5/28/2020 Section 3423. Oriental Fruit Fly Interior Quarantine A. Pest. A
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Leprosy and Other Skin Disorders
Copyright by Robert Joseph Gallagher 2014 The report committee for Robert Joseph Gallagher Certifies that this is the approved version of the following report: An Annotated Translation of Chapter 7 of the Carakasaṃhitā Cikitsāsthāna: Leprosy and Other Skin Disorders APPROVED BY SUPERVISING COMMITTEE: Supervisor: __________________________________ Donald R. Davis _________________________________ Joel Brereton An Annotated Translation of Chapter 7 of the Carakasaṃhitā Cikitsāsthāna: Leprosy and Other Skin Disorders by Robert Joseph Gallagher, B.A., M.A. Report Presented to the Faculty of the Graduate School of The University of Texas at Austin in Partial Fulfillment for the degree of Master of Arts University of Texas at Austin May 2014 Dedication To my wife Virginia and our two daughters Michelle and Amy, who showed patience and understanding during my long hours of absence from their lives, while I worked on mastering the intricacies of the complex but very rewarding language of Sanskrit. In addition, extra kudos are in order for thirteen year-old Michelle for her technical support in preparing this report. Acknowledgements I wish to thank all the members of the South Asia team at UT Austin, including Prof. Joel Brereton, Merry Burlingham, Prof. Don Davis, Prof. Oliver Freiberger, Prof. Edeltraud Harzer, Prof. Patrick Olivelle, Mary Rader, Prof. Martha Selby and Jennifer Tipton. Each one has helped me along this path to completion of the M.A. degree. At the time of my last serious academic research, I used a typewriter to put my thoughts on paper. The transition from white-out to pdf has been challenging for me at times, and I appreciate all the help given to me by the members of the South Asia team. -
74 Oil Seeds and Oleaginous Fruits, Miscellaneous Grains, Seeds and Fruit
SECTION II 74 CHAPTER 12 CHAPTER 12 Oil seeds and oleaginous fruits, miscellaneous grains, seeds and fruit; industrial or medicinal plants; straw and fodder NOTES 1. Heading 1207 applies, inter alia, to palm nuts and kernels, cotton seeds, castor oil seeds, sesamum seeds, mustard seeds, safflower seeds, poppy seeds and shea nuts (karite nuts). It does not apply to products of heading 0801 or 0802 or to olives (Chapter 7 or Chapter 20). 2. Heading 1208 applies not only to non-defatted flours and meals but also to flours and meals which have been partially defatted or defatted and wholly or partially refatted with their original oils. It does not, however, apply to residues of headings 2304 to 2306. 3. For the purposes of heading 1209, beet seeds, grass and other herbage seeds, seeds of ornamental flowers, vegetable seeds, seeds of forest trees, seeds of fruit trees, seeds of vetches (other than those of the species Vicia faba) or of lupines are to be regarded as “seeds of a kind used for sowing”. Heading 1209 does not, however, apply to the following even if for sowing : (a) leguminous vegetables or sweet corn (Chapter 7); (b) spices or other products of Chapter 9; (c) cereals (Chapter 10); or (d) products of headings 1201 to 1207 or heading 1211. 4. Heading 1211 applies, inter alia, to the following plants or parts thereof: basil, borage, ginseng, hyssop, liquorice, all species of mint, rosemary, rue, sage and wormwood. Heading 1211 does not, however, apply to : (a) medicaments of Chapter 30; (b) perfumery, cosmetic or toilet preparations of Chapter 33; or (c) insecticides, fungicides, herbicides, disinfectants or similar products of heading 3808. -
Abacca Mosaic Virus
