ARC Energy Trust Suite 4301, 400 – 3Rd Avenue S.W
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Chapter Upper Cretaceous Reservoirs
CHAPTER 9 UPPER CRETACEOUS RESERVOIRS P. Viney, Petrel Robertson; Part B: Belly River Fm; and J.F. Chappell, L.L. & E. Canada; Part A: Cardium Fm INTRODUCTION The Bearpaw Fm, over 150 m thick in southcentral Alberta it would appear that exploration dollars directed towards them could Walker (1987, 1988), Swagor (1975) and Swagor et al. (1976). (14-18-2-23W4M), thins to the north and grades into the non-marine yield a good rate of return. Interest in exploration for these Cardium Fm conglomerate reser The evolution of the Alberta Basin during Upper Cretaceous time sequence of the overlying Horseshoe Canyon Fm (Edmonton Gp). voirs was reactivated in the early 1980's due to the discovery of and its effect on the geologic section is covered in the introduction to The four major Upper Cretaceous reservoirs are: 1) The Cardium; several new Cardium Fm pools and the recognition that modern this text. Strata of the Upper Cretaceous underlie most of the area Production has been obtained from the Upper Cretaceous section 2) The lower Belly River; 3) The Dunvegan-Doe Creek; and 4) The seismic reflection technology could be used in their detection covered by the Western Canada Sedimentary Basin in an almost con for many years. However, prospecting for Upper Cretaceous hydro Belly River fluvial. (Chappell, 1984, 1985; Wren, 1984). The Carrot Creek Cardium S tinuous sequence of deposition. From the Base of Fish Scales Zone, carbons did not begin in earnest until the discovery of Cardium pool, located in 53-12 and 13 W5M (Fig. 9.4), is a typical example. -
Northwest Territories Territoires Du Nord-Ouest British Columbia
122° 121° 120° 119° 118° 117° 116° 115° 114° 113° 112° 111° 110° 109° n a Northwest Territories i d i Cr r eighton L. T e 126 erritoires du Nord-Oues Th t M urston L. h t n r a i u d o i Bea F tty L. r Hi l l s e on n 60° M 12 6 a r Bistcho Lake e i 12 h Thabach 4 d a Tsu Tue 196G t m a i 126 x r K'I Tue 196D i C Nare 196A e S )*+,-35 125 Charles M s Andre 123 e w Lake 225 e k Jack h Li Deze 196C f k is a Lake h Point 214 t 125 L a f r i L d e s v F Thebathi 196 n i 1 e B 24 l istcho R a l r 2 y e a a Tthe Jere Gh L Lake 2 2 aili 196B h 13 H . 124 1 C Tsu K'Adhe L s t Snake L. t Tue 196F o St.Agnes L. P 1 121 2 Tultue Lake Hokedhe Tue 196E 3 Conibear L. Collin Cornwall L 0 ll Lake 223 2 Lake 224 a 122 1 w n r o C 119 Robertson L. Colin Lake 121 59° 120 30th Mountains r Bas Caribou e e L 118 v ine i 120 R e v Burstall L. a 119 l Mer S 117 ryweather L. 119 Wood A 118 Buffalo Na Wylie L. m tional b e 116 Up P 118 r per Hay R ark of R iver 212 Canada iv e r Meander 117 5 River Amber Rive 1 Peace r 211 1 Point 222 117 M Wentzel L. -
University of Alberta
University of Alberta Genetic Population Structure of Walleye (Sander vitreus) in Northern Alberta and Application to Species Management by Lindsey Alison Burke A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment of the requirements for the degree of Master of Science in Systematics and Evolution Biological Sciences ©Lindsey Alison Burke Fall 2010 Edmonton, Alberta Permission is hereby granted to the University of Alberta Libraries to reproduce single copies of this thesis and to lend or sell such copies for private, scholarly or scientific research purposes only. Where the thesis is converted to, or otherwise made available in digital form, the University of Alberta will advise potential users of the thesis of these terms. The author reserves all other publication and other rights in association with the copyright in the thesis and, except as herein before provided, neither the thesis nor any substantial portion thereof may be printed or otherwise reproduced in any material form whatsoever without the author's prior written permission. Library and Archives Bibliothèque et Canada Archives Canada Published Heritage Direction du Branch Patrimoine de l’édition 395 Wellington Street 395, rue Wellington Ottawa ON K1A 0N4 Ottawa ON K1A 0N4 Canada Canada Your file Votre référence ISBN: 978-0-494-62977-2 Our file Notre référence ISBN: 978-0-494-62977-2 NOTICE: AVIS: The author has granted a non- L’auteur a accordé une licence non exclusive exclusive license allowing Library and permettant à la Bibliothèque -
