Insects of Western North America 1

Total Page:16

File Type:pdf, Size:1020Kb

Insects of Western North America 1 INSECTS OF WESTERN NORTH AMERICA 1. A Survey of the Cerambycidae (Coleoptera), or Longhomed Beetles of Colorado Contributions of the C.P. Gillette Museum of Arthropod Diversity Department ofBioagricultural Sciences and Pest Management Colorado State University ISBN 1084-8819 Cover illustration. Moneilema armatum Leconte, illustration by Matt Leatherman. Copies of this publication may be ordered for $10. 00 from Gillette Museum ·of Arthropod Diversity, Department ofBioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, Colorado 80523. Make check to Gillette Museum Publications. See inside back cover for other available publications. INSECTS OF WESTERN NORTH AMERICA 1. A Survey of the Cerambycidae (Coleoptera), or Longhomed Beetles, of Colorado by Daniel J. Heffern 10531 Goldfield Lane Houston, Texas 77064 1998 Figures 1-5. 1. Leptura propinqua Bland, Larimer Co., P.A. Opler; 2. Plectrodera scalator (Fabricius), Prowers Co., P.A. Opler; 3. Megacyllene robiniae (Forster), larvae, Larimer Co., S. Krieg; 4. Tetraopesfemoratus (LeConte), Larimer Co., P.A. Opler; 5. Monochamus c. clamator (LeConte), Larimer Co., D. Leatherman. i A Sunrey of the Cerambycidae (Coleoptera), or Longhorned Beetles of Colorado Daniel J. Heffern 10531 Goldfield Lane Houston, TX 77064 Abstract The purpose of this publication is to provide an account of the longhomed beetles of Colorado, to present new distributional records and to bring pertinent literature records together. One hundred ninety-three species and subspecies in 88 genera are listed, including thirty-eight new state records. The overall species distributions and host plants are included to provide an understanding of the zoogeography and possible origins of the species in the state. All available county records are included from the major institutional collections in Colorado, literature records, and numerous private collections. Previous literature citations for species not occurring or unlikely to occur in Colorado are discussed. Hyperplatys montana Casey is considered a valid species and removed from synonymy with H. aspersa (Say). Neoc/ytus ascendens LeConte is considered a synonym of N. leucozonus leucozonus (Castelnau & Gory). Introduction Bowditch, T. D. A. Cockerell and others. All species of Cerambycidae known from Colorado, With an area of 26,998,930 ha (103,922 sq. including thirty-eight species or subspecies not mi.), Colorado is the eighth largest state and previously recorded, are presented here. includes three-quarters of the nation's land above 3,048 rn (10,000 ft). Colorado can be divided into Methods and Materials three distinct natural or physiographic regions (Chronic and Chronic, 1972): the western This paper is the result of the examination of extension of the Great Plains that encompasses Cerambycidae in institutional collections in approximately the eastern 40 percent of Colorado; Colorado, numerous private collections and the Mountain Region that rises abruptly from the extraction of records from literature. The author Plains, and the Plateau Region that gradually examined and identified all of the species that tapers from the mountains to the Utah border. were not previously recorded from Colorado. From the Kansas and Nebraska borders at an Colorado specimens of approximately 80% of the elevation of approximately 1,066 m (3,500 ft), the species recorded from the state in this paper were Plains Region slopes gently upward to the Rocky examined by the author. Most of these specimens Mountains. This area was once comprised are from the two major entomological museums in primarily of shortgrass prairie, but has more Colorado: the C. P. Museum of Arthropod recently been converted to other uses by humans. Diversity, Colorado State University [CSUC], Fort The northern Plains Region is used for heavy Collins and the University of Colorado Museum agricultural production, whereas the central to [UCMC], Boulder. Unless otherwise noted, all southern portion is used for rangeland. Most of records and label data are from specimens in these Colorado's largest cities and population occupy two museums. Collection codens are included for the western plains along the Front Range of the records which are not from either of these Rocky Mountains. Along the Front Range, the museums. The collection codens, or acronyms, grasslands blend