Genetic Determinants of Antibiotic Resistance in Staphylococcus Aureus and Mycobacterium Smegmatis

Total Page:16

File Type:pdf, Size:1020Kb

Genetic Determinants of Antibiotic Resistance in Staphylococcus Aureus and Mycobacterium Smegmatis 71-7518 MILLER, Marcia Ann, 1942- GENETIC DETERMINANTS OF ANTIBIOTIC RESISTANCE IN STAPHYLOCOCCUS AUREUS AND MYCOBACTERIUM SMEGMATIS. The Ohio State University, Ph.D., 1970 Microbiology Please Note: School lists name as Marcia Ann Wolfe Miller. University Microfilms, A \ERO\Company , Ann Arbor, Michigan Copyright by Marcia Ann Miller 1971 Copyright by Marcia A n n Miller 19 71 71-7518 MILLER, Marcia Ann, 1942- GENETIC DETERMINANTS OF ANTIBIOTIC RESISTANCE IN STAPHYLOCOCCUS AUREUS AND MYCOBACTERIUM SMEGMATIS. The Ohio State University, Ph.D., 1970 Microbiology Please Note: School lists name as Marcia Ann Wolfe Miller. University Microfilms,A \ER0X Company , Ann Arbor, Michigan THIS DISSERTATION HAS BEEN MICROFILMED EXACTLY AS RECEIVED GENETIC DETERMINANTS OF ANTIBIOTIC RESISTANCE IN STAPHYLOCOCCUS AUREUS AND MYCOBACTERIUM SMEGMATI3 DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Marcia Ann Miller, B.S., M.A. The Ohio State University 1970 Approved by Adviser Academic Faculty of Microbial and Cellular Biology ACKNOWLEDGMENTS I wish to express my appreciation to my advisor, Dr. Melvin S. Rheins, for his guidance throughout the course of my graduate study. I also wish to express my gratitude to fellow graduate students Helen M. Pollock and Robert Z, Maigetter and to Mr. Ivan Kapotenovic for his technical assistance. Most of all, I would like to thank my husband Larry for his constant encouragement, patience, and halpfulnoss, without which this degree would not have been possible. ii VITA November 23, 1942. Born - Fremont, Ohio 1956-1960. ....... Attended Salem-Oak Harbor High School, Oak Harbor, Ohio 1960-1962. ........... Attended Michigan State University, East Lansing, Michigan December 27, 1962. , Married - Larry Reed Miller 1963-1965................ B.S. Ed., Bowling Green State University, Bowling Green, Ohio 1965-196 6 ................ M.A., Bowling Green State University, Bowling Green, Ohio 1966-1968, ....... Research Biologist, Genetics Division, Department of Biology, Bowling Green State University, Bowling Green, Ohio (Drosophila Genetics and NASA Biosatellite Project) 1968-1970............. Ph.D., The Ohio State University, Columbus, Ohio PUBLICATIONS Marcia A. Miller and Shirley A. Harmon, "Genetic Associ­ ation of Determinants Controlling Resistance to Mercuric Chloride, Production of Penicillinase and Synthesis of Methionine in Staphylococcus aureus." Nature. 215:531-2, 1967. Marcia A. Miller and Irwin I. Oster. "Further Observations on Temperature Sensitive Mutations in Multicellular Forms." Proceedings XII International Congress of Genetics.' 1; l4l~. 1968. iii VITA (Continued) FIELDS OF STUDY Major Field: Microbiology Area of Specialization.Microbial Genetics iv TABLE OF CONTENTS Page ACKNOWLEDGMENTS ......................................... ii VITA ...................................................... iii LIST OF TABLES .......................................... vii LIST OF ILLUSTRATIONS .................................. viii INTRODUCTION ........................................... 1 REVIEW OF THE LITERATURE .............................. 5 Drug Resistance and Microbial Genetics ..... 5 Mutagenesis and Extrachromosomal Inheritance . 11 Genetic Studies: Transduction and Lysogeny . 18 MATERIALS AND METHODS .................................. 22 Source and Description of Cultures . ............ 22 Basic Propagation Media ......... ....... 25 Iodometric Method for Activity of Penicillinase 26 Detection of Penicillinase Activity by a Bio-Assay Method ....... 27 Isolation of D-Cycloserine Resistant Mutants of S. aureus ........... 27 Determination of Spontaneous Mutations ..... 