Doctorat Paristech T H È S E L'école Nationale Supérieure Des

Total Page:16

File Type:pdf, Size:1020Kb

Doctorat Paristech T H È S E L'école Nationale Supérieure Des École doctorale n° 396 : Économie, Organisations & Société Doctorat ParisTech T H È S E pour obtenir le grade de docteur délivré par l’École nationale supérieure des mines de Paris Spécialité “ Sciences de Gestion ” présentée et soutenue publiquement par Frédéric ARNOUX le 22 janvier 2013 Modéliser et organiser la conception innovante : Le cas de l’innovation radicale dans les systèmes d’énergie aéronautiques Directeur de thèse : Armand HATCHUEL Co-encadrement de la thèse : Mathias BEJEAN Jury T M. Mathias BEJEAN, Maitre de conférences, IRG, Université Paris Est Créteil Examinateur M. Albert DAVID, Professeur, DRM, Université Paris-Dauphine Rapporteur H M. Antoine DRACHSLER, Chef de service Avant-Projets, Turbomeca Examinateur M. Armand HATCHUEL, Professeur, Centre de Gestion Scientifique, Mines ParisTech Examinateur È M. Jérémy LEGARDEUR, Professeur, ESTIA Rapporteur M. Michel NAKHLA , Professeur, EMI, Agro ParisTech Examinateur S M. François PELLERIN, Docteur en Physique des surfaces, Sudinnove Suffragant E MINES ParisTech Centre de Gestion Scientifique 60 boulevard Saint Michel, 75006 Paris 2 MINES ParisTech n’entend donner aucune approbation ni improbation aux opinions émises dans cette thèse. Ces opinions doivent être considérées comme propres à l’auteur. 3 4 A mes parents, 5 6 REMERCIEMENTS Je voudrais saluer ici les personnes qui de près ou de loin ont contribué à la concrétisation de ce travail de thèse de doctorat. Je tiens tout d’abord à adresser mes remerciements les plus sincères à mon directeur de thèse, Armand Hatchuel, qui a accepté de m’accompagner tout au long de cette expérience. Merci pour sa confiance, sa disponibilité, ses conseils et ses intuitions. Au travers de nos discussions, il m’a apporté une connaissance approfondie des divers aspects du sujet. Mes remerciements s'adressent ensuite tout particulièrement à mon codirecteur de thèse, Mathias Béjean, pour son investissement dans l’encadrement de cette thèse et ses nombreux conseils sur le monde de la recherche. Un grand merci à Sophie Hooge de m'avoir encouragé et aidé à diffuser mes résultats en dehors de mon terrain de recherche, mais surtout pour ses nombreuses contributions à l’amélioration de ce mémoire et son soutien sans failles durant ces derniers mois de rédaction. Je voudrais exprimer ma profonde gratitude à l’ensemble de l’équipe de la chaire TMCI et du Centre de Gestion Scientifique pour son accueil durant ces trois années de thèse. L'école des Mines a été un cadre privilégié pour effectuer ce travail. Jérémy Legardeur, professeur à l’ESTIA, m’a guidé vers ce projet de recherche et je tiens à l'en remercier vivement. J’espère que nos riches collaborations sur la conception innovante qui durent depuis maintenant plus de six ans se poursuivront à l’avenir. Je tiens à remercier Frédéric Garcias pour son travail de relecture et de correction du mémoire ainsi que pour sa réactivité à mes demandes. Je voudrais remercier ma mère pour ses corrections sur de nombreux chapitres du manuscrit et pour sa confiance et son soutien inconditionnel durant ces années de thèse. Cette thèse n’aurait jamais vu le jour sans les équipes de Turbomeca. Je tiens à exprimer ma profonde gratitude à mon tuteur industriel, Antoine Drachsler, chef de service des avant-projets, pour m’avoir soutenu et accompagné dans l’ensemble de mes intuitions dans un domaine qui lui était inconnu il y a trois ans de cela ; ce qui a dû lui prendre un temps précieux. 