Plant Communications Review Article A Roadmap toward Engineered Nitrogen-Fixing Nodule Symbiosis Rik Huisman and Rene Geurts* Wageningen University, Department of Plant Sciences, Laboratory of Molecular Biology, Droevendaalsesteeg 1, Wageningen 6708PB, The Netherlands *Correspondence: Rene Geurts (
[email protected]) https://doi.org/10.1016/j.xplc.2019.100019 ABSTRACT In the late 19th century, it was discovered that legumes can establish a root nodule endosymbiosis with nitrogen-fixing rhizobia. Soon after, the question was raised whether it is possible to transfer this trait to non-leguminous crops. In the past century, an ever-increasing amount of knowledge pro- vided unique insights into the cellular, molecular, and genetic processes controlling this endosymbi- osis. In addition, recent phylogenomic studies uncovered several genes that evolved to function spe- cifically to control nodule formation and bacterial infection. However, despite this massive body of knowledge, the long-standing objective to engineer the nitrogen-fixing nodulation trait on non- leguminous crop plants has not been achieved yet. In this review, the unsolved questions and engineering strategies toward nitrogen-fixing nodulation in non-legume plants are discussed and highlighted. Key words: nodulation, legumes, actinorhizal plants, Parasponia, engineering nitrogen fixation Huisman R. and Geurts R. (2020). A Roadmap toward Engineered Nitrogen-Fixing Nodule Symbiosis. Plant Comm. 1, 100019. INTRODUCTION field is now moving from discovery-driven research toward hands-on engineering. Here, we will review the molecular Since ancient times, legumes (Fabaceae) have been known as genetics of the nodulation trait relevant for such engineering ‘‘nitrogen accumulators’’ important for soil fertility (Hirsch, approaches and explore step-by-step strategies that may 2009).