28 Acridine Orange and Temperature Treatment . 29 Induction of Mutants by Ultraviolet Irradiation ......................................... 31 Propagation and Titration of Bacteriophages . 32 Transduction Technique ........................... 34 v TABLE OF CONTENTS (Continued) Page Harvesting of Cells for DNA Extraction .... 34 DNA Extraction and Determination of DNA .... 36 Determination of DNA Base Composition ..... 39 RESULTS ................................................ 41 Culture Characteristics and Techniques for Cultivation of M. smegmatis 607 B and .§• aur'eus U 9 W ............. 41 Bacteriophages: Host Range, Plaque Formation, and Propagation ........... ......... 50 Methods for Detection of Penicillinase Activity ..... .............................. 60 Characterization of D-cycloserine Resistant Cells ................ 66 Lack of Reversal of D-cycloserine Inhibition by Mycobactin, a Growth Factor for Specific Mycobacteria ..... 74 Spontaneous Mutation Rates .......... 78 The Effect of Acridine Orange and Elevated Temperature on Penicillin and D-cycloserine Resistant Cells ......... .............. 78 The Mutagenic Effect of Ultraviolet Radiation on Penicillin and D-cycloserine Resistant Cells 82 Transduction of Penicillin and D-cycloserine Resistance . ................ 85 Extraction of DNA . 87 Determination of DNA Base Composition ......... 87 DISCUSSION ................................................ 103 SUMMARY ................................................ 119 BIBLIOGRAPHY .............................................. 121 vi LIST OF TABLES Table Page • 1. Composition of Synthetic Medium ....... 23 2. Reagents used in Deoxyribonucleic Acid Extraction Procedures ........................... 35 3. Amino Acid Requirements for M. smegmatis 607 B and S. aureus U9W in a Synthetic Medium . ........... ..... 51 4. Titer of Various Mycobacteriophage After Six Hours of Incubation for Propagation at 37 C with M. smegmatis 607 B in Varying Concentrations of Tween 80 .... 55 5. Phage Typing Patterns Exhibited by Various Mycobacteriophages on Several Strains of Mycobacteria Employing the Spot-Plate M e t h o d ......................................... 56 6. Degree of Resistance to D-cycloserine Demonstrated by Various Organisms on Several Types of Semi-Solid Laboratory Media 70 7. Spontaneous Mutation Rate to Drug Sensitivity of D-cycloserine Resistant Cloned Cells of S. aureus U9W and M. smegmatis 607 B ........................... 79 8. The Effect of Mutagenic Agents Upon Loss of Penicillin and D-cycloserine Resistance in Strains S. aureus U9W and smegmatis 607 B ........... 81 9, Transduction of the Penicillinase and D-cyloserine Determinants to Penicillin and D-cycloserine Sensitive Cells of Strain U9V/ of S. aureus ........... 86 vii LIST OF ILLUSTRATIONS Figures Figure Page 1. Effect of Tween 80 in varying concentrations on the propagation of mycobacteriophage D29 with host M. smegmatis 607 B as indicated by a drop in phage titer with increase in per cent of Tween 80 incorporated into the culture medium. ....................... 54 2, The effect of various broth media on the degree of resistance to D-cycloserine demonstrated by S. aureus (penicillin resistant), S. aureus (penicillin sensitive) and M. smegmatis 60T~B ........... 73 3, Antagonism of D-cycloserine inhibition of aureus growth by heated preparations containing L-alanine . ..................... 76 4. Survival curve of M, smegmatis 607 B after irradiation with ultraviolet rays .............. 84 Plates Plate Page I M. smegmatis 607 B. Typical rough colony formation on TSA after 72 hours incubation at 37 C in the dark ....................... 43 II M. smegmatis 607 B on Lowenstein-Jensen m e d i u m ........................................... 46 III S. aureus U9W on TSA, demonstrating differences in pigmentation . ................ 49 IV Plaques of various mycobacteriophage plated on M. smegmatis 607 B.... .................. 