Annex Decree of Ministry of Agriculture Number : 51/Permentan/KR.010/9/2015 date : 23 September 2015 Plant Quarantine Pest List A. Plant Quarantine Pest List (KATEGORY A1) I. SERANGGA (INSECTS) NAMA ILMIAH/ SINONIM/ KLASIFIKASI/ NAMA MEDIA DAERAH SEBAR/ UMUM/ GOLONGA INANG/ No PEMBAWA/ GEOGRAPHICAL SCIENTIFIC NAME/ N/ GROUP HOST PATHWAY DISTRIBUTION SYNONIM/ TAXON/ COMMON NAME 1. Acraea acerata Hew.; II Convolvulus arvensis, Ipomoea leaf, stem Africa: Angola, Benin, Lepidoptera: Nymphalidae; aquatica, Ipomoea triloba, Botswana, Burundi, sweet potato butterfly Merremiae bracteata, Cameroon, Congo, DR Congo, Merremia pacifica,Merremia Ethiopia, Ghana, Guinea, peltata, Merremia umbellata, Kenya, Ivory Coast, Liberia, Ipomoea batatas (ubi jalar, Mozambique, Namibia, Nigeria, sweet potato) Rwanda, Sierra Leone, Sudan, Tanzania, Togo. Uganda, Zambia 2. Ac rocinus longimanus II Artocarpus, Artocarpus stem, America: Barbados, Honduras, Linnaeus; Coleoptera: integra, Moraceae, branches, Guyana, Trinidad,Costa Rica, Cerambycidae; Herlequin Broussonetia kazinoki, Ficus litter Mexico, Brazil beetle, jack-tree borer elastica 3. Aetherastis circulata II Hevea brasiliensis (karet, stem, leaf, Asia: India Meyrick; Lepidoptera: rubber tree) seedling Yponomeutidae; bark feeding caterpillar 1 4. Agrilus mali Matsumura; II Malus domestica (apel, apple) buds, stem, Asia: China, Korea DPR (North Coleoptera: Buprestidae; seedling, Korea), Republic of Korea apple borer, apple rhizome (South Korea) buprestid Europe: Russia 5. Agrilus planipennis II Fraxinus americana, -
Pouteria Sapota
Pouteria sapota Pouteria sapota, mamey sapote, is a species of tree na- propagated by grafting, which ensures the new plant has tive to Central America, naturally ranging from southern the same characteristics as the parent, especially its fruit. Mexico to southern Costa Rica. Today, the tree is cul- It is also considerably faster than growing trees by seed. tivated not only in Mexico, but also in Central America, The leaves are pointed at both ends, 4 to 12 inches in the Caribbean, and South Florida for its fruit, which is length and grow in clusters at the ends of branches. commonly eaten in many Latin American countries. It has different names depending on the country: mamey The fruit is about 10 to 25 cm (4 to 10 inches) long and (Cuba), zapote colorado (Costa Rica), níspero and zapote 8 to 12 cm (3 to 5 inches) wide and has flesh ranging in rojo (South America), among others. color from pink to orange to red. The brown skin has a texture somewhat between sandpaper and the fuzz on a peach. The fruit’s texture is creamy and soft. A mamey 1 Description sapote is ripe when the flesh is pink when a fleck of the skin is removed. The flesh should give slightly, as with a ripe kiwifruit. The mamey sapote is related to other sapotes such as sapodilla (Manilkara zapota), abiu (P. caimito) and canistel (P. campechiana), but unrelated to the black sapote (Diospyros digyna) and white sapote (Casimiroa edulis).[2] It should not be confused with the mammee ap- ple (Mammea americana). -
Carmona Retusa Carmona Boraginaceae
Carmona retusa Carmona Boraginaceae Forest Starr, Kim Starr, and Lloyd Loope United States Geological Survey--Biological Resources Division Haleakala Field Station, Maui, Hawai'i January, 2003 OVERVIEW Carmona retusa is a popular ornamental plant cultivated in Hawai'i as a hedge or specimen plant. On Maui, C. retusa is observed in residential plantings, mostly in low elevation neighborhoods, such as Kahului, Wailuku, Lahaina, Paia, Haiku, and Kihei. Seedlings and naturalized plants are also commonly observed in landscaping areas and wild semi-wild areas nearby plantings. In one area in Waiehu, C. retusa forms a dense shrubby understory in a kiawe (Prosopis pallida) forest. This plant is fairly widespread on Maui and is probably beyond the eradication stage. Future efforts should be aimed at monitoring, preventing infestations in natural areas, and educating the public about harmful plants that spread beyond the confines of the garden. TAXONOMY Family: Boraginaceae (Heliotrope family) (Lorence et al. 1995, Wagner et al. 1999). Latin name: Carmona retusa (Vahl) Masamune (Lorence et al. 1995, Wagner et al. 1999). Synonyms: C. microphylla (Lam.) Don; Ehretia microphylla Lam.; Ehretia buxifolia Roxb.; Cordia retusa Vahl (Lorence et al. 1995; Bailey and Bailey 1976; GRIN 2001). Common names: Carmona, Philippine tea (Bailey and Bailey 1976), Fukien tea (Caine and Zane 2001). Taxonomic notes: The genus Carmona, also commonly known as Ehretia, is comprised of about 50 species of evergreen or deciduous shrubs and trees of tropical and subtropical regions of both the New and Old World (Bailey and Bailey 1976). Related species in Hawai'i: Neal (1965) lists Ehretia acuminata R. -
