass star_name star_distance star_mass OGLE-2016-BLG-1469L b 13.6 OGLE-2016-BLG-1469L 4500.0 0.048 11 Com b 19.4 11 Com 110.6 2.7 11 Oph b 21 11 Oph 145.0 0.0162 11 UMi b 10.5 11 UMi 119.5 1.8 14 And b 5.33 14 And 76.4 2.2 14 Her b 4.64 14 Her 18.1 0.9 16 Cyg B b 1.68 16 Cyg B 21.4 1.01 18 Del b 10.3 18 Del 73.1 2.3 1RXS 1609 b 14 1RXS1609 145.0 0.73 1SWASP J1407 b 20 1SWASP J1407 133.0 0.9 24 Sex b 1.99 24 Sex 74.8 1.54 24 Sex c 0.86 24 Sex 74.8 1.54 2M 0103-55 (AB) b 13 2M 0103-55 (AB) 47.2 0.4 2M 0122-24 b 20 2M 0122-24 36.0 0.4 2M 0219-39 b 13.9 2M 0219-39 39.4 0.11 2M 0441+23 b 7.5 2M 0441+23 140.0 0.02 2M 0746+20 b 30 2M 0746+20 12.2 0.12 2M 1207-39 24 2M 1207-39 52.4 0.025 2M 1207-39 b 4 2M 1207-39 52.4 0.025 2M 1938+46 b 1.9 2M 1938+46 0.6 2M 2140+16 b 20 2M 2140+16 25.0 0.08 2M 2206-20 b 30 2M 2206-20 26.7 0.13 2M 2236+4751 b 12.5 2M 2236+4751 63.0 0.6 2M J2126-81 b 13.3 TYC 9486-927-1 24.8 0.4 2MASS J11193254 AB 3.7 2MASS J11193254 AB 2MASS J1450-7841 A 40 2MASS J1450-7841 A 75.0 0.04 2MASS J1450-7841 B 40 2MASS J1450-7841 B 75.0 0.04 2MASS J2250+2325 b 30 2MASS J2250+2325 41.5 30 Ari B b 9.88 30 Ari B 39.4 1.22 38 Vir b 4.51 38 Vir 1.18 4 Uma b 7.1 4 Uma 78.5 1.234 42 Dra b 3.88 42 Dra 97.3 0.98 47 Uma b 2.53 47 Uma 14.0 1.03 47 Uma c 0.54 47 Uma 14.0 1.03 47 Uma d 1.64 47 Uma 14.0 1.03 51 Eri b 9.1 51 Eri 29.4 1.75 51 Peg b 0.47 51 Peg 14.7 1.11 55 Cnc b 0.84 55 Cnc 12.3 0.905 55 Cnc c 0.1784 55 Cnc 12.3 0.905 55 Cnc d 3.86 55 Cnc 12.3 0.905 55 Cnc e 0.02547 55 Cnc 12.3 0.905 55 Cnc f 0.1479 55
    [Show full text]
  • Exoplanet Meteorology: Characterizing the Atmospheres Of
    Exoplanet Meteorology: Characterizing the Atmospheres of Directly Imaged Sub-Stellar Objects by Abhijith Rajan A Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy Approved April 2017 by the Graduate Supervisory Committee: Jennifer Patience, Co-Chair Patrick Young, Co-Chair Paul Scowen Nathaniel Butler Evgenya Shkolnik ARIZONA STATE UNIVERSITY May 2017 ©2017 Abhijith Rajan All Rights Reserved ABSTRACT The field of exoplanet science has matured over the past two decades with over 3500 confirmed exoplanets. However, many fundamental questions regarding the composition, and formation mechanism remain unanswered. Atmospheres are a window into the properties of a planet, and spectroscopic studies can help resolve many of these questions. For the first part of my dissertation, I participated in two studies of the atmospheres of brown dwarfs to search for weather variations. To understand the evolution of weather on brown dwarfs we conducted a multi- epoch study monitoring four cool brown dwarfs to search for photometric variability. These cool brown dwarfs are predicted to have salt and sulfide clouds condensing in their upper atmosphere and we detected one high amplitude variable. Combining observations for all T5 and later brown dwarfs we note a possible correlation between variability and cloud opacity. For the second half of my thesis, I focused on characterizing the atmospheres of directly imaged exoplanets. In the first study Hubble Space Telescope data on HR8799, in wavelengths unobservable from the ground, provide constraints on the presence of clouds in the outer planets. Next, I present research done in collaboration with the Gemini Planet Imager Exoplanet Survey (GPIES) team including an exploration of the instrument contrast against environmental parameters, and an examination of the environment of the planet in the HD 106906 system.