with ponderosa pine and pinyon are based upon the system of Arnett et al. (1993), pine-juniper woodlands or shrublands at the base including the following not listed in that work: of the mountains. The Rocky Mountains west of the Continental Divide descend to broad DNMC: Dinosaur National Monument Collection, tablelands and mesas covered with big sagebrush Dinosaur, CO and other species. The Colorado River and its GSDC: Great Sand Dunes National Monument tributaries dissect the Plateau Region into Collection, Great Sand Dunes National numerous rocky canyons and arid valleys. The Monument, CO higher elevations are capped with pinyon pine- DIBC: Daniel J. Heffern Collection, Houston, TX juniper woodlands. JDBC: Josef D. Beierl Collection, North Hollywood, CA Colorado, with its three physiographic regions, LGBC: Larry G. Bezark Collection, Sacramento, includes typical midwestern or eastern species CA reaching their westernmost range extension in the MGKC: Michael G. Kippenhan Collection, east and species typical of the Great Basin or Portland, OR Southwest reaching their easternmost or RMGC: Robert M. Gemmill Collection, northernmost range extensions, respectively. Englewood, CO Numerous boreal species attain their southernmost SWLC: Steve W. Lingafelter Collection, range extensions in the Mountain Region of Derwood,~ Colorado, and sometimes farther south. Additional records are from the Denver Other than the Cicindelidae (Kippenhan, 1990), Museum of Natural History [DNHC]; the the Coleoptera of Colorado have not received any Colorado National Monument Collection attention since Wickham (1902) published a list [CNMC], Fruita; the Mesa Verde National Park for the state. Wickham's list was based on earlier Collection [MVNP]; the Essig Museum of accounts and collections made by some of the first Entomology, [EMEC], Berkeley, CA; the Museum entomologists to visit Colorado, such as himself, of Comparative Zoology, [MCZC], Cambridge, F. H. Snow, C. P. Gillette, P. R Uhler, F. C. MA; the United States National Museum, 2 [USNM], Washington, D. C.; the Snow 1950), Deyrup (1977), Dillon (1956), Dillon and Entomological Museum, University of Kansas Dillon (1941), Downie and Arnett (1996), Fall [SEMC], Lawrence, KS; and the Department of and Cockerell (1907), Felt and Joutel (1904), Entomology Insect Collection, Texas A & M Furniss and Carolin (1977), Galileo (1987), University (TAMU], College Station, TX. D. A. Gardiner (1970), Garnett (1918), Giesbert and Leatherman [DAL] of Colorado State University Chemsak (1993), Gosling and Gosling (1974, also provided records based on his field 1977) Hatch (1971), Hicks (1962), Hoffman experience. (1988), G. R. Hopping (1932, 1937), R. Hopping (1937, 1940), Hopping and Hopping (1947), The subfamilies are listed according to Hovore (1979, 1983), Hovore and Giesbert (1976), Lawrence and Newton (1995). Genera and species Hovore and Turnbow ( 1984 ), Hovore et al. ( 1987), are listed according to the catalog of Monne and H. Kirk and Knull (1926), V. Kirk (1969, 1970), Giesbert (1995), except where noted. The tribe V. Kirk and Balsbaugh (1975), Knull (1946), Lepturini, needing a revision on a worldwide Kumar et al. (1976), Leng (1886, 1890), Leng and basis, is broken into two groups corresponding to Hamilton (1896), Leonard (1926), Lewis (1986), the latest treatments of the North American forms Lingafelter and Homer (1993), Linsley (1962a, (Linsley and Chemsak, 1972, 1976). For each 1962b, 1963, 1964), Linsley and Chemsak (1961, taxon, the following may be included: the type 1972, 1976, 1985, 1995, 1997), Linsley et al. locality if in Colorado, larval host records, a brief (1961), LOding (1945), MacKay et al. (1987), discussion of habits or taxonomic problems, MacRae (1993), Morse (1909), Nicolay (1917a, general distribution by state, province and· 1917b), Peck and Thomas (1998), Penrose and country, and county distribution within Colorado. Westcott (1974), Perry (1975, 1977), Psota In order to understand the distribution of (1930), Raske (1973a, 1973b), Rice (1981, 1985, cerambycid species within Colorado, it is 1988), Rice and Enns (1981), Rice et al. (1985), important to present the overall known Schiefer (1998), Skiles (1985), Staines (1987), distribution of that species. Few host plant records Stein and Tagestad (1976), Swaine and Hopping were found for Colorado specimens and most were (1928), Thomas and Werner (1981), Turnbow and from firewood or building