59 V Phage susceptibility of S. aureus U9V/ (penicillin resistant variant) to staphylococcal and mycobacteriophages .... 62 viii LIST OF ILLUSTRATIONS (Continued) Plate Page •VI Agar-plate modification of the iodometric assay for production of penicillinase in the penicillin resistant variant of S. aureus U9W 65 VII Detection of penicillinase activity determined by a bio-assay method, using a penicillin sensitive variant of S. aureus for noting inhibition by residual penicillin , 68 VIII Densitometer trace and corresponding ultraviolet photograph of DNA from M. smegmatis 607 B .............................. 91 IX Ultraviolet photographs of mycobacterial DNA coming to equilibrium during a 24 hour run . 93 X Ultraviolet photographs of mycobacterial DNA coming to equilibrium during a 24 hour run . , 95 XI Densitometer trace and corresponding ultraviolet photograph of DNA from S. aureu3 U9W, Pase+ D-CSr . ............. .. 98 XII Ultraviolet photographs of staphylococcal DNA coming to equilibrium during a 24 hour run ........... 100 XIII Ultraviolet photographs of staphylococcal DNA coming to equilibrium during a 24 hour run ............. 101 ix INTRODUCTION The discovery of numerous antimicrobial agents during the past 30-40 years has greatly altered both the treatment and relative importance of many diseases. Following the spectacular discoveries of many antimicrobial agents, however, was the disturbing recognition of the emergence of drug resistant pathogenic microorganisms. These strains have become important not only in clinical medicine but to the molecular biologist as well where these organisms have served as tools for genetic research. Our knowledge of the function and regulation of nucleic acids has paralled g advancements in antimicrobial therapy. Studies on the mechanism of drug resistant strains have contributed to the clarification of
Recommended publications
  • Identification and Characterization of Novel Anti-Leishmanial Compounds
    Identification and Characterization of Novel Anti-leishmanial Compounds Bilal Zulfiqar Master of Philosophy, Doctor of Pharmacy Discovery Biology Griffith Institute for Drug Discovery School of Natural Sciences Griffith University Submitted in fulfilment of the requirements of the degree of Doctor of Philosophy October 2017 ABSTRACT ABSTRACT Leishmaniasis is characterized as a parasitic disease caused by the trypanosomatid protozoan termed Leishmania. Leishmaniasis is endemic in 98 countries around the globe with increased cases of morbidity and mortality emerging each day. The mode of transmission of this disease is via the bite of a sand fly, genus Phlebotomus (Old World) and Lutzomyia (New World). The life cycle of Leishmania parasite exists between the sand fly (promastigote form) and the mammalian host (amastigote form). Leishmaniasis can be characterized as cutaneous, muco-cutaneous or visceral leishmaniasis based on clinical manifestations exhibited in infected individuals. Although leishmaniasis is treatable, it faces challenges largely due to emerging resistance and extensive toxicity for current drugs. Therapeutic efficacy varies depending upon the species, symptoms and geographical regions of the Leishmania parasite. The drug discovery pipeline for neglected trypanosomatid diseases remains sparse. In particular, the field of leishmaniasis drug discovery has had limited success in translating potential drug candidates into viable therapies. Currently there are few compounds that are clinical candidates for leishmaniasis, it is therefore essential that new compounds that are active against Leishmania are identified and evaluated for their potential to progress through the drug discovery pipeline. In order to identify new therapeutics, it is imperative that robust, biologically relevant assays be developed for the screening of anti-leishmanial compounds.