    [Show full text]
  • Exoplanet.Eu Catalog Page 1 Star Distance Star Name Star Mass
    exoplanet.eu_catalog star_distance star_name star_mass Planet name mass 1.3 Proxima Centauri 0.120 Proxima Cen b 0.004 1.3 alpha Cen B 0.934 alf Cen B b 0.004 2.3 WISE 0855-0714 WISE 0855-0714 6.000 2.6 Lalande 21185 0.460 Lalande 21185 b 0.012 3.2 eps Eridani 0.830 eps Eridani b 3.090 3.4 Ross 128 0.168 Ross 128 b 0.004 3.6 GJ 15 A 0.375 GJ 15 A b 0.017 3.6 YZ Cet 0.130 YZ Cet d 0.004 3.6 YZ Cet 0.130 YZ Cet c 0.003 3.6 YZ Cet 0.130 YZ Cet b 0.002 3.6 eps Ind A 0.762 eps Ind A b 2.710 3.7 tau Cet 0.783 tau Cet e 0.012 3.7 tau Cet 0.783 tau Cet f 0.012 3.7 tau Cet 0.783 tau Cet h 0.006 3.7 tau Cet 0.783 tau Cet g 0.006 3.8 GJ 273 0.290 GJ 273 b 0.009 3.8 GJ 273 0.290 GJ 273 c 0.004 3.9 Kapteyn's 0.281 Kapteyn's c 0.022 3.9 Kapteyn's 0.281 Kapteyn's b 0.015 4.3 Wolf 1061 0.250 Wolf 1061 d 0.024 4.3 Wolf 1061 0.250 Wolf 1061 c 0.011 4.3 Wolf 1061 0.250 Wolf 1061 b 0.006 4.5 GJ 687 0.413 GJ 687 b 0.058 4.5 GJ 674 0.350 GJ 674 b 0.040 4.7 GJ 876 0.334 GJ 876 b 1.938 4.7 GJ 876 0.334 GJ 876 c 0.856 4.7 GJ 876 0.334 GJ 876 e 0.045 4.7 GJ 876 0.334 GJ 876 d 0.022 4.9 GJ 832 0.450 GJ 832 b 0.689 4.9 GJ 832 0.450 GJ 832 c 0.016 5.9 GJ 570 ABC 0.802 GJ 570 D 42.500 6.0 SIMP0136+0933 SIMP0136+0933 12.700 6.1 HD 20794 0.813 HD 20794 e 0.015 6.1 HD 20794 0.813 HD 20794 d 0.011 6.1 HD 20794 0.813 HD 20794 b 0.009 6.2 GJ 581 0.310 GJ 581 b 0.050 6.2 GJ 581 0.310 GJ 581 c 0.017 6.2 GJ 581 0.310 GJ 581 e 0.006 6.5 GJ 625 0.300 GJ 625 b 0.010 6.6 HD 219134 HD 219134 h 0.280 6.6 HD 219134 HD 219134 e 0.200 6.6 HD 219134 HD 219134 d 0.067 6.6 HD 219134 HD
    [Show full text]
  • Mapping Debris Disks at Extreme Contrast: Near-IR Polarimetric Differential Imaging with the Gemini Planet Imager
    Western University Scholarship@Western Electronic Thesis and Dissertation Repository 9-12-2018 1:00 PM Mapping Debris Disks at extreme contrast: near-IR Polarimetric Differential Imaging with the Gemini Planet Imager. Juan Sebastian Bruzzone The University of Western Ontario Supervisor Metchev, Stanimir A. The University of Western Ontario Graduate Program in Astronomy A thesis submitted in partial fulfillment of the equirr ements for the degree in Doctor of Philosophy © Juan Sebastian Bruzzone 2018 Follow this and additional works at: https://ir.lib.uwo.ca/etd Part of the Stars, Interstellar Medium and the Galaxy Commons Recommended Citation Bruzzone, Juan Sebastian, "Mapping Debris Disks at extreme contrast: near-IR Polarimetric Differential Imaging with the Gemini Planet Imager." (2018). Electronic Thesis and Dissertation Repository. 5917. https://ir.lib.uwo.ca/etd/5917 This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of Scholarship@Western. For more information, please contact [email protected]. Abstract Debris disks are gas-poor evolved circumstellar disks that show decreased near- to mid- infrared thermal excess emission because of lack of material close to the star. Regarded as massive analogues to the Main Asteroid or Kuiper Belts in the Solar System, these often young dust-rich disks comprise second-generation dust created by disruptive collisions of planetes- imals and the decay products of asteroids and comets. Of the dozen or so directly imaged planets to date many share a distinctive characteristic: they reside in stellar systems known to also possess circumstellar dust.