lumber. Because of this Franklin (1980), Turnbow and Wappes (1978, void in knowledge of the hosts utilized in 1981), Tyson (1970, 1982), Ulke (1902), Waters Colorado, larval host plants cited in this work and Hyche (1984), Wickham (1902) and Wray represent records from all of North America. (1967). Comprehensive, modem checklists exist for very few states or regions and none which are adjacent For brevity, records from Wickham's to Colorado. The state and Canadian provincial publication are indicated by his initials in distributions presented here are based on literature parentheses: (HFW). Wickham's records are only records and specimens which the author has included when there are no other voucher examined. Records for the District of Columbia
Recommended publications
  • Wooden and Bamboo Commodities Intended for Indoor and Outdoor Use
    NAPPO Discussion Document DD 04: Wooden and Bamboo Commodities Intended for Indoor and Outdoor Use Prepared by members of the Pest Risk Analysis Panel of the North American Plant Protection Organization (NAPPO) December 2011 Contents Introduction ...........................................................................................................................3 Purpose ................................................................................................................................4 Scope ...................................................................................................................................4 1. Background ....................................................................................................................4 2. Description of the Commodity ........................................................................................6 3. Assessment of Pest Risks Associated with Wooden Articles Intended for Indoor and Outdoor Use ...................................................................................................................6 Probability of Entry of Pests into the NAPPO Region ...........................................................6 3.1 Probability of Pests Occurring in or on the Commodity at Origin ................................6 3.2 Survival during Transport .......................................................................................... 10 3.3 Probability of Pest Surviving Existing Pest Management Practices .......................... 10 3.4 Probability
    [Show full text]
  • The Genus Canidia Thomson, 1857 (Coleoptera: Cerambycidae, Lamiinae, Acanthocinini)
    Zootaxa 927: 1–27 (2005) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ ZOOTAXA 927 Copyright © 2005 Magnolia Press ISSN 1175-5334 (online edition) The genus Canidia Thomson, 1857 (Coleoptera: Cerambycidae, Lamiinae, Acanthocinini) JAMES E. WAPPES¹ & STEVEN W. LINGAFELTER² ¹ American Coleoptera Museum, 179 Fall Creek, Bulverde, TX 78163 U. S. A. [email protected] ² Systematic Entomology Lab, Plant Sciences Institute, Agriculture Research Service, USDA, National Museum of Natural History, Smithsonian Institution, MRC-168, Washington, DC 20013-7012 U. S. A. [email protected] Abstract The lamiine genus Canidia Thomson is redefined with Canidiopsis Dillon and Pseudocanidia Dil- lon as new synonyms. Three new species from Mexico are described and illustrated: Canidia chemsaki, C. giesberti, and C. turnbowi. The following new synonymies are proposed: Canidiop- sis similis Dillon, 1955 and Canidiopsis hebes Dillon, 1955 = Canidia mexicana Thomson, 1860; Pseudocanidia cuernavacae Dillon, 1955 = Dectes spinicornis Bates, 1881; and Dectes (Canidia) balteata var. inapicalis Tippmann, 1960 = Dectes balteatus Lacordaire, 1872. A key to the eight species and one subspecies is presented. Key words: Insecta, Coleoptera, Cerambycidae, Lamiinae, Acanthocinini, Canidia, Dectes, Can- idiopsis, Pseudocanidia, new species, key Resumen: Se redefine el género Canidia Thomson con Canidiopsis Dillon y Pseudocanidia Dillon como sinónimos nuevos. Describimos e ilustramos tres especies nuevas de México: Canidia chemsaki, C. giesberti y C. turnbowi. Se proponen los siguientes sinónimos nuevos: Canidiopsis similis Dillon, 1955 y Canidiopsis hebes Dillon 1955 = Canidia mexicana Thomson, 1860; Pseudocanidia cuernavacae Dillon, 1955 = Dectes spinicornis Bates, 1881; y Dectes (Canidia) balteata inapicalis Tippmann, 1960 = Dectes balteatus Lacordaire, 1872. Se incluye una clave para separar las ocho especies y una subespecie.