    [Show full text]
  • Nationalinstitute of Genetics Japan
    NATIONALINSTITUTE OF GENETICS JAPAN ANNUAL REPORT No. 23 1972 PublitJhMl 611 THE NATIONAL INSTITUTE OF GBNE'l1C8 IIiaimG. 8&uoktl-km, J.,.,. 1973 Annual Report of the National Institute of Genetics No. 23, 1972 I Published by The National Institute of Genetics, Japan 1973 CONTENTS General statement 1 Staff 2 Council.......... .. 5 Association for propagation of the knowledge of genetics .. 6 Projects of research for 1972 7 Researches carried out in 1972 .................................. 11 I. Molecular Genetics The 5'-terminal structure of cytoplasmic polyhedrosis virus (CPV) genome RNA. MIURA, K., SUGIURA, M. and WA- TANABE, K. 11 Terminal structure of single-stranded RNA transcribed by the cytoplasmic polyhedrosis (CP) virus. SHIMOTOHNO, K., FURUICHI, Y. and MIURA, K. 12 The 3'-terminal structure of Avian reovirus RNA. FURUICHI, Y. and MIURA, K. 13 Nucleotide ratio of the genome segments in a cytoplasmic polyh­ edrosis virus from silkworm. FURUICHI, Y., RAI, U. and .. MIURA, K. 13 II. Microbial Genetics Absence of messenger ribonucleic acid specific for flagellin in fla- mutants. SUZUKI, H. and IINO, T. 15 Ill. Biochemical Genetics Improved method for separation and identification of rat serum transferrins: Thin layer acrylamide-gel electrophoresis with acrinol pretreatment. MORIWAKI, K. .. .................. 17 The second scientific expedition to Southeast, Southwest and Central Asia for the study of rodents. IV. Electrophoretic survey of polymorphic transferrin types on the black rat, Rattus rattus. MORIWAKI, K., TSUCHIYA, K., KATO, H., YOSIDA, T. H. and SADAIE, T. 18 ii ANNUAL REPORT OF NATIONAL INSTITUTE OF GENETICS NO. 23 Serum transferrin polymorphism in the red-backed vole, Clethrio­ nomys rufocanus bedfordiae.
    [Show full text]
  • Adenosine-Proflavine Complex: a Self-Paired Parallel-Chain
    Proc. Natl. Acad. Sci. USA Vol. 77, No. 4, pp. 1852-1856, April 1980 Biochemistry X-ray structure of a cytidylyl-3',5'-adenosine-proflavine complex: A self-paired parallel-chain double helical dimer with an intercalated acridine dye* (non-self-complementary pairing of adenine-adenine and protonated cytosine-cytosine/intercalation dynamics/ sugar-phosphate backbone stereochemistry/frameshift mutagenesis) E. WESTHOF AND M. SUNDARALINGAM Department of Biochemistry, College of Agricultural and Life Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53706 Communicated by David R. Davies, December 31, 1979 ABSTRACT The non-self-complementary dinucleoside parallel-chain double helical dimer of cytidylyl-3',5'-adenosine monophosphate cytidylyl-3',5'-adenosine (CpA) forms a base- (CpA). The dinucleoside monophosphate CpA was chosen not paired parallel-chain dimer with an intercalated proflavine.The dimer complex possesses a right-handed helical twist. The dimer only because it constitutes the end portion of the invariant CCA helix has an irregular girth with a neutral adenine-adenine (A-A) terminus of all tRNAs, but also because it cannot form self- pair, hydrogen-bonded through the N6 and N7 sites (C1'... C1' complementary pairs. separation of 10.97 A), and a triply hydrogen-bonded protonated cytosine-cytosine (C-C) pair with a proton shared between the METHODS base N3 sites (C1'... C1' separation of 9.59 A). The torsion an- EXPERIMENTAL gles of the sugar-phosphate backbone are within their most Single crystals of a 1:1 complex of CpA and proflavine were preferred ranges and the sugar puckering sequence (5' - 3') is grown from an equimolar aqueous solution of proflavine he- C3'-endo, C2'-endo.
    [Show full text]
  • RECENT DEVELOPMENTS in WOUND ANTISEPTICS by H
    Postgrad Med J: first published as 10.1136/pgmj.22.246.118 on 1 April 1946. Downloaded from 118 POST-GRADUATE MEDICAL JOURNAL April, I946 If the patient is allowed fluid by mouth, it 4. If the apparatus does not appear to be work- should be given by the feeder between times of ing, the clips should be clamped, the appa- aspiration. ratus disconnected from the gastric tube and Aspiration is performed at regular intervals some water injected down the tube to make either every hour or half-hour according to sure that it is patent. instructions. The aspirated material must always be saved The Time for Removal of the Tube: The tube is for inspection. removed under the Doctor's instructions. In 2. Continuous Suction: A study of the diagram cases of intestinal obstruction this is usually (Fig. 2) will explain the work of the apparatus, after the patient has had one bowel action, and and attention must be to the has passed flatus on at least two occasions. particular paid After operations on the stomach, the tube is following points:- removed when the aspirated contents appear I. The reservoir A must never be allowed to clear contain bile. become empty. and 2. The end of the tubing in bottle B must be Vomiting: If a patient who is undergoing gastro- below the level of the water. intestinal suction vomits, it indicates that there 3. The clips D and E must be clamped before is some fault in the procedure, and is a reflection and during the changing of the bottles A and on the management of the suction.