    [Show full text]
  • JOHN MICHAEL BREWER Yale Astronomy 52 Hillhouse Avenue Room 219 New Haven CT 06511
    JOHN MICHAEL BREWER Yale Astronomy 52 Hillhouse Avenue Room 219 New Haven CT 06511 C (510) 847-9676 [email protected] REFEREED PUBLICATIONS [42] The Mass of the White Dwarf Companion in the Self-Lensing Binary KOI-3278: Einstein vs. Newton Yahalomi, Daniel A., Shvartzvald, Yossi, Agol, Eric et al. [incl. Brewer] (2019). ApJ (Submitted), arxiv.org/abs/1904.11063 [41] Modeling the Echelle Spectra Continuum with Alpha Shapes and Local Regression Fitting Xu, Xin, Cisewski-Kehe, Jessi, Davis, Allen B., Fischer, Debra A., Brewer, John M. (2019). AJ (Accepted), arxiv.org/abs/1904.10065 [40] Benchmarking Substellar Evolutionary Models Using New Age Estimates for HD 4747 B and HD 19467 B Wood, Charlotte M., Boyajian, Tabetha, von Braun, Kaspar, Brewer, John M., et al. (2019), ApJ (Accepted), arxiv.org/abs/1901.03687 [39] HD 202772A b: A Transiting Hot Jupiter around a Bright, Mildly Evolved Star in a Visual Binary Discovered by TESS Songhu Wang, Matias Jones, Avi Shporer, et al. [incl. Brewer] (2019), AJ, 157, 2, iopscience.iop.org/article/10.3847/1538-3881/aaf1b7/meta [38] Compact Multi-planet Systems More Common Around Metal Poor Hosts Brewer, John M., Wang, Songhu, Fischer, Debra A., Foreman-Mackey, Dan (2018). ApJL, 867(1), doi.org/10.3847/2041-8213/aae710. [37] Spectral Properties of Cool Stars: Extended Abundance Analysis of Kepler Objects of Interest Brewer, John M., Fischer, Debra A. (2018). ApJS, 237(2) doi.org/10.3847/1538-4365/ aad501 [36] Stellar Spin–Orbit Alignment for Kepler-9, a Multi-transiting Planetary System with Two Outer Planets Near 2:1 Resonance Wang, Songhu, Addison, Brett, Fischer, Debra A., Brewer, John M.
    [Show full text]
  • 1414 (Created: Friday, February 26, 2021 at 12:00:24 PM Eastern Standard Time) - Overview
    JWST Proposal 1414 (Created: Friday, February 26, 2021 at 12:00:24 PM Eastern Standard Time) - Overview 1414 - Integral Field Spectroscopy of the Benchmark Substellar Companion HD 19467 B Cycle: 1, Proposal Category: GTO INVESTIGATORS Name Institution E-Mail Dr. Marshall Perrin (PI) Space Telescope Science Institute [email protected] Dr. Laurent Pueyo (CoI) Space Telescope Science Institute [email protected] Dr. Chris Stark (CoI) NASA Goddard Space Flight Center [email protected] Abhijith Rajan (CoI) Space Telescope Science Institute [email protected] Dr. Remi Soummer (CoI) Space Telescope Science Institute [email protected] Dr. Matt Mountain (CoI) Space Telescope Science Institute [email protected] OBSERVATIONS Folder Observation Label Observing Template Science Target Observation Folder 1 HD 18511 (PSF, offset NIRSpec IFU Spectroscopy (4) HD-18511-PSF-CALIBRATOR outside IFU FOV) 2 HD 19467 (Roll1, star NIRSpec IFU Spectroscopy (3) HD-19467 offset outside IFU FOV ) 3 HD 19467 NIRSpec IF NIRSpec IFU Spectroscopy (3) HD-19467 U (Roll1) 4 HD 19467 NIRSpec IF NIRSpec IFU Spectroscopy (3) HD-19467 U (Roll2) 5 HD 18511 (PSF Star) NIRSpec IFU Spectroscopy (4) HD-18511-PSF-CALIBRATOR 1 JWST Proposal 1414 (Created: Friday, February 26, 2021 at 12:00:24 PM Eastern Standard Time) - Overview ABSTRACT Unlike most imaged companions for which masses are highly uncertain, the brown dwarf HD 19467 B has a mass dynamically constrained by radial velocity changes induced in its host star (Crepp et al. 2014, 2015). Meanwhile its age and metallicity are constrained from other studies of the sun- like host star (e.g. Wood et al.