Petroleum System Modeling of the Western Canada Sedimentary Basin – Isopach Grid Files
Petroleum System Modeling of the Western Canada Sedimentary Basin – Isopach Grid Files By Debra K. Higley1, Mitchell E. Henry, and Laura N.R. Roberts Report Series 2005-1421 U.S. Department of the Interior U.S. Geological Survey 1 Inquiries about this publication should be addressed to: Debra K. Higley U.S. Geological Survey, MS 939, Box 25046 Denver Federal Center, Denver, CO 80225 Tel: 303-236-5791 Email: [email protected] 1 U.S. Department of the Interior Gale A. Norton, Secretary U.S. Geological Survey P. Patrick Leahy, Acting Director U.S. Geological Survey, Reston, Virginia 2005 For products and ordering information: World Wide Web: http://www.usgs.gov/pubprod Telephone: 1-888-ASK-USGS For more information on the USGS–the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment: World Wide Web: http://www.usgs.gov Telephone: 1-888-ASK-USGS Suggested citation: Debra K. Higley, Mitchell Henry, and Laura N.R. Roberts, 2006, Petroleum System Modeling of the Western Canada Sedimentary Basin – Isopach Grid Files: U.S. Geological Survey Report Series 2005-1421, web publication and associated data files. Any use of trade, product, or firm names is for descriptive purposes only, and does not imply endorsement by the U.S. government. Although this report is in the public domain, permission must be secured from the individual copyright owners to reproduce any copyrighted material contained within this report. 2 Contents Introduction …………………………………………………………….. 3 Data Processing Steps …………………………………………….……. 4 Acknowledgments ………………………………….………………..…. 5 Zmap-Format Grid Files ..………………………….………………..…. 5 References and Software Cited …………………….……………..……. -
A Study of Potential Co-Product Trace Elements Within the Clear Hills Iron Deposits, Northwestern Alberta
Special Report 08 A Study of Potential Co-Product Trace Elements Within the Clear Hills Iron Deposits, Northwestern Alberta NTS 83M,N, 84C,D A STUDY OF POTENTIAL CO-PRODUCT TRACE ELEMENTS WITHIN THE CLEAR HILLS IRON DEPOSITS, NORTHWESTERN ALBERTA Prepared for Research and Technology Branch, Alberta Energy Prepared by APEX Geoscience Ltd. (Project 97213) In cooperation with The Alberta Geological Survey, Energy and Utility Board And Marum Resources Ltd. February, 1999 R.A. Olson D. R. Eccles C.J. Collom A STUDY OF POTENTIAL CO-PRODUCT TRACE ELEMENTS WITHIN THE CLEAR HILLS IRON DEPOSITS, NORTHWESTERN ALBERTA TABLE OF CONTENTS SECTION PAGE ACKNOWLEDGMENTS AND DISCLAIMER ....................................................... vi 1.0 SUMMARY ........................................................................................................1 2.0 INTRODUCTION ..................................................................................................3 2.1 Preamble....................................................................................................3 2.2 Location, Access, Physiography, Bedrock Exposure .................................4 2.3 Synopsis of Prior Scientific Studies of the Clear Hills Iron Deposits, and the Stratigraphically Correlative Bad Heart Formation ...............................4 2.4 Synopsis of Prior Exploration of the Clear Hills Iron Deposits....................6 3.0 GEOLOGY ........................................................................................................7 3.1 Introduction -
The Icefields Parkway