7 Je remercie François Pellerin de m’avoir fait confiance au moment où il lançait ce projet lorsqu’il était responsable de l’innovation de Turbomeca. Mes remerciements vont également à Partrick Marconi, ingénieur des avant-projets, pour la richesse des discussions que nous avons pu avoir sur l’histoire des sciences ainsi que pour sa pédagogie et humilité pour enseigner le fonctionnement des technologies. Cela a rendu cette thèse encore plus plaisante à rédiger. Je remercie l’ensemble de l’équipe des avant-projets pour son accueil et sa bonne humeur. Je tiens à remercier l’ensemble des partenaires industriels qui ont contribué à enrichir ces recherches, Dominique Levent, directrice Créativité & Vision à Renault, de m’avoir aidé à diffuser mes travaux à travers la communauté d’innovation de Renault, Dominique Lahousse, responsable innovation et prospective à la SNCF, de m’avoir invité à coanimer des séminaires de conception innovante sur des méthodes en phase de recherche, ainsi que tous les acteurs industriels qui m’ont accordé de leur temps pour discuter ces travaux : Yvon Bellec expert en conception innovante, Philippe Loué, consultant en management de l’innovation, Bertrand Stelandre, responsable Design et Innovation chez Visteon, Jean-Pascal Derumier spécialiste en management de l’innovation à la SNCF, Benjamin Duban, responsable de Viva conseil, Stéphane Cobo, responsable de la prospective à la RATP. J'aimerais remercier ceux et celles qui d'une manière ou d'une autre ont participé à l'écriture de ce document même si parfois le sujet leur était totalement inconnu. Enfin, ces remerciements ne seraient pas complets sans une pensée pour Frédéric Basse qui fut à l’origine de mon attrait pour la conception innovante en m’ayant confié une mission importante sur ce thème lors de mon passage en tant que stagiaire chez Rip Curl il y a 5 ans de cela. Je finis mes trois années de thèse avec une certaine sérénité. En trois ans, je suis passé de l’enthousiasme de commencer un nouveau projet, aux doutes et découragements quant aux nombreuses difficultés et à l’exigence de ce travail, à la satisfaction enfin de le voir progresser, et évoluer. 8 9 10 RESUME GENERAL Cette recherche étudie l’intégration de capacités organisationnelles pour l’innovation radicale dans les entreprises industrielles établies. Elle s’appuie sur l'étude longitudinale des processus d’innovation radicale d’un motoriste de l’aéronautique : Turbomeca. Cette entreprise, numéro un mondial des turbines à gaz d’hélicoptère, a connu en 2008 des bouleversements importants liés à la mutation des systèmes d'énergie aéronautiques, qui ont incité ses dirigeants à lancer une démarche d’innovation radicale. Cette démarche fut découplée en deux actions principales: 1/ la mobilisation d’un collectif transversal d'experts de l'entreprise entre 2009 et 2011, coordonnés selon une méthode collaborative de conception innovante, 2/ l'étude scientifique des conditions de genèse et d'intégration de capacités d’innovation radicale dans l’entreprise. Afin d'exploiter au mieux la richesse de ce matériel empirique, notre méthodologie de recherche est basée sur une recherche-intervention menée entre 2009 et 2012, et s'est appuyée sur un ensemble de méthodes et d’outils pour la collecte, la triangulation et l’analyse des données, telles que des entretiens semi-directifs, l’observation- participante, ou encore l’analyse d’archives de l’entreprise. Dans une première partie, nous proposons une revue de littérature synthétisant les apports des travaux de recherche internationaux sur l’innovation radicale, à travers laquelle nous mettons en évidence la limite de la segmentation de la littérature par niveaux organisationnels pour l’étude de l’organisation de l'innovation. De ce fait, pour étudier ces processus dans leur globalité, nous mobilisons les approches par la conception et proposons un cadre théorique permettant l'étude des capacités d’innovation radicale relatives au Design (D), à l’Incubation (I), et à la Mutation (M) de l’écosystème. Le cadre D-I-M permet d'une part, de rendre compte des nouveaux raisonnements de conception en jeu dans les processus d’innovation radicale et, d'autre part, d’étudier les moyens de production de connaissances nouvelles ainsi que l’interaction de l’entreprise avec son écosystème. Dans une