    [Show full text]
  • 4 Reproductive Biology of Cerambycids
    4 Reproductive Biology of Cerambycids Lawrence M. Hanks University of Illinois at Urbana-Champaign Urbana, Illinois Qiao Wang Massey University Palmerston North, New Zealand CONTENTS 4.1 Introduction .................................................................................................................................. 133 4.2 Phenology of Adults ..................................................................................................................... 134 4.3 Diet of Adults ............................................................................................................................... 138 4.4 Location of Host Plants and Mates .............................................................................................. 138 4.5 Recognition of Mates ................................................................................................................... 140 4.6 Copulation .................................................................................................................................... 141 4.7 Larval Host Plants, Oviposition Behavior, and Larval Development .......................................... 142 4.8 Mating Strategy ............................................................................................................................ 144 4.9 Conclusion .................................................................................................................................... 148 Acknowledgments .................................................................................................................................
    [Show full text]
  • The Beetle Fauna of Dominica, Lesser Antilles (Insecta: Coleoptera): Diversity and Distribution
    INSECTA MUNDI, Vol. 20, No. 3-4, September-December, 2006 165 The beetle fauna of Dominica, Lesser Antilles (Insecta: Coleoptera): Diversity and distribution Stewart B. Peck Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada stewart_peck@carleton. ca Abstract. The beetle fauna of the island of Dominica is summarized. It is presently known to contain 269 genera, and 361 species (in 42 families), of which 347 are named at a species level. Of these, 62 species are endemic to the island. The other naturally occurring species number 262, and another 23 species are of such wide distribution that they have probably been accidentally introduced and distributed, at least in part, by human activities. Undoubtedly, the actual numbers of species on Dominica are many times higher than now reported. This highlights the poor level of knowledge of the beetles of Dominica and the Lesser Antilles in general. Of the species known to occur elsewhere, the largest numbers are shared with neighboring Guadeloupe (201), and then with South America (126), Puerto Rico (113), Cuba (107), and Mexico-Central America (108). The Antillean island chain probably represents the main avenue of natural overwater dispersal via intermediate stepping-stone islands. The distributional patterns of the species shared with Dominica and elsewhere in the Caribbean suggest stages in a dynamic taxon cycle of species origin, range expansion, distribution contraction, and re-speciation. Introduction windward (eastern) side (with an average of 250 mm of rain annually). Rainfall is heavy and varies season- The islands of the West Indies are increasingly ally, with the dry season from mid-January to mid- recognized as a hotspot for species biodiversity June and the rainy season from mid-June to mid- (Myers et al.
    [Show full text]
  • Proceedings, 23Rd U.S. Department of Agriculture Interagency Research
    United States Department of Proceedings Agriculture 23rd U.S. Department of Agriculture Forest Service Northern Interagency Research Forum on Research Station Invasive Species 2012 General Technical Report NRS-P-114 The findings and conclusions of each article in this publication are those of the individual author(s) and do not necessarily represent the views of the U.S. Department of Agriculture or the Forest Service. All articles were received in digital format and were edited for uniform type and style. Each author is responsible for the accuracy and content of his or her paper. The use of trade, firm, or corporation names in this publication is for the information and convenience of the reader. Such use does not constitute an official endorsement or approval by the U.S. Department of Agriculture or the Forest Service of any product or service to the exclusion of others that may be suitable. This publication reports research involving pesticides. It does not contain recommendations for their use, nor does it imply that the uses discussed here have been registered. All uses of pesticides must be registered by appropriate State and/or Federal, agencies before they can be recommended. CAUTION: Pesticides can be injurious to humans, domestic animals, desirable plants, and fi sh or other wildlife—if they are not handled or applied properly. Use all pesticides selectively and carefully. Follow recommended practices for the disposal of surplus pesticides and pesticide containers. Cover graphic by Vincent D’Amico, U.S. Forest Service, Northern Research Station. Manuscript received for publication August 2012 Published by: For additional copies: U.S.