A D A N A Y M M 16 16 C PYRAMID - HE CEFIELDS ARKWAY A R O O T I P 2762 m S E W R R N P F F H A S Pyramid G M M I R A POINTS OF IN TEREST Lake K J K T H JASPER er 0 230 JASPER TOWNSITE. RCMP Riv a sc a b ROCHE 2 228 Whistlers (May to October) a th BONHOMME A Jasper International WHISTLERS 2459 m 2469 m M a (April to November) li Jasper Tramway g n THE RAMPARTS Five e Amethyst ek tal re Lakes R Jacques 4 226 Wapiti (Summer and Winter) Lakes or C iv P e r Lake 6 224 Junction with Highway 93A. Access to: TEKARRA AQUILA 2693 m 2880 m Marmot Basin Ski Area, Mount Edith Cavell Road (mid June Ast or to mid October: viewpoints, hiking, , Tonquin Valley) i a River Wabasso Beaver and Wabasso. Rejoins parkway at Athabasca Falls. Lake Lake Medicine 9 221 Valley of Five Lakes Lake EDITH CAVELL CURATOR 3367 m 2624 m 14216 Wabasso Lake Moab Lake 93 25 205 Whirlpool Valley, Mount Hardisty, A Whirlpool River Mount Kerkeslin and Mount Edith Cavell HARDISTY Athabasca Falls 2715 m 27 203 Horseshoe Lake es ak 30 200 Athabasca Falls L KERKESLIN e A in 2955 m ld t ra h e a Junction with Hwy 93A G b Maligne a s Lake c 32 198 Athabasca Falls FRYATT a 3360 m R iv 34 196 Mount Kerkeslin e r r e iv 37 193 Goats and Glaciers R CHRISTIE e n SAMSON HOOKER BRUSSELS 3102 m ig Honeymoon l 3076 m 38 192 Mount Fryatt 3160 m a ICEFIELD Lake M 41 189 Mount Christie Osprey Lake Buck Lake UNWIN 3300 m 49 181 Mount Christie Sunwapta Falls E CHARLTON N 3260 m D MALIGNE L 50 180 Honeymoon Lake E 3200 m S S 52 178 Fortress C Buck and Osprey Lakes H Lake MONKHEAD A 3211 m I N 93 -
Cadomin and Jasper Areas Willem Langenberg and John Waldron
Field Guide to Selected Geological Sections of the Cadomin and Jasper Areas Willem Langenberg and John Waldron Edmonton Geological Society Field Trip Guide September 22-23, 2007 Introduction The Rocky Mountains can be divided into Foothills, Front Ranges, and Main Ranges as shown in the cartoon below (Fig. 1). Outcrops in the foothills are dominated by softer weathering Mesozoic rocks of the foreland basin: mainly sandstone and shale but also including conglomerates and coal. Most of the clastic rocks represent material eroded from earlier-formed parts of the orogen to the west, which was subsequently cannibalized as the thrustbelt advanced westward in late Mesozoic to early Cenozoic time. Locally in the foothills, the more resistant late Paleozoic carbonate rocks come to the surface in elongated ridges. Saturday's traverse will begin in the foothills of the Cadomin area and proceed southwest into the Front Ranges. In the Front Ranges carbonates dominate the landscape. These represent the late Paleozoic continental margin of the Laurentian continent, now sliced into multiple imbricated thrust sheets. Mesozoic clastics are confined to narrow valleys. On Sunday morning we will take the Yellowhead Highway further into the Front Ranges and eventually into the Main Ranges of the Rockies. In the Main Ranges, lower parts of the stratigraphy are preserved, including widespread outcrops of older, Early Paleozoic carbonates, clastics, and the underlying Proterozoic succession of the Windermere Supergroup. The structural style is different, too. Although thrust sheets are present, they are generally much larger in scale, and their dips are gentler. In addition, the rocks were more ductile when deformed, so that cleavage and folds are much more widely developed in the mudrocks. -
Exploration Analysis
EXPLORATION ANALYSIS CARDIUM FORMATION Current Situation The Cardium Formation is not an exploration target in B.C. Where it has been tested, it is as a secondary target, and often with a straddle drillstem test run on the basis of a prospective well log signature. The formation has thus been open to drilling fluids for an extended period of time, and wellbore damage is likely to be severe. This situation is exacerbated by lack of reservoir “sweet spots”, shallow drilling depths and subnormal formation pressures. Velvet Exploration undertook an exploration program in 2000/2001 for fractured Cardium shoreface sandstones in the Copton-Narraway area of Alberta, in the southeastern corner of Map 2. There do not appear to be a substantial number of new Cardium wells on production in this area, and Velvet’s successor, El Paso, is not drilling new wells on the play. Tight Gas Potential The Cardium presents an attractive in-place gas resource, with massive sandstones of substantial thickness distributed continuously over a large area (Map 2) (Table 1). Because of its shallow burial depth, there has been less reservoir