deuxième partie, nous mobilisons l'ensemble très riche d'archives de notre terrain d’étude et les expériences des collaborateurs de Turbomeca — actifs ou retraités — pour étudier l’évolution historique des capacités d’innovation de l'entreprise. Afin de mieux comprendre et caractériser cette évolution, nous avons mené une investigation longitudinale approfondie sur les soixante-dix ans d'existence de la société (1948-2009). Cela nous permet d'analyser la genèse de la turbine à gaz et de reconstruire la généalogie des capacités de conception innovante de Turbomeca, depuis sa création jusqu’à la période de 11 bouleversements que cette entreprise rencontrait en 2008. Dans un premier temps, notre analyse de l’apparition de la turbine à gaz nous amène à proposer la notion de potentiel d’innovation de rupture pour comprendre l’apparition d’une innovation radicale. Puis, à travers notre cadre d’analyse des capacités d’innovation radicale D-I-M, nous proposons une relecture de l’histoire de Turbomeca qui nous permet de caractériser l’évolution des capacités de conception de l’entreprise en isolant trois modèles de conception, qui correspondent à trois périodes historiques différentes : le modèle entrepreneurial, le modèle exploratoire, et le modèle technocentré. Cette analyse met en évidence les limites de ce dernier modèle pour répondre aux nouveaux enjeux de l’aéronautique à Turbomeca, ainsi que la nécessité de faire émerger un nouveau modèle pour s’y adapter. Dans une troisième partie, afin de comprendre les processus à piloter pour conduire les transitions organisationnelles nécessaires à l’intégration de capacités d’innovation radicale, nous analysons la méthode collaborative de conception innovante mise en place dans l’entreprise : la méthode KCP. Nous mettons en évidence un type de transformation dans l’entreprise induit par cette méthode, et qui n’avait pas été repéré par la littérature sur l’innovation radicale : l’interaction entre la transformation du raisonnement de conception et la transformation multi-niveaux de l’organisation. Nous montrons, à partir de notre analyse, que l’intégration de capacités d’innovation radicale dans l’entreprise passe par une transformation de l’organisation que nous nommons transition organisationnelle par la conception.
Recommended publications
  • Decision 2005/07/R
    DECISION No 2005/07/R OF THE EXECUTIVE DIRECTOR OF THE AGENCY of 19-12-2005 amending Decision No 2003/19/RM of 28 November 2003 on acceptable means of compliance and guidance material to Commission Regulation (EC) No 2042/2003 on the continuing airworthiness of aircraft and aeronautical products, parts and appliances, and on the approval of organisations and personnel involved in these tasks THE EXECUTIVE DIRECTOR OF THE EUROPEAN AVIATION SAFETY AGENCY, Having regard to Regulation (EC) No 1592/2002 of 15 July 2002 on common rules in the field of civil aviation (hereinafter referred to as the Basic Regulation) and establishing a European Aviation Safety Agency1 (hereinafter referred to as the “Agency”), and in particular Articles 13 and 14 thereof. Having regard to the Commission Regulation (EC) No 2042/2003 of 28 November 2003 on the continuing airworthiness of aircraft and aeronautical products, parts and appliances, and on the approval of organisations and personnel involved in these tasks.2 Whereas: (1) Annex IV Acceptable Means of Compliance to Part- 66 Appendix 1 Aircraft type ratings for Part-66 aircraft maintenance licence (hereinafter referred to as Part-66 AMC Appendix I) is required to be up to date to serve as reference for the national aviation authorities. (2) To achieve this requirement the text of Part-66 AMC Appendix I should be amended regularly to add new aircraft type rating. (3) The regular amendment of Part-66 AMC Appendix I is considered as a permanent rulemaking task for the Agency. This decision represents the first update according to an accelerated procedure accepted by AGNA and SSCC.