Brief Review on the Genus Diospyros: a Rich Source of Naphthoquinones
Asian J. Adv. Basic Sci.: 2017, 5(2), 34-53 ISSN (Print): 2454 – 7492 ISSN (Online): 2347 – 4114 www.ajabs.org Brief Review on the Genus Diospyros: A Rich Source of Naphthoquinones Venu Sharma School of Biotechnology, University of Jammu, Jammu & Kashmir, INDIA * Correspondance: E-mail: [email protected] (Received 01 Sept, 2017; Accepted 14 Sept, 2017; Published 21 Sept, 2017) ABSTRACT: Diospyros genus (Ebenaceae) comprises about 500 species. A number of them are used for their multiple pharmacological activities. Ethano-phramacologically various plant parts are formulated and prescribed in the form of extracts and the decoctions for remedy of different diseases in many tribes. These activities are due to presence of bioactive secondary metabolites in the plant. Systematic and detailed investigation on the composition and pharmacological significance of medicinal plants should be conducted to standardize the formulations, based on ingredients. In the present review, naphthoquinone, naphthalene and naphthol derivatives isolated from Diospyros species are documented here with the pharmacologically important species of the genus. Keywords: Diospyros genus; species; Ebenaceae; pharmacological activities; naphthoquinones. INTRODUCTION: Diospyros genus belongs to the retic, laxative and stypic. Its dried flowers are reported to family Ebenaceae. The plants of Ebenaceae are wide be used in urinary, skin and blood diseases. A dilute ex- spread in tropics and sub tropics, occasionally into tem- tract is used as an astringent lotion for eyes5. Heartwood perate areas. According to Hegnaeur1 the family consists of D.mollis has been found to be active against hook- of seven genera, namely Diospyros, Euclea, Maba, worms but less active against tapeworms14. Oncothea, Rhaphidanthe, Royena and Tetraclis. -
An 1893 Supreme Court Tax Ruling Made Tomatoes Vegetables – They’Re Fruits
An 1893 Supreme Court Tax Ruling Made Tomatoes Vegetables – They’re Fruits National Eat Your Vegetables Day is observed annually on June 17. June is National Fresh Fruit and Vegetables Month, and National Eat Your Vegetables Day is one more opportunity to remind everyone to continue with this part of a healthy diet. Click Here For Additional Stories And Videos On South Florida Reporter As part of a main meal or as a snack, vegetables can be enjoyed in a variety of ways. Each vegetable has its own nutritional content though generally, they contain a little protein or fat and varying proportions of vitamins such as Vitamin A, Vitamin K and Vitamin B6, provitamins, dietary minerals and carbohydrates. They also contain a variety of other phytochemicals, some of which have antioxidant, antibacterial, antifungal, antiviral and anticarcinogenic properties. Many vegetables also contain fiber which is important for gastrointestinal function. Another benefit is the essential nutrients that vegetables contain that are necessary for healthy hair and skin. When eating a diet consisting of the recommended amounts of fruits and vegetables, it may help lower the risk of heart diseases and type 2 diabetes. These diets may also help to decrease bone loss and protect against some cancers. The potassium provided may help prevent the formation of kidney stones. It is recommended by the USDA Dietary Guidelines for Americans, to consume 3 to 5 servings of vegetables per day. This recommendation may vary, however, depending on age and gender. For most vegetables, one serving is equivalent of 1/2 to 1 cup and can be eaten either raw or cooked. -
The Natural History of Reproduction in Solanum and Lycianthes (Solanaceae) in a Subtropical Moist Forest