    [Show full text]
  • Dimitri Mawet
    DIMITRI MAWET [email protected] http://www.astro.caltech.edu/~dmawet/ (+1)626-395-1452 California Institute of Technology, Astronomy Department MC 249-17 1200 E. California Blvd., Pasadena, CA 91125 RESEARCH INTERESTS Extrasolar planetary systems formation and evolution: • Exoplanet detection, imaging and spectroscopic remote sensing. • Proto-planetary, transitional and debris circumstellar disk studies. Optical/infrared astronomy instrumentation: • Imaging, spectroscopy, (spectro-)polarimetry. • High contrast imaging/coronagraphy from optical to mid-infrared wavelengths. • Optical vortex, and vector vortex coronagraphy. • Adaptive optics/wavefront control techniques for ground and space-based telescopes. • Micro/nano-optics, diffractive optics, optical design/modeling, polarization. EDUCATION Ph.D. in Science, University of Li`ege Sep 2006 • Thesis: Subwavelength gratings for extrasolar planetary system detection and characterization. • Advisor: Prof. J. Surdej M.Phil. in Science, University of Li`ege Jun 2004 • Thesis:Applications des r´eseaux sub-lambda en interf´erom`etrieet coronographie. • Advisor: Prof. J. Surdej M.Phil. in Physical Engineering, University of Li`ege Sep 2002 • Thesis:Etude d'un coronographe `a4 quadrants au moyen de l'optique diffractive. • Advisor: Prof. J. Surdej B.S. in Civil Engineering, University of Li`ege Sep 1999 APPOINTMENTS & EXPERIENCE California Institute of Technology Feb 2015 - Present Associate Professor of Astronomy Pasadena, CA · Teaching: Ay105, Ay122a, Ay/Ge198, Ay141, Ay142, Ay30. · Astronomy Colloquium committee. · Graduate student admission committee. · Postdoctoral Prize fellowships in experimental physics or astrophysics selection committee. · Caltech Optical Observatories Time Allocation Committee. · PI of the Exoplanet Technology Laboratory. · PI of the High Contrast Spectroscopy Testbed for Segmented Telescopes. · PI of the Keck Planet Imager and Characterizer (KPIC).
    [Show full text]
  • Proceedings of the 18Th Cambridge Workshop on Cool Stars, Stellar Systems and the Sun
    18th Cambridge Workshop on Cool Stars, Stellar Systems, and the Sun Proceedings of Lowell Observatory (9-13 June 2014) Edited by G. van Belle & H. Harris Proceedings of the 18th Cambridge Workshop on Cool Stars, Stellar Systems and the Sun Proceedings Draft, version 2014-07-02 10:36am 1 2 i Contents 18th Cambridge Workshop on Cool Stars, Stellar Systems, and the Sun Proceedings of Lowell Observatory (9-13 June 2014) Edited by G. van Belle & H. Harris Participants List Fred Adams (Univ. Michigan, [email protected]) Vladimir Airapetian (NASA/GSFC, [email protected]) Thomas Allen (University of Toledo, [email protected]) Kimberly Aller (University of Hawaii, [email protected]) Katelyn Allers (Bucknell University, [email protected]) Francisco Javier Alonso Floriano (Universidad Complutense, [email protected]) Julian David Alvarado-Gomez (ESO, [email protected]) Catarina Alves de Oliveira (European Space Agency, [email protected]) Marin Anderson (Caltech, [email protected]) Guillem Anglada-Escude (Queen Mary, London, [email protected]) Ruth Angus (University of Oxford, [email protected]) Megan Ansdell (University of Hawaii, [email protected]) Antoaneta Antonova (Sofia University, [email protected]fia.bg) Daniel Apai (University of Arizona, [email protected]) Costanza Argiroffi (Univ. of Palermo, [email protected]) Pamela Arriagada (DTM, CIW, [email protected]) Kyle Augustson (High Altitude Observatory, [email protected]) Ian Avilez (Lowell Observatory, [email protected]) Sarah Ballard (University of Washington, [email protected]) Daniella Bardalez Gagliuffi (UCSD, [email protected]) Sydney Barnes (Leibniz Inst Astrophysics, [email protected]) Eddie Baron (Univ.