    [Show full text]
  • CAR Part II Chapter 7 Aircraft Maintenance Engineer Licensing to (Mainly)
    NOTICE OF PROPOSED AMENDMENT 2019-01 Issue 01 Date of Issue: 14 April 2019 SUBJECT; CAR PART II CHAPTER 7 – CAR 66 AIRCRAFT MAINTENANCE ENGINEER LICENSING REASON; The GCAA has recently conducted a review of (CAR PART II Chapter 7) as a result of a Consultative Committee outcome (OTTG). The review has concluded that, there is a need to amend CAR Part II Chapter 7 Aircraft Maintenance Engineer Licensing to (mainly): 1. Introduce the category L licence for hot air balloons with its associated basic knowledge and training requirements; 2. further clarify on the examination process and basic knowledge/experience requirements for the issue and validity of a CAR 66 licence. 3. Transfer content of Appendix 1 to CAR 66.70 into CAR 66.50 and CAR 66.70 including the applicable AMC and GM; 4. create an appendix to identify limitations added to a CAR 66 licence and further define the reason and applicability for each limitation and the implications. The proposed initial entry into force date of the amendment is 01 August 2019. The layout and paragraph numbering may change through the NPA process; however the content will remain the same. This notice is published to announce to the public this amendment and to entitle all concerned parties to: 1. Review the attached proposed regulation; and 2. Submit their comments online through the GCAA website within 30 days from the date of this NPA. Comments must be submitted through the GCAA Website – E-Publication – Notice of Proposed Amendment, using the Action of “Submit NPA Feedback Request.” Comments and Responses may be viewed in the Comments Response Document CRD pertaining to this NPA on the GCAA website.
    [Show full text]
  • CRD) to Notice of Proposed Amendment (NPA) 03-2006
    Comment Response Document (CRD) to Notice of Proposed Amendment (NPA) 03-2006 for amending the Executive Director Decision No. 2005/07/R of 19 December 2005 on acceptable means of compliance and guidance material to Commission Regulation (EC) No 2042/2003 of 20 November 2003 on the continuing airworthiness of aircraft and aeronautical products, parts and appliances, and on the approval of organisations and personnel involved in these tasks APPENDIX I AIRCRAFT TYPE RATINGS FOR PART-66 AIRCRAFT MAINTENANCE LICENCE CRD to NPA 03/2006 Explanatory Note I. General 1. The purpose of the Notice of Proposed Amendment (NPA) 03/2006, dated 20 April 2006 was to propose an amendment to Decision N° 2005/07/R of the Executive Director of the Agency of 19 December 2005 on acceptable means of compliance and guidance material to Commission Regulation (EC) No 2042/2003 of 20 November 2003 on the continuing airworthiness of aircraft and aeronautical products, parts and appliances, and on the approval of organisations and personnel involved in these tasks (ED Decision 2005/07/R). II. Consultation 2. The draft Executive Director Decision (ED Decision) amending ED Decision 2005/07/R was published on the web site (www.easa.europa.eu) on 21 April 2006. By the closing date of 2 June 2006, European Aviation Safety Agency (the Agency) had received 107 comments from 20 National Aviation Authorities, professional organisations and private companies. III. Publication of the CRD 3. All comments received have been acknowledged and incorporated into a Comment Response Document (CRD). This CRD contains a list of all persons and/or organisations that have provided comments and the answers of the Agency.