degradation by compaction than for deeper tight gas reservoirs. However, low reservoir pressures reduce in-place gas volumes, particularly within the subnormally-pressured Deep Basin. By qualitative comparison with the Cadotte and Spirit River, we speculate an in-place gas resource of 1-3 BCF/section. Cardium tight gas will likely be a secondary, uphole target to be exploited in conjunction with deeper tight gas plays. Locally, Cardium gas production may occur where: • operators stumble upon conglomeratic sweet spots, or • fracture-enhanced reservoir sections are defined in the Foothills, where the Cardium section is thickest. -
Allostratigraphic Analysis of the Muskiki and Marshybank Formations
Allostratigraphic analysis of the Muskiki and Marshybank Formations (Coniacian) in the Central Alberta Foothills and Plains: Possible evidence for an eustatic control on deposition Elizabeth Hooper, Department of Earth Sciences, The University of Western Ontario, London, ON, N6A 5B7 [email protected] and A Guy Plint, Department of Earth Sciences, The University of Western Ontario, London, ON, N6A 5B7 [email protected] Summary The Muskiki and Marshybank formations, of Upper Cretaceous (Coniacian) age, form a major transgressive-regressive depositional cycle, about 100 m thick, that can be mapped throughout the Cretaceous foredeep of Western Canada. Detailed allostratigraphic results are lacking for central Alberta between townships 26 and 44; this study is designed to fill that knowledge gap. The investigation is based on detailed outcrop observation in the Foothills, linked to a regional allostratigraphic framework based on wireline logs. The studied rocks represent primarily shallow- marine environments and are abundantly fossiliferous. The rocks are organized into upward shoaling successions of mudstone and fine sandstone, typically 5-15 m thick. Successions are bounded by marine flooding surfaces that commonly bear pebble lags. Although the upward-shoaling successions resemble simple parasequences, the presence of winnowed pebble lags suggest a terminal period of shallowing and even subaerial emergence. The successions may therefore be interpreted as seaward expressions of depositional sequences. Repeated relative sea-level rise-fall cycles, on a timescale of a few hundred kyr, strongly suggest an eustatic control, plausibly attributable to glacio-eustasy in the Milankovitch band. Introduction The Muskiki and Marshybank formations of the Western Canada Cretaceous foredeep (Stott, 1963, 1967), comprise a major transgressive-regressive depositional cycle, about 100 m thick, that can be mapped from NE British Columbia at least as far south as northern Montana. -
"Hidden Gem" Alberta Parks Photo Gap List on Flickr
"Hidden Gem" Alberta Parks Photo Gap List on Flickr www.flickr.com/photos/albertaparks Beaver Lake PRA French Bay PRA Oldman River PRA Beaver Mines Lake PRA Ghost Airstrip PRA Ole's Lake PRA Beaverdam PRA Ghost River WA Paddle River Dam PRA Big Elbow PRA Ghost-Reservoir PRA Payne Lake PRA Big Knife PP Gleniffer-Reservoir PRA Peaceful Valley PRA (Tolman East & West) Goldeye Lake PRA Peppers Lake PRA Big Mountain Creek PRA Gooseberry Lake PP Phyllis Lake PRA Bragg Creek PP Grand Rapids WPP Police Outpost PP Brazeau Canyon WPP Heart River Dam PRA Prairie Creek Group Camp PRA Brazeau Reservoir PRA Highwood PRA Redwater PRA Brazeau River PRA Horburg PRA Rochon-Sands PP Brown-lowery PP Hornbeck Creek PRA Saunders PRA Buck Lake PRA Island Lake PRA Simonette River PRA Buffalo Lake PRA Jackfish Lake PRA Snow Creek PRA Bullshead Reservoir PRA Jarvis Bay PP St. Mary Reservoir PRA Burnt Timber PRA Lake Mcgregor PRA Stoney Lake PRA Calhoun Bay PRA Lantern Creek PRA Strachan PRA Calling Lake PP Lawrence Lake PRA Strawberry PRA Cartier Creek PRA Little Bow Reservoir PRA Swan Lake PRA Castle Falls PRA Lynx Creek PRA Sylvan Lake PP Castle River Bridge PRA Maycroft PRA Tay-River PRA Chambers Creek PRA Mcleod River PRA Thompson Creek PRA Chinook PRA Medicine Lake PRA Tillebrook PP Coal Lake North PRA Minnow Lake PRA Waiparous Creek Group Camp PRA Don-Getty WPP Mitchell Lake PRA Waiparous Creek PRA Elk Creek PRA Moose Mountain Trailhead PRA Wapiabi PRA Elk River PRA Musreau Lake PRA Waterton Reservoir PRA Fairfax Lake PRA Nojack PRA Weald PRA Fallen Timber South PRA Notikewin PP Williamson PP Fawcett Lake PRA O'Brien PP Winagami Lake PP Figure Eight Lake PRA Oldman Dam PRA *Bolded items are on Reserve.AlbertaParks.ca. -