    [Show full text]
  • REBECCA OPPENHEIMER 1999 Ph.D., Astronomy, California
    REBECCA OPPENHEIMER CURATOR AND PROFESSOR DEPARTMENT OF ASTROPHYSICS AMERICAN MUSEUM OF NATURAL HISTORY 79TH STREET AT CENTRAL PARK WEST NEW YORK, NY 10024-5192, USA http://orcid.org/0000-0001-7130-7681 [email protected] research.amNh.org/users/bro EDUCATION 1999 Ph.D., Astronomy, California Institute of Technology, “Brown Dwarf Companions of Nearby Stars,” Advisor: S. R. Kulkarni 1994 B.A., Physics, Columbia College, Columbia University AWARDS AND HONORS 2009 BlavatNik Award for YouNg ScieNtists, New York Academy of ScieNces 2003 Carter Memorial Lecturer, Carter Observatory, WelliNgtoN, New ZealaNd 2002-2004 Kalbfleisch Research Fellowship, AmericaN Museum of Natural History 2002 NatioNal Academies of ScieNce, BeckmaN FroNtiers of ScieNce, INvited ParticipaNt 1999-2002 Hubble Postdoctoral Research Fellowship 1994-1997 NatioNal ScieNce FouNdatioN Graduate Research Fellowship 1990-1994 I. I. Rabi ScieNce Scholar, Columbia University 1990 WestiNghouse ScieNce CompetitioN, HoNorable MeNtioN 1989 New York Academy of ScieNces ScieNce WritiNg CompetitioN, First Place EMPLOYMENT 2013-present Curator, DepartmeNt of Astrophysics, AmericaN Museum of Natural History 2008-2013 Associate Curator, DepartmeNt of Astrophysics, AmericaN Museum of Natural History 2004-2008 AssistaNt Curator, DepartmeNt of Astrophysics, AmericaN Museum of Natural History 2002-2004 Research Fellow, AmericaN Museum of Natural History 1999-2002 Hubble Research Fellow, University of CaliforNia-Berkeley, AMNH 1994-1997 Graduate Research Fellow, CaliforNia INstitute of TechNology, with Kulkarni 1993-1994 Instructor, Barnard College Physics DepartmeNt, History of Physics 1993-1995 Instructor, Columbia UNiversity Summer Program for High School StudeNts 1993 Summer Research Student, Nat’l Astronomy and Ionosphere Center, Arecibo, PR 1992 Summer Research StudeNt, Nat’l Radio AstroNomy Obs., Very Large Array 1991-1994 Research AssistaNt, Columbia Astrophysics Laboratory, Advisor: D.
    [Show full text]
  • Carl Sagan Center Activity Report April 2016 Dr
    Carl Sagan Center Activity Report April 2016 Dr. Nathalie A. Cabrol, Director 2 Peer-Reviewed Publications Andrén M., A. Skelton , E. Sturkell , C.-M. Mörth , H. R. Guðrúnardóttir , N. Keller , N. Odling, B. Dahrén , C. Broman , T. Balic-Zunic , H. Hjartarson , H. Siegmund , F. Freund , I. Kockum: Coupling between mineral reactions and chemical changes in groundwater before and after earthquakes in Iceland, Journal of Geophysical Research, accepted. Bishop J. L. & Rampe E. B. (2016) Evidence for a changing Martian climate through Al/Si clay unit at Mawrth Vallis. Earth and Planetary Science Letters, in press. De Rosa, R. J., J. Rameau, J. Patience, J. R. Graham, R. Doyon, D. Lafrenière, B. Macintosh, L. Pueyo, A. Rajan, J. J. Wang, K. Ward-Duong, L.-W. Hung, J. Maire, E. L. Nielsen, S. M. Ammons, J. Bulger, A. Cardwell, J. K. Chilcote, R. L. Galvez, B. L. Gerard, S. Goodsell, M. Hartung, P. Hibon, P. Ingraham, M. Johnson-Groh, P. Kalas, Q. M. Konopacky, F. Marchis, C. Marois, S. Metchev, K. M. Morzinski, R. Oppenheimer, M. D. Perrin, F. T. Rantakyrö, D. Savransky, S. Thomas, " Spectroscopic Characterization of HD 95086 b with the Gemini Planet Imager, ApJ101604R2” accepted, ApJL, Accepted for publication in ApJL, http://adsabs.harvard.edu/abs/2016arXiv160401411D El Moutamid, M., Nicholson, P. D., French, R. G., Tiscareno, M. S., Murray, C. D., Evans, M. W., McGhee French, C., Hedman, M. M., and Burns, J. A. “How Janus’ orbital swap affects the edge of Saturn’s A ring. “, Icarus in press. Jensen-Clem, R., M. Millar-Blanchaer, D. Mawet, J.