    [Show full text]
  • EASA-European Aviation Safety Agency
    Standards Manager Web Standards List EASA-European Aviation Safety Agency Id Number Title Year Organization Page 1 AD 2018-0161 ATA 53 - Fuselage - Trimmable Horizontal Stabilizer Support Struts - Inspection 2018 EASA 2 PART-SPO AMC/GM to Part-SPO Amendment 10 - Annex V to Decision 2018/003/R 2018 EASA AMC & GM AMD 10 3 AD 2018- ATA 38 - Water/Waste - Forward Fuselage Shrouded Pipe T-Boxes And Clamps - Replacement 2018 EASA 0111R1 4 CS-25 AMD 22 CS-25 Amendment 22 - Change Information 2018 EASA CI 5 EC 2018/401 Commission Regulation (EU) 2018/401 Amending Regulation (EU) No 139/2014 As Regards The Classification Of 2018 EASA Runways 6 AD 2018-0247 ATA 34 Navigation Transponders Inspection / Modification 2018 EASA 7 AD 2018-0228 ATA 71 - Power Plant - Engine Air Inlet Cowl Inner Barrel Lower Panels - Inspection / Replacement 2018 EASA 8 AD 2018-0236- Emergency AD - ATA 32 Landing Gear Emergency Flotation Unit Inspection / Replacement Rotorcraft Flight Manual / 2018 EASA E Master Minimum Equipment List Temporary Revision 9 TOR Terms of Reference for rulemaking task - RAMP Deregulation - Issue 1 2018 EASA RMT.0721 10 TCDS BA.013 Type-Certificate Data Sheet - Cameron Balloons Ltd. - Manned Free Hot Air Balloons - Issue 18 2018 EASA 11 TCD SN Type-Certificate Data Sheet For Noise - Textron Aviation Inc. - Cessna 525 Series (Citation) - Issue 12 2018 EASA IM.A.078 12 TCDS Type-Certificate Data Sheet - Textron Aviation Inc. - Beechcraft 33, 35, 36 (Bonanza) - Issue 03 2018 EASA IM.A.279 13 TCDS Type-Certificate Data sheet - Lycoming Engines
    [Show full text]
  • ACP 34 Volume 2 Air Ll.Pmd
    Uncontrolled Copy Not Subject To Amendment air cadet publication ACP 34 aircraft operation volume 2 - airmanship Il Revision 1.02 Uncontrolled Copy Not Subject To Amendment Amendment List Date Amended by Incorporated No Date 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 i Revision 1.02 Uncontrolled Copy Not Subject To Amendment ACP 34 AIRCRAFT OPERATION CONTENTS Volume 1 .................. Airmanship l Volume 2................. Airmanship ll Volume 3 .................. Aircraft Handling Volume 4.................. Operational Flying Volume 2 Airmanship ll Chapter 1 ................. Air Traffice Control. Chapter 2 ................. Rules of the Air. Chapter 3 ................. Aircraft Knowledge. Instructors’ Guide ISSUED 2005 ii Revision 1.02 Uncontrolled Copy Not Subject To Amendment iii Revision 1.02 Uncontrolled Copy Not Subject To Amendment AIR TRAFFIC CONTROL CHAPTER 1 AIR TRAFFIC CONTROL Introduction ATC, ATCC & ATCRU 1. At Royal Air Force airfields all movements of aircraft, both on the ground and in the air, are monitored and controlled by a vital service known as Air Traffic Control (ATC). The ATC controllers and supporting staff operate from the “control tower”, and they communicate with the aircrew by radio telephony (RT). In the tower will be aerodrome controllers for aircraft on the ground and in the circuit, and approach controllers for aircraft that are outside the circuit, but within the airfield’s area of responsibility. Other controllers, responsible for the safety of aircraft flying between airfields, may be located in Air Traffic Control Centres (ATCCs) or Air Traffic Control Radar Units (ATCRUs) neither of which need be situated on airfields. The Control Tower Recognise a Control 2.