    [Show full text]
  • Bacteriophage T4 and Our Present Concept of the Gene
    STADLER SYMPOSIA VOL. 1 and 2 (1971) 43 BACTERIOPHAGE T4 AND OUR PRESENT CONCEPT OF THE GE NE A. H. DOERMANN, UNI VERS IT Y OF WAS HI NG TON, SEATTLE , WASH I NG TON There is probably no geneticist who has been more critical than LEWIS J. STADLER in his interpretation of genetic experiments and more careful to make clear the distinction between experimental facts and the hypothetical evaluation of those facts. His classic paper on 'The Gene ' , which appeared in the November 19, 1954 issue of 'Science ' as the published version of his Presidential Address to the American Society of Naturalists in 1953, is a most eloquent example of the rigorous and incisive analysis which he brought to bear on the conception of the gene at that time. Today, fifteen years later, STADLER's paper still stands out as a landmark in the history of genetics. It is no small honor to be given here the opportunity to pay tribute to that great geneticist. The Committee for the Symposium asked me to speak on the role which studies of bacteriophages have played in the development of genetic concepts. I have taken this to mean neither a comprehensive review of phage genetics as it stands today, nor a detailed review of new experiments which might lead to changes in such concepts. It would be impossibl e here to enumerate every appropriate contribution, and I will restrict myself to reviewing what we have learned about 'gene structure' from experiments with bacteriophage T4. This is an old story, but it seems to be one which should be included in a symposium on genetic concepts, and more particularly a symposium honoring LEWIS J.
    [Show full text]
  • Information to Users
    INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely afreet reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand comer and continuing from left to right in equal sections with small overlaps. Each original is also photographed in one exposure and is included in reduced form at the back of the book. Photographs included in the original manuscript have been reproduced xerographically in this copy. Higher quality 6” x 9” black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order. UMI A Bell & Howell Information Company 300 North Zeeb Road, Aim Arbor MI 48106-1346 USA 313/761-4700 800/521-0600 DISPOSITION OF PROFLAVINE AND ACRIFLAVINE IN RAINBOW TROUT DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Zhengrong Yu, B.S., M.S.
    [Show full text]
  • WO 2018/005873 Al 0 4 January 2018 (04.01.2018) W !P O PCT
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2018/005873 Al 0 4 January 2018 (04.01.2018) W !P O PCT (51) International Patent Classification: BASUDEB, Maji [US/US]; 7 1 Elm Street, Apt. 2, Cam C12N 15/11 (2006.01) bridge, MA 01239 (US). ZETSCHE, Bernd [DE/US]; 383 Washington Street, Gloucester, MA 01930 (US). ZHANG, (21) International Application Number: Feng [US/US]; 100 Pacific Street, Apt. 11, Cambridge, MA PCT/US201 7/0401 15 02139 (US). (22) International Filing Date: (74) Agent: CASSON, Lawrence, P. et al; Vedder Price P.C., 29 June 2017 (29.06.2017) 1633 Broadway, New York, NY 10019 (US). (25) Filing Language: English (81) Designated States (unless otherwise indicated, for every (26) Publication Language: English kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, (30) Priority Data: CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, 62/356,028 29 June 2016 (29.06.2016) US DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, (71) Applicants: THE BROAD INSTITUTE INC. [US/US]; HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, 415 Main Street, Cambridge, MA 02142 (US). KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MASSACHUSETTS INSTITUTE OF TECHNOLOGY MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, [US/US]; 77 Massachusetts Ave., Cambridge, MA 02139 OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, (US).