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Faculty Publications in the Biological Sciences Papers in the Biological Sciences 11-28-2002 The Natural History of Reproduction in Solanum and Lycianthes (Solanaceae) in a Subtropical Moist Forest Stacey DeWitt Smith University of Nebraska - Lincoln, [email protected] Sandra Knapp Natural History Museum, London Follow this and additional works at: https://digitalcommons.unl.edu/bioscifacpub Part of the Life Sciences Commons Smith, Stacey DeWitt and Knapp, Sandra, "The Natural History of Reproduction in Solanum and Lycianthes (Solanaceae) in a Subtropical Moist Forest" (2002). Faculty Publications in the Biological Sciences. 104. https://digitalcommons.unl.edu/bioscifacpub/104 This Article is brought to you for free and open access by the Papers in the Biological Sciences at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Faculty Publications in the Biological Sciences by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Bull. nat. Hist. Mus. Lond. (Bot.) 32(2): 125–136 Issued 28 November 2002 The natural history of reproduction in Solanum and Lycianthes (Solanaceae) in a subtropical moist forest STACEY D. SMITH Department of Botany, 132 Birge Hall, 430 Lincoln Drive, University of Wisconsin, Madison WI 53706-1381, U.S.A. SANDRA KNAPP Department of Botany, The Natural History Museum, Cromwell Road, London SW7 5BD CONTENTS Introduction ............................................................................................................................................................................ -
MSRP Appendix E
Appendix E. Exotic Plant Species Reported from the South Florida Ecosystem. Community types are indicated where known Species High Pine Scrub Scrubby high pine Beach dune/ Coastal strand Maritime hammock Mesic temperate hammock Tropical hardwood Pine rocklands Scrubby flatwoods Mesic pine flatwoods Hydric pine flatwoods Dry prairie Cutthroat grass Wet prairie Freshwater marsh Seepage swamp Flowing water swamp Pond swamp Mangrove Salt marsh Abelmoschus esculentus Abrus precatorius X X X X X X X X X X X X Abutilon hirtum Abutilon theophrasti Acacia auriculiformis X X X X X X X X X Acacia retinoides Acacia sphaerocephala Acalypha alopecuroidea Acalypha amentacea ssp. wilkesiana Acanthospermum australe Acanthospermum hispidum Achyranthes aspera var. X aspera Achyranthes aspera var. pubescens Acmella pilosa Page E-1 Species High Pine Scrub Scrubby high pine Beach dune/ Coastal strand Maritime hammock Mesic temperate hammock Tropical hardwood Pine rocklands Scrubby flatwoods Mesic pine flatwoods Hydric pine flatwoods Dry prairie Cutthroat grass Wet prairie Freshwater marsh Seepage swamp Flowing water swamp Pond swamp Mangrove Salt marsh Acrocomia aculeata X Adenanthera pavonina X X Adiantum anceps X Adiantum caudatum Adiantum trapeziforme X Agave americana Agave angustifolia cv. X marginata Agave desmettiana Agave sisalana X X X X X X Agdestis clematidea X Ageratum conyzoides Ageratum houstonianum Aglaonema commutatum var. maculatum Ailanthus altissima Albizia julibrissin Albizia lebbeck X X X X X X X Albizia lebbeckoides Albizia procera Page -
Collection and Evaluation of Under-Utilized Tropical and Subtropical Fruit Tree Genetic Resources in Malaysia
J]RCAS International Symposium Series No. 3: 27-38 Session 1-3 27 Collection and Evaluation of Under-Utilized Tropical and Subtropical Fruit Tree Genetic Resources in Malaysia WONG, Kai Choo' Abstract Fruit tree genetic resources in Malaysia consist of cultivated and wild species. The cul tivated fruit trees number more than 100 species of both indigenous and introduced species. Among these fruits, some are popular and are widely cultivated throughout the country while others are less known and grown in small localized areas. The latter are the under-utilized fruit species. Apart from these cultivated fruits, there is also in the Malaysian natural forest a diversity of wild fruit tree species which produce edible fruits but are relatively unknown and unutilized. Many of the under-utilized and unutilized fruit species are known to show economic potential. Collection and evaluation of some of these fruit tree genetic resources have been carried out. These materials are assessed for their potential