    [Show full text]
  • Small Gas Turbines Chapter 3 Starting
    Chapter 3 Starting and Ignition Systems Ignition systems Gas turbines unlike piston engines employ a continuous combustion process to provide the heat input that releases energy in to the engine working cycle. Once ignited the fuel burns continuously until the engine is shut down, at this point the combustion is extinguished by cutting off the fuel supply. When a gas turbine is started, a means of igniting the fuel is required, in most cases this is provided by an electric spark. One or more igniter plugs (Spark Plugs) are placed in the combustion chamber usually close to a fuel burner nozzle. When the HP fuel cock is opened a fine mist spray admitted by the burner mixes with the surrounding air, reaches the plug and ignites. Many small gas turbines only employ one igniter plug, but in some cases when an engine is constructed with an annular combustion chamber, two are fitted at opposite sides of the combustion chamber. Warning Gas turbine ignition systems are dangerous! Lethal voltages are present particularly in the high-energy types. Always allow several minutes to elapse before dismantling an ignition system so that any capacitors will fully discharge. Always make sure the casing of any igniter unit is electrically bonded to the engine casing. Poor or loose connections can develop potential differences whilst the sparks occur. Never operate an igniter unit without the igniter plug connected! There are three basic types of ignition systems that are used in small gas turbines, high tension (High Voltage), high-energy capacitor-discharge types and torch (Pilot) ignition types.
    [Show full text]
  • The Evolution of Helicopters , R
    The evolution of helicopters , R. Chen, C. Y. Wen, S. Lorente, and A. Bejan Citation: J. Appl. Phys. 120, 014901 (2016); doi: 10.1063/1.4954976 View online: http://dx.doi.org/10.1063/1.4954976 View Table of Contents: http://aip.scitation.org/toc/jap/120/1 Published by the American Institute of Physics JOURNAL OF APPLIED PHYSICS 120, 014901 (2016) The evolution of helicopters R. Chen,1 C. Y. Wen,1 S. Lorente,2 and A. Bejan3,a) 1Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong 2Universite de Toulouse, INSA, 135 Avenue de Rangueil, 31077 Toulouse, France 3Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708-0300, USA (Received 12 April 2016; accepted 17 June 2016; published online 1 July 2016) Here, we show that during their half-century history, helicopters have been evolving into geo- metrically similar architectures with surprisingly sharp correlations between dimensions, perform- ance, and body size. For example, proportionalities emerge between body size, engine size, and the fuel load. Furthermore, the engine efficiency increases with the engine size, and the propeller radius is roughly the same as the length scale of the whole body. These trends are in accord with the con- structal law, which accounts for the engine efficiency trend and the proportionality between “motor” size and body size in animals and vehicles. These body-size effects are qualitatively the same as those uncovered earlier for the evolution of aircraft. The present study adds to this theoreti- cal body of research the evolutionary design of all technologies [A.
    [Show full text]
  • CAA - Airworthiness Approved Organisations
    CAA - Airworthiness Approved Organisations Category UK Part 145 Name 2 Excel Aviation Limited (UK.145.01384) Address 2 Excel Aviation Ltd, Leading Edge, Reference Number UK.145.01384 Hangar 3, Doncaster Airport Category UK Part 145 Doncaster Website South Yorkshire Regional Office Manchester DN9 3GE UK Approval Date 15 DECEMBER 2017 Organisational Data Sites AW\Sites\Base\Base/PPOB DONCASTER SHEFFIELD AIRPORT HANGAR 3, FOURTH AVENUE, DONCASTER, SOUTH YORKSHIRE, DN9 3GE, UK Exposition AW\Exposition\Part 145 MOE LE/MOE/001 ISSUE 02 REVISION 04 09 MARCH 2021 Ratings AW\Ratings\Part 145 MOA & Part MF MO\Aircraft\A1 AEROPLANES ABOVE 5700 KG BOEING 727 Ratings AW\Ratings\Part 145 MOA & Part MF MO\Aircraft\A1 AEROPLANES ABOVE 5700 KG BOEING 737-300/400/500 Ratings AW\Ratings\Part 145 MOA & Part MF