Trophic State of Alberta Lakes Based on Average Total Phosphorus
Created Feb 2013 TROPHIC STATE OF ALBERTA LAKES Based On Average (May-October) Total Phosphorus Concentrations Total Phosphorus (µg/L) 0 100 200 300 400 500 600 700 800 900 1000 * Adamson Lake Alix Lake * Amisk Lake * Angling Lake Oligotrophic * ‡ Antler Lake Arm Lake (Low Productivity) * Astotin Lake (<10 µg/L) * ‡ Athabasca (Lake) - Off Delta Baptiste Lake - North Basin Baptiste Lake - South Basin * ‡ Bare Creek Res. Mesotrophic * ‡ Barrier Lake ‡ Battle Lake (Moderate Productivity) * † Battle River Res. (Forestburg) (10 - 35 µg/L) Beartrap Lake Beauvais Lake Beaver Lake * Bellevue Lake Eutrophic * † Big Lake - East Basin * † Big Lake - West Basin (High Productivity) * Blackfalds Lake (35 - 100 µg/L) * † Blackmud Lake * ‡ Blood Indian Res. Bluet (South Garnier Lake) ‡ Bonnie Lake Hypereutrophic † Borden Lake * ‡ Bourque Lake (Very High Productivity) ‡ Buck Lake (>100 µg/L) Buffalo Lake - Main Basin Buffalo Lake - Secondary Bay * † Buffalo Lake (By Boyle) † Burntstick Lake Calling Lake * † Capt Eyre Lake † Cardinal Lake * ‡ Carolside Res. - Berry Creek Res. † Chain Lakes Res. - North Basin † Chain Lakes Res.- South Basin Chestermere Lake * † Chickakoo Lake * † Chickenhill Lake * Chin Coulee Res. * Clairmont Lake Clear (Barns) Lake Clear Lake ‡ Coal Lake * ‡ Cold Lake - English Bay ‡ Cold Lake - West Side ‡ Cooking Lake † Cow Lake * Crawling Valley Res. Crimson Lake Crowsnest Lake * † Cutbank Lake Dillberry Lake * Driedmeat Lake ‡ Eagle Lake ‡ Elbow Lake Elkwater Lake Ethel Lake * Fawcett Lake * † Fickle Lake * † Figure Eight Lake * Fishing Lake * Flyingshot Lake * Fork Lake * ‡ Fox Lake Res. Frog Lake † Garner Lake Garnier Lake (North) * George Lake * † Ghost Res. - Inside Bay * † Ghost Res. - Inside Breakwater ‡ Ghost Res. - Near Cochrane * Gleniffer Lake (Dickson Res.) * † Glenmore Res. -
Outdoor Recreation and Open Spaces Master Plan Key Findings
Outdoor Recreation and Open Spaces Master Plan Key Findings Outdoor recreation is important to 98% of Brazeau region survey respondents Background In 2014, Brazeau County, though its Community Services Department, embarked on an initiative to develop a master plan for outdoor recreation and open spaces. The Eagle Point and Blue Rapids Parks Council was contracted to lead the plan for the benefit of the region’s residents and businesses. Summary The Brazeau County Outdoor Recreation and Open Spaces Master Plan adopted a visionary yet practical approach and philosophy to guide outdoor recreation and open space planning in Brazeau County today and for the next ten years. The Master Plan is a County initiative that will provide the County with guidance and specific and general action options to develop a system of trails, campgrounds, day-use areas, other outdoor recreation facilities and managed open spaces for the benefit of residents and visitors alike. This Master Plan is a resource for the community and is an outcome of Brazeau County Council’s implementation of relevant sections of the 2011 Municipal Development Plan and a logical next step further to the 2010 Parks, Recreation and Open Spaces Master Plan, an earlier effort that provided some solid background information such as community consultations and general directions for moving forward. At the heart of this Master Plan is a vision that provides the long term guidance necessary to achieve a desired system of outdoor recreation opportunities and open spaces management: Brazeau County is a place where high quality outdoor recreational facilities, services and open spaces increase the quality of life, protect the environment while promoting economic development, and make the Brazeau region a desirable place to live, work, play and stay.