as new fruit trees, as sources of rootstocks for grafting and also as sources of germplasm for breeding to improve the present cultivated fruit species. Some of these potential fruit tree species within the gen era Artocarpus, Baccaurea, Canarium, Dimocarpus, Dialium, Durio, Garcinia, Litsea, Mangif era, Nephelium, Sa/acca, and Syzygium are highlighted. Introduction Malaysian fruit tree genetic resources comprise both cultivated and wild species. There are more than 100 cultivated fruit species of both major and minor fruit crops. Each category includes indigenous as well as introduced species. The major cultivated fruit crops are well known and are commonly grown throughout the country. -
Characteristic Volatile Fingerprints and Odor Activity Values in Different
molecules Article Characteristic Volatile Fingerprints and Odor Activity Values in Different Citrus-Tea by HS-GC-IMS and HS-SPME-GC-MS Heting Qi 1,2,3 , Shenghua Ding 1,2,3, Zhaoping Pan 1,2,3, Xiang Li 1,2,3 and Fuhua Fu 1,2,3,* 1 Longping Branch Graduate School, Hunan University, Changsha 410125, China; [email protected] (H.Q.); [email protected] (S.D.); [email protected] (Z.P.); [email protected] (X.L.) 2 Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China 3 Hunan Province International Joint Lab on Fruits & Vegetables Processing, Quality and Safety, Changsha 410125, China * Correspondence: [email protected]; Tel.: +86-0731-82873369 Received: 24 November 2020; Accepted: 16 December 2020; Published: 19 December 2020 Abstract: Citrus tea is an emerging tea drink produced from tea and the pericarp of citrus, which consumers have increasingly favored due to its potential health effects and unique flavor. This study aimed to simultaneously combine the characteristic volatile fingerprints with the odor activity values (OAVs) of different citrus teas for the first time by headspace gas chromatography-ion mobility spectrometry (HS-GC-IMS) and headspace solid-phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC-MS). Results showed that the establishment of a citrus tea flavor fingerprint based on HS-GC-IMS data can provide an effective means for the rapid identification and traceability of different citrus varieties. Moreover, 68 volatile compounds (OAV > 1) were identified by HS-SPME-GC-MS, which reflected the contribution of aroma compounds to the characteristic flavor of samples. -
Organic Acids in the Juice of Acid Lemon and Japanese Acid Citrus by Gas Chromatography
九州大学学術情報リポジトリ Kyushu University Institutional Repository Organic Acids in the Juice of Acid Lemon and Japanese Acid Citrus by Gas Chromatography Widodo, Soesiladi E. Fruit Science Laboratory, Faculty of Agriculture, Kyushu University Shiraishi, Mikio Fruit Science Laboratory, Faculty of Agriculture, Kyushu University Shiraishi, Shinichi Fruit Science Laboratory, Faculty of Agriculture, Kyushu University https://doi.org/10.5109/24091 出版情報:九州大学大学院農学研究院紀要. 40 (1/2), pp.39-44, 1995-12. 九州大学農学部 バージョン: 権利関係: ,J. Fat. Agr., Kyushu IJniv., 40 (l-a), 39-44 (1995) Organic Acids in the Juice of Acid Lemon and Japanese Acid Citrus by Gas Chromatography Soesiladi E. Widodo, Mikio Shiraishi and Shinichi Shiraishi Fruit. Science Laboratory, Faculty of Agriculture, Kyushu University, Fukuoka 81 l-23, Japan (RWC~i/‘~?C~ C/1/?1P 15, 199<5) Acetate, glycolate, butyratc, oxalate, malonate, succinate, furnaratp, glyoxylate, malate, tattarate, cis-aconitatc and citrate were detected in the juice of Hanayu (Ci7tnt.s /ttrr/c~jrr Hart. ex Shirai), Daidai (C:. tr/i,rnt/tGt /II Linn. var. Cynthifera Y. Tanaka), Kabosu (6’. .sp/~rc:r~oc~r ~IXI Hart,. cx Tanaka), ‘Lisbon lemon (C.limon Burm. f. Lisbon) and Yuzu (C:.,jrr/ros Sieb. ex Tanaka) with compositions and contcnt,s varied according t,o sampling years and species. Citrate and rnalat,e were predominant, accounting for more than 90% and 3-9% of the total detected acids, respect.ively. The other acids presented in tracts, accounting t.ol.ally for roughly less than 0.5%. INTRODUCTION A number of chromatographic methods have been employed for determining organic acids (OAs) in citrus extracts.