    [Show full text]
  • Arhopalus Asperatus – a Common Longhorned Beetle
    Colorado Insect of Interest Arhopalus asperatus – A Common Longhorned Beetle Scientific Name: Arhopalus asperatus (LeConte) Order: Coleoptera (Beetles) Family: Cerambycidae (Longhorned Beetles) Identification and Descriptive Features: Arhopalus asperatus is a elongate-bodied longhorned beetle that is uniformly dark gray or brown. They can be moderately large but show considerable size variation, ranging from 18-33 mm in length. The antennae are about 1/2- 3/4 the body length and are longer in males. Larvae, type of roundheaded borer, are marked by a pair of Figure 1. Arhopalus asperatus. sharp spines that curve inward found on the hind segment of the body. Distribution in Colorado: Arhopalus asperatus appears to be widely distributed throughout the forested areas of the state. Life History and Habits: Arhopalus asperatus, along with the various “pine sawyers” (Monochamous spp.), are the most common longhorned beetles associated with recently dead or felled conifers. Most conifers, including most pines, firs, douglas-fir and spruce, are known hosts. Adult lay eggs in deep bark crevices. Larvae originally feed in the cambium, later moving to sapwood and heartwood where they pack the tunnels with coarse sawdust frass. Stumps and large roots are often the most common site of larval development. Development is thought to take 2-3 years to complete. Adults are attracted to recently scorched wood following forest fires. They also will often be seen around campfires. Related Species: Other Arhopalus species are known from Colorado. Museum records for A. rusticus montanus LeConte include El Paso, Jefferson, Boulder, Mesa, and Moffat counties, suggesting widespread distribution within Colorado. It is a lighter colored species than is A.
    [Show full text]
  • Ethnoentomological and Distributional Notes on Cerambycidae and Other Coleoptera of Guerrero and Puebla,Mexico
    The Coleopterists Bulletin, 71(2): 301–314. 2017. ETHNOENTOMOLOGICAL AND DISTRIBUTIONAL NOTES ON CERAMBYCIDAE AND OTHER COLEOPTERA OF GUERRERO AND PUEBLA,MEXICO JONATHAN D. AMITH Research Affiliate, Department of Anthropology, Gettysburg College, Campus Box 2895, Gettysburg, PA 17325, U.S.A. and Research Associate, National Museum of Natural History, Smithsonian Institution, Washington, DC 20013-7012, U.S.A. AND STEVEN W. LINGAFELTER Systematic Entomology Laboratory, Agriculture Research Service, United States Department of Agriculture, National Museum of Natural History, Smithsonian Institution,Washington, DC 20013-7012, U.S.A. Current address: 8920 South Bryerly Ct., Hereford, AZ 85615, U.S.A. ABSTRACT This article presents both ethnoentomological notes on Nahuatl and Mixtec language terms as they are applied to Cerambycidae (Coleoptera) and distributional records for species collected during three projects carried out in the states of Guerrero and Puebla, Mexico. Some comparative data from other Mesoamerican and Native American languages are discussed. Indigenous common names are mapped onto current taxonomic nomenclature, and an analysis is offered of the logical basis for Indigenous classification: the exclusion of some cerambycids and the inclusion of other beetles in the nominal native “cerambycid” category. New state distributional records for the Cerambycidae collected in this study are offered for Guerrero: Bebelis picta Pascoe, Callipogon senex Dupont, Neocompsa macrotricha Martins, Olenosus ser- rimanus Bates, Ornithia mexicana zapotensis Tippmann, Stenygra histrio Audinet-Serville, Strongylaspis championi Bates, Lissonotus flavocinctus puncticollis Bates, and Nothopleurus lobigenis Bates; and Puebla: Juiaparus mexicanus (Thomson), Ptychodes guttulatus Dillon and Dillon, and Steirastoma senex White. Key Words: linguistics, etymology, Nahuatl, Mixtec, longhorned beetle, wood-borer DOI.org/10.1649/0010-065X-71.2.301 The present article emerges from two language shapes.
    [Show full text]
  • Layman's Report
    THE RED LIST STATUS OF EUROPE’S OVERLOOKED SPECIES LIFE14 PRE BE 001 – Layman’s report This project was co-funded by the European Union under the LIFE Financial Instrument and the Grant Agreement n. LIFE14 PRE BE 001 About IUCN Created in 1948, IUCN represents one of the world’s largest and most diverse environmental networks. It harnesses the experience, resources and reach of more than 1,300 member organisations and the input of over 15,000 volunteer experts, organised in six commissions. IUCN is the global authority on the status of the natural world and the measures needed to safeguard it. The IUCN Global Species Programme supports the activities of the IUCN Species Survival Commission and individual Specialist Groups, as well as implementing global species conservation initiatives. It is an integral part of the IUCN Secretariat and is managed from IUCN’s international headquarters in Gland, Switzerland. What is the IUCN Red List? The European Red List The IUCN Red List of Threatened SpeciesTM is the When conducting regional or national assessments, world’s most comprehensive information source on and to ensure that the criteria are applied the extinction risk of plant and animal species. It is a appropriately at such scales, the IUCN has compilation of the conservation status of species at developed the Guidelines for Application of IUCN Red the global level, based on the best scientific List Criteria at Regional Levels.1 information available. The IUCN Red List Categories and Criteria are based on a set of quantitative criteria linked to population trends, size and structure, threats, and geographic ranges of species.