    [Show full text]
  • Drugs Against Cancer: Stories of Discovery and the Quest for a Cure
    1 Chapter 4: Anti-cancer drugs that intercalate between base-pairs in DNA – version 181010X Drugs Against Cancer: Stories of Discovery and the Quest for a Cure Kurt W. Kohn, MD, PhD Scientist Emeritus Laboratory of Molecular Pharmacology Developmental Therapeutics Branch National Cancer Institute Bethesda, Maryland [email protected] CHAPTER 4: Anti-cancer drugs that intercalate between base-pairs in DNA The DNA Intercalator Story: Drug-DNA sandwiches. In Chapters 1-3, we saw how alkylating agents and platinum complexes bind to DNA tightly and irreversibly (covalently). We come now to other DNA-binding anticancer drugs that bind tightly, but not covalently – which means that the DNA-binding of these drugs is spontaneously reversible, in contrast to the covalent binders of the previous 3 chapters, whose binding is irreversible. The non-covalent DNA-binding drugs of this chapter have a flat multi-ring system having size and shape resembling a DNA base-pair – which allows them to slip in between base-pairs of DNA in a sandwich-like configuration that is called “DNA intercalation” (Figures 4.1-4.3). The DNA helix unwinds slightly to open a space between adjacent base-pairs that is just sufficient in size to accommodate the intercalating ring system. The intercalation is stabilized in part by the electron distribution patterns of intercalator and thee DNA base-pairs, which are snuggly stacked against each other (Figure 4.3). The intercalation story began in 1960. We had been discussing the notion of DNA intercalation in Paul Doty’s laboratory, but it was first put on solid footing by Leonard Lerman in studies of the physical consequences of the DNA binding of the dye, proflavine (Figure 4.2).
    [Show full text]
  • Types of DRUGS ACTING on DNA (In Chapter 9) Intercalating Agents
    5/10/2017 Chap. 9 - DRUGS TARGETING NUCLEIC ACIDS DNA & RNA Types of DRUGS ACTING on DNA (in chapter 9) Intercalating agents Topoisomerase poisons Alkylating agents Metallating agents Chain cutters Chain terminators Control of gene transcription (and epigenetics) 1 © Oxford University Press, 2013 DRUGS ACTING ON DNA Intercalating agents Mechanism of action • Contain planar aromatic or heteroaromatic ring systems • Planar systems slip between the layers of nucleic acid pairs and disrupt the shape of the helix • A preference is often shown for either the minor or major groove • Intercalation prevents replication and transcription • Intercalation can inhibit topoisomerases too 2 © Oxford University Press, 2013 1 5/10/2017 Intercalating agents Proflavine, also called diaminoacridine, is an acriflavine derivative, a disinfectant bacteriostatic against many gram-positive bacteria. It has been used in the form of the dihydrochloride and hemisulfate salts as a topical antiseptic, and was formerly used as a urinary antiseptic. Proflavine is toxic and carcinogenic in mammals and so it is used only as a surface disinfectant or for treating superficial wounds. Proflavine is also known to have a mutagenic effect on DNA by intercalating between nucleic acid base pairs. It differs from most other mutagenic components by causing basepair-deletions or basepair- insertions and not substitutions. NH3 Cl Ar NH3 Cl H2N N NH2 HOSO Planar tricyclic system NH3 3 The amino substituents are protonated Ar Used as a topical antibacterial agent in WW II NH3 HOSO
    [Show full text]
  • DEMARS1955; Kellenbergerand SECHAUD1957)
    ACRIDINE RESISTANCE IN BACTERIOPHAGE T2H AS A FUNCTION OF DYE PENETRATION MEASURED BY MUTAGENESIS AND PHOTOINACTIVATION ANITA Y. HESSLERI Marine Biological Laboratory, Woods Hole, Massachusetts Received December 11, 1964 ROFLAVINE interferes with the development of the E. coli bacteriophage T2, stopping the formation of infective particles, apparently without affecting production of DNA and protein components of mature phage (FOSTER1948; DEMARS1955; KELLENBERGERand SECHAUD1957). The isolation of the acridine resistant mutants pr and q (HESSLER1963) for T2 and ac and q (SUSMAN,referred to by PRATT,STENT, and HARRIMAN1961) for T4 has provided access to the complex problem of how proflavine acts. These mutants confer resistance to pro- flavine on the infected complex and allow normal phage development in the pres- ence of proflavine concentrations which inhibit wild type. The mutagenic effects of acridines, especially proflavine, during phage develop- ment have been studied by DEMARS1953; BRENNER,BENZER, and BARNETT1958; ORGELand BRENNER1961; BRENNER,BARNETT, CRICK, and ORGEL1961; and DRAKE1964. The relation between the mutagenic and maturation effects remains unclear. The photodynamic action of proflavine on mature bacteriophage has been studied by HIATT(1960) using T2, and RITCHIE(1964) using T4. These workers have shown that suspensions of bacteriophage absorb proflavine, and the viruses, are rendered photosensitive to visible light as a result of dye exposure. The work reported here compares the differences in mutagenic effects of pro- flavine on vegetative T2 wild-type phage to the effects on T2 proflavine resistant mutant phages pr and pi q. The differences in photosensitivity of the mature progeny from these infected complexes are compared as well.