MO\Aircraft\A1 AEROPLANES ABOVE 5700 KG BOEING 737-600/700/800/900 Ratings AW\Ratings\Part 145 MOA & Part MF MO\Aircraft\A1 AEROPLANES ABOVE 5700 KG BEECH 300 SERIES Ratings AW\Ratings\Part 145 MOA & Part MF MO\Aircraft\A2 AEROPLANES 5700 KG AND BELOW REIMS-CESSNA F 406 Ratings AW\Ratings\Part 145 MOA & Part MF MO\Aircraft\A2 AEROPLANES 5700 KG AND BELOW BEECH 200 SERIES Ratings AW\Ratings\Part 145 MOA & Part MF MO\Aircraft\A2 AEROPLANES 5700 KG AND BELOW BRITTEN-NORMAN BN2T Ratings AW\Ratings\Part 145 MOA & Part MF MO\Aircraft\A2 AEROPLANES 5700 KG AND BELOW Piston Engine Aeroplanes - Metal Structure not exceeding 5700KG Ratings AW\Ratings\Part 145 MOA & Part MF MO\Components\C5 Electrical Power & Lights Ratings AW\Ratings\Part 145 MOA & Part MF MO\Components\C6
    [Show full text]
  • Edición 2018-V12 = Rev. 01
    Sponsored by L’Aeroteca - BARCELONA ISBN 978-84-608-7523-9 < aeroteca.com > Depósito Legal B 9066-2016 Título: Los Motores Aeroespaciales A-Z. © Parte/Vers: 3/12 Página: 601 Autor: Ricardo Miguel Vidal Edición 2018-V12 = Rev. 01 -ARGUS. (Continuación) -Otra visita al Museo de la Regia Aeronautica nos ha permitido fotografi ar el Argus As-10c. -Primorosamente restaurado y con su bancada original. -Las fotos son gentileza de nuestro colaborador JGB. “Motor Argus As-5” -Como vemos se trata de dos motores con cilindros en W unidos por el mismo cigüeñal. Un motor encima y el “Argus As-10c en Vigna di Valle” otro invertido. -Parece ser que el diseño es de Riedel, el ingeniero que hizo el motor de arranque de dos tiempos superchato y rápido para las turbinas de Junkers, BMW y Heinkel-Hirth. -En el Museo de Cracovia encontramos el Argus As5. Un mastodonte de 24 cilindros y 1500 CV a 1800 rpm, -Se ha localizado en un informe hasta ahora confi dencial cubicando unos 94 litros y pesando 1100 Kgs. (el Technical Memorandum No.706 de la NACA) una silu- eta del Argus As7, un radial de 9 cilindros que en el texto principal se menciona pero no se conoce ni su arquitectura. * * * Logos de fabricantes de motores Sponsored by L’Aeroteca - BARCELONA ISBN 978-84-608-7523-9 Este facsímil es < aeroteca.com > Depósito Legal B 9066-2016 ORIGINAL si la Título: Los Motores Aeroespaciales A-Z. © página anterior tiene Parte/Vers: 3/12 Página: 602 el sello con tinta Autor: Ricardo Miguel Vidal VERDE Edición: 2018-V12 = Rev.
    [Show full text]
  • The A-B Helicopters A/W 95 Is a Tiny Single-Seat Open-Framework Helicopter Designed for Home-Building, Based on the Adams-Wilson Hobbycopter of the 1950S
    The A-B Helicopters A/W 95 is a tiny single-seat open-framework helicopter designed for home-building, based on the Adams-Wilson Hobbycopter of the 1950s. Specifications (A/W 95, typical) General Characteristics Crew: one pilot Length: 15 ft 0 in (4.57 m) Main rotor diameter: 19 ft 6 in (5.94 m) Height: 6 ft 5 in (1.96 m) Main rotor area: 299 ft² (28 m²) Empty: 272 lb (123 kg) Loaded: 490 lb (222 kg) Maximum takeoff: lb ( kg) Powerplant: various - Rotax 583 or similar Performance Maximum speed: 85 mph (136 km/h) Range: miles ( km) Service ceiling: ft ( m) Rate of climb: ft/min ( m/min) Main rotor loading: 1.6 lb/ft² (8 kg/m²) Power/Mass: varies AEG (Allgemeine Elektrizitäts-Gesellschaft) (English Translation: General Electricity Company) is a German producer of electronics and electrical equipment. AEG was founded in 1883 by Emil Rathenau who had bought some patents from Thomas Edison. AEG manufactured a range of aircraft from 1910 to 1918. During WWII AEG engineers played a significant role in developing the magnetic audio tape recorder. In 1967 AEG joined with Telefunken and in 1969 they started working with Siemens AG. In 1985 AEG was bought by Daimler-Benz. The Household Appliances business was sold to Electrolux in 1996. The Transportation business was reorganized into Adtranz which was sold to Bombardier later. Models AEG B.I AEG B.II AEG B.III AEG C.I AEG C.II AEG C.III AEG C.IV AEG C.V AEG C.VIII AEG D.I AEG DJ.I AEG Dr.I AEG F.1 AEG G.I AEG G.IV AEG J.I AEG J.II AEG R.I AEG helicopter The AEG helicopter was an unusual German aircraft project, intended to create a portable observation post in the form of a tethered helicopter.