    [Show full text]
  • Boring Beetles (Coleoptera: Scolytidae, Buprestidae, Cerambycidae) in White Spruce (Picea Glauca (Moench) Voss) Ecosystems of Alaska
    United States Department of Agriculture Effect of Ecosystem Disturbance Forest Service on Diversity of Bark and Wood- Pacific Northwest Research Station Boring Beetles (Coleoptera: Research Paper PNW-RP-546 April 2002 Scolytidae, Buprestidae, Cerambycidae) in White Spruce (Picea glauca (Moench) Voss) Ecosystems of Alaska Richard A. Werner This publication reports research involving pesticides. It does not contain recommenda- tions for their use, nor does it imply that the uses discussed here have been registered. All uses of pesticides must be registered by appropriate state and federal agencies, or both, before they can be recommended. CAUTION: Pesticides can be injurious to humans, domestic animals, desirable plants, and fish or other wildlife—if they are not handled or applied properly. Use all pesticides selectively and carefully. Follow recommended practices for the disposal of surplus pesticides and pesticide containers. Author Richard A. Werner was a research entomologist (retired), Pacific Northwest Research Station, 8080 NW Ridgewood Drive, Corvallis, OR 97330. He is currently a volunteer at the Pacific Northwest Research Station conducting research for the Long Term Ecological Research Program in Alaska. Abstract Werner, Richard A. 2002. Effect of ecosystem disturbance on diversity of bark and wood-boring beetles (Coleoptera: Scolytidae, Buprestidae, Cerambycidae) in white spruce (Picea glauca (Moench) Voss) ecosystems of Alaska. Res. Pap. PNW-RP-546. Portland, OR: U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station. 15 p. Fire and timber harvest are the two major disturbances that alter forest ecosystems in interior Alaska. Both types of disturbance provide habitats that attract wood borers and bark beetles the first year after the disturbance, but populations then decrease to levels below those in undisturbed sites.
    [Show full text]
  • Insects That Feed on Trees and Shrubs
    INSECTS THAT FEED ON COLORADO TREES AND SHRUBS1 Whitney Cranshaw David Leatherman Boris Kondratieff Bulletin 506A TABLE OF CONTENTS DEFOLIATORS .................................................... 8 Leaf Feeding Caterpillars .............................................. 8 Cecropia Moth ................................................ 8 Polyphemus Moth ............................................. 9 Nevada Buck Moth ............................................. 9 Pandora Moth ............................................... 10 Io Moth .................................................... 10 Fall Webworm ............................................... 11 Tiger Moth ................................................. 12 American Dagger Moth ......................................... 13 Redhumped Caterpillar ......................................... 13 Achemon Sphinx ............................................. 14 Table 1. Common sphinx moths of Colorado .......................... 14 Douglas-fir Tussock Moth ....................................... 15 1. Whitney Cranshaw, Colorado State University Cooperative Extension etnomologist and associate professor, entomology; David Leatherman, entomologist, Colorado State Forest Service; Boris Kondratieff, associate professor, entomology. 8/93. ©Colorado State University Cooperative Extension. 1994. For more information, contact your county Cooperative Extension office. Issued in furtherance of Cooperative Extension work, Acts of May 8 and June 30, 1914, in cooperation with the U.S. Department of Agriculture,
    [Show full text]
  • Catalogue of Afghanistan Longhorn Beetles (Coleoptera, Cerambycidae) with Two Descriptions of New Phytoecia (Parobereina Danilevsky, 2018) from Central Asia