    [Show full text]
  • Acridine Alkaloids Jonathan Lockner
    "...the step from the laboratory to the patient's bedside...is extraordinarily arduous and fraught with danger." Paul Ehrlich Baran Group Meeting Acridine Alkaloids Jonathan Lockner Dyes to Drugs: 1 9 8 acridine 2 7 dibenzo(b,e)pyridine Orange Dye 2,3,5,6-dibenzopyridine U.S. Patent 537723 A, April 16, 1895 (Swiss chemists) 3 N 6 2,3-benzoquinoline 4 10 5 10-azaanthracene Cancer Treatment Using Specific 3,6,9-Substituted Acridines WO2006095139, September 14, 2006 (Neidle et al) 3,6,9 are the important positions of acridine drugs flat (planar) aromatic, hydrophobic, pKa 5.6 colorless to light yellow crystals (mp 107-110 °C) chromatography on basic alumina MeO NHSO2Me irritating odor, lachrymator, carcinogenic, mutagenic H2N N NH2 → Bruce N. Ames (UC Berkeley) studied carcinogenesis/mutagenesis by NEt2 HN chemicals, including acridines (Science 1972, 176, 47) Cl- Me HN OMe 126.6 acriflavine N 9.09 8.19 135.8 129.5 Cl N 1H NMR: 13C NMR: 7.64 128.3 quinacrine/Mepacrine/Atebrin amsacrine/Amsidyl (antileukemia) H2N N NH2 (antimalarial) 125.5 N 7.89 N proflavine 130.3 8.22 "There is no exaggeration that [the 149.1 availabiilty of quinacrine] probably changed the course of history." L. J. Bruce-Chwatt 1870 → acridine isolated from coal tar (Carl Grabe & Heinrich Caro, BASF, Germany) Grabe introduced "ortho", "meta", "para" nomenclature 1895 → "Orange Dye" patent; acridines being used as fabric dyes & biological staining agents 1912 → Ehrlich & Benda proposed use of acridines as antimicrobials (acriflavine/Trypaflavin/Gonoflavin) Ehrlich (of Salvarsan
    [Show full text]
  • Chemical Characterization of 465 Known Or Suspected Carcinogens and Their Correlation with Mutagenic Activity in the Salmonella Typhimurium System1
    (CANCER RESEARCH 39, 3289-331 8, september 1979] 0008-5472/79/0039-0000$02.OO Chemical Characterization of 465 Known or Suspected Carcinogens and Their Correlation with Mutagenic Activity in the Salmonella typhimurium System1 Stephen J. Rinkus2 and Marvin S. Legator Department of Preventive Medicine and Community Health, Division of Environmental Toxicology, University of Texas Medical Branch, Galveston, Texas 77550 ABSTRACT studieson groupsof carcinogenicand noncarcinogenicchem icals. Actually, the reported correlations between carcinogenic Since chemicals exhibiting mutagenic activity pose a poten ity and mutagenicity in Salmonella range from 63 to 92%. With tial hazard to their users, there is increasing acceptance of the exception of a brief comment by Odashima (172) on struc mutagenicity testing as an integral part of a premarketing ture-activity relationships apparent among false negatives and toxicological evaluation of chemicals. In vitro testing has gained false positives, there has been little indication that certain much notoriety as a quick and relatively inexpensive means to chemical categories of carcinogens are not well detected in assess the mutagenic potential of chemicals. However, the Salmonella. That the higher correlations do not necessarily innovative use of microsomes to simulate metabolism has not translateinto a correspondinglyhigh ability to detect carcino changed the fact that in vitro activation cannot duplicate faith gensfromamonganygroupof chemicalsisillustratedinTables fully the metabolism that occurs in vivo. This shortcoming will 1 and 2. Presented are the Salmonella testing results of 12 express itself by the production of false negatives and possibly pesticides judged positive for tumor induction by an expert false positives during mutagenicity screening. This assertion is panel of scientists reviewing the available studies (62).
    [Show full text]