    [Show full text]
  • List of Aircraft Type Ratings Appendix I Part-66
    NCAR Part- 66 Aircraft Maintenance Licence Chapter 4 (Appendices to AMCs) (List of aircraft type ratings for Appendix I to AMC to Part‐66) Appendix I Aircraft Type Ratings for NCAR Part-66 Aircraft Maintenance Licence The following aircraft type ratings should be used by CAA Nepal. The type rating will be endorsed in the NCAR Part-66 AML for the aircraft registered in Nepal only. This list is based on EASA Type rating list published by EASA ED Decision 2015/020/R that is regularly updated by EASA and List of Type Certificate Validation/Acceptance by CAA Nepal. The CAA Nepal will visit the EASA website to identify the latest changes and CAA Nepal Type Certificate Validation/Acceptance list to update this list. Notes on when the licences should be modified: When a modification is introduced by this Decision to an aircraft type rating or to an engine designation in the rating which affect licences already issued, the ratings on the Aircraft Maintenance Licences (AMLs) may be modified at the next renewal or when the licence is reissued, unless there is an urgent reason to modify the licence. Notes on aircraft modified by Supplemental Type Certificate (STC): − This Appendix I intends to include the type ratings of aircraft resulting from STCs for installation of another engine. These STCs are those approved by the CAA Nepal. Other STCs than those for engines are not considered. − However, the ratings from STCs for installation of an engine: − on part of the original airframe models, or − from the same manufacturer, but of a type very similar to the original one, have not been added because they would have resulted in an already existing rating.
    [Show full text]
  • Annex to ED Decision 2019/024/R
    Annex to Decision 2019/024/R Annex to ED Decision 2019/024/R Acceptable Means of Compliance (AMC) and Guidance Material (GM) to Annex III (Part-66) to Commission Regulation (EU) No 1321/2014 Issue 2 — Amendment 4 The text of the amendment is arranged to show deleted text, new or amended text as shown below: — deleted text is struck through; — new or amended text is highlighted in grey; — an ellipsis ‘[…]’ indicates that the rest of the text is unchanged. ED Decision 2015/029/R (AMC and GM to the Annexes to Regulation (EU) No 1321/2014 — Issue 2’) is amended as follows: Appendix I — Aircraft Type Ratings for Part-66 Aircraft Maintenance Licences The following aircraft type ratings should be used to ensure a common standard throughout the Member States. In order to keep this list up to date, in case if a Member State needs to issue a type rating that is not included in this list, the information should be passed on to EASA using the EASA ‘Contact us’ webpage (https://www.easa.europa.eu/contact-us). The tables may erroneously contain aircraft models that fall within the definition of Annex I aircraft of Regulation (EU) 2018/1139. The requirements of Part-66 do not apply to these aircraft. Notes on type rating (TR) endorsement covering several models/variants: The endorsement of a type rating (TR) on the aircraft maintenance licence (AML) covering several models/variants does not automatically imply that the AML holder has acquired the appropriate knowledge on each model/variant. In fact, the AML holder may only have received TR training and/or gained experience that was The TR course received or the experience the AML holder has gained, may have been limited to one or several models or variants.
    [Show full text]