    Humanity space International almanac VOL. 8, No 2, 2019: 104-140 http://zoobank.org/urn:lsid:zoobank.org:pub:30F6FA0A-2D7A-4ED2-9EAE-AB7707FFBE61 Catalogue of Afghanistan Longhorn beetles (Coleoptera, Cerambycidae) with two descriptions of new Phytoecia (Parobereina Danilevsky, 2018) from Central Asia M.A. Lazarev State Budget Professional Educational Institution of the Moscow Region “Chekhov technical college” Novaya str., 4, Novyi Byt village, Chekhov District, Moscow Region 142322 Russia e-mail: [email protected]; [email protected] Key words: Coleoptera, Cerambycidae, taxonomy, distribution, new species, Afghanistan, Pakistan. Abstract: The Catalogue includes all 78 Cerambycidae species of Afghanistan fauna known up to 2019 with the references to the original descriptions; 22 species were not mentioned for Afghanistan in Palaearctic Cerambycidae Catalogue by Löbl & Smetana (2010). Bibliography of each species usually includes the geographical information from corresponding publications. Many new taxonomy positions published after 2010 are used here without special remarks. Agapanthia (Epoptes) dahli ustinovi Danilevsky, 2013 stat. nov. is downgraded from the species level. Two species are described as new Phytoecia (Parobereina) pashtunica sp. n. from Afghanistan and Phytoecia (Parobereina) heinzi sp.n. from Pakistan. The present work is an attempt to summarize all data published up to now on Cerambycidae of Afghanistan fauna. Family CERAMBYCIDAE Latreille, 1802 subfamily Prioninae Latreille, 1802 tribe Macrotomini J. Thomson, 1861 genus Anomophysis Quentin & Villiers, 1981: 374 type species Prionus spinosus Fabricius, 1787 inscripta C.O. Waterhouse, 1884: 380 (Macrotoma) Heyrovský, 1936: 211 - Wama; Tippmann, 1958: 41 - Kabul, Ost- Afghanistan, 1740; Sarobi, am Kabulflus, 900 m; Mangul, Bashgultal, Nuristan, Ost-Afghanistan, 1250 m; Fuchs, 1961: 259 - Sarobi 1100 m, O.-Afghanistan; Fuchs, 1967: 432 - Afghanistan, 25 km N von Barikot, 1800 m, Nuristan; Nimla, 40 km SW von Dschelalabad; Heyrovský, 1967: 156 - Zentral-Afghanistan, Prov.
    [Show full text]
  • Molekulární Fylogeneze Podčeledí Spondylidinae a Lepturinae (Coleoptera: Cerambycidae) Pomocí Mitochondriální 16S Rdna
    Jihočeská univerzita v Českých Budějovicích Přírodovědecká fakulta Bakalářská práce Molekulární fylogeneze podčeledí Spondylidinae a Lepturinae (Coleoptera: Cerambycidae) pomocí mitochondriální 16S rDNA Miroslava Sýkorová Školitel: PaedDr. Martina Žurovcová, PhD Školitel specialista: RNDr. Petr Švácha, CSc. České Budějovice 2008 Bakalářská práce Sýkorová, M., 2008. Molekulární fylogeneze podčeledí Spondylidinae a Lepturinae (Coleoptera: Cerambycidae) pomocí mitochondriální 16S rDNA [Molecular phylogeny of subfamilies Spondylidinae and Lepturinae based on mitochondrial 16S rDNA, Bc. Thesis, in Czech]. Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic. 34 pp. Annotation This study uses cca. 510 bp of mitochondrial 16S rDNA gene for phylogeny of the beetle family Cerambycidae particularly the subfamilies Spondylidinae and Lepturinae using methods of Minimum Evolutin, Maximum Likelihood and Bayesian Analysis. Two included representatives of Dorcasominae cluster with species of the subfamilies Prioninae and Cerambycinae, confirming lack of relations to Lepturinae where still classified by some authors. The subfamily Spondylidinae, lacking reliable morfological apomorphies, is supported as monophyletic, with Spondylis as an ingroup. Our data is inconclusive as to whether Necydalinae should be better clasified as a separate subfamily or as a tribe within Lepturinae. Of the lepturine tribes, Lepturini (including the genera Desmocerus, Grammoptera and Strophiona) and Oxymirini are reasonably supported, whereas Xylosteini does not come out monophyletic in MrBayes. Rhagiini is not retrieved as monophyletic. Position of some isolated genera such as Rhamnusium, Sachalinobia, Caraphia, Centrodera, Teledapus, or Enoploderes, as well as interrelations of higher taxa within Lepturinae, remain uncertain. Tato práce byla financována z projektu studentské grantové agentury SGA 2007/009 a záměru Entomologického ústavu Z 50070508. Prohlašuji, že jsem tuto bakalářskou práci vypracovala samostatně, pouze s použitím uvedené literatury.
    [Show full text]