    [Show full text]
  • Michael P. Fitzgerald
    Michael P. Fitzgerald Contact Department of Physics and Astronomy Voice: (310) 206-7853 Information Physics and Astronomy Building, P.O. Box 951547 Fax: (310) 206-7254 University of California, Los Angeles E-mail: mpfi[email protected] Los Angeles, CA 90095-1547 USA Research Formation and evolution of circumstellar material, particularly extrasolar planets. Indirect and Interests direct techniques for detection and characterization of planetary systems. High-contrast imaging of circumstellar debris. Design and construction of astronomical instruments. Education University of California, Berkeley Ph.D., Astrophysics, 2007 M.A., Astrophysics, 2002 California Institute of Technology B.S., Engineering and Applied Science, 2000 Technical Co-Principal Investigator, Keck HISPEC instrument 2019 { present Projects Co-Principal Investigator, TMT MODHIS instrument 2018 { present Co-Investigator, Keck LIGER instrument 2017 { present Co-Lead Organizer, TMT Planetary Systems Imager instrument 2016 { present Co-Principal Investigator, NIRSPEC Upgrade project 2015 { 2020 Principal Investigator, OSIRIS Imager Upgrade project 2013 { 2020 Lead Co-Investigator, Precision Near-Infrared Radial Velocities with 2013 { 2015 NIRSPEC (concept study) Co-Investigator, Keck Adaptive Optics Optimization Project 2011 { present Lead Co-Investigator, Gemini Planet Imager Exoplanet Survey 2011 { present Selected Roles Director, UCLA Infrared Laboratory 2020 { present and Activities Associate Director, University of California Observatories 2020 { present Co-Chair, Keck Observatory
    [Show full text]
  • CURRICULUM VITAE Mark S. Marley NASA/Ames Research Center Mail Stop 245-3 Moffett Field, California 94035 Education Ph.D. In
    CURRICULUM VITAE Mark S. Marley NASA/Ames Research Center Mail Stop 245-3 Moffett Field, California 94035 Education Ph.D. in Planetary Sciences (1990) Minor in Optical Sciences The University of Arizona, Tucson Thesis title: Nonradial Oscillations of Saturn: Implications for Ring System Structure Advisor: Dr. William B. Hubbard B.S. in Geophysics and Planetary Science (1984) California Institute of Technology Current Positions Research Scientist, NASA Ames Research Center (August 2000 - present) Consulting Professor, Stanford University (2004 - present, teaching 1 course/calendar yr) Previous Positions (May 1999 – August 2000) Assoc. Prof. of Astronomy, New Mexico State Univ. (Jan. 1993 – April 1999) Assistant Professor of Astronomy, New Mexico State University (February 1990 – Dec. 1992) National Research Council, Resident Research Associate Awards: NASA Medal for Exceptional Scientific Achievement (2007, 2016), NASA H. Julian Allen Award for Outstanding Scientific Paper (2011), NASA Ames Associate Fellow (2016) Research Interests: planetary atmospheres, jovian planets, extrasolar planets, and brown dwarfs NASA Mission Service of Note: LUVOIR STDT, WFIRST SIT, Exo-C STDT, TPF-C STDT National Academies Decadal Survey Participation: (1) Decadal Survey on Astronomy & Astrophysics 2020: Exoplanets, Astrobiology, and Solar System Panel, V. Meadows, Chair. (2) Planetary Science Decadal Survey 2013-2022: Giant Planets Panel, H. Hammel, Chair. Publications Complete, searchable publication list available at http://goo.gl/7MLV12 (232 refereed articles have received 16,100 citations, h-index=65 (per NASA ADS)) Smith, A. and 6 co-authors including M. Marley (2020) Detecting and Characterizing Water Vapor in the Atmospheres of Earth Analogs through Observation of the 0.94 µm Feature in Reflected Light.
    [Show full text]