Distal ejecta from lunar impacts: Extensive regions of rocky deposits Joshua L. Bandfield1, Joshua T.S. Cahill2, Lynn M. Carter3, Catherine D. Neish4, G. Wesley Patterson2, Jean-Pierre Williams5, David A. Paige5 1Space Science Institute 2Johns Hopkins University Applied Physics Laboratory 3NASA Goddard Space Flight Center 4Department of Earth Sciences, The University of Western Ontario 5Earth, Planetary, and Space Sciences, University of California, Los Angeles Manuscript Correspondence: Joshua Bandfield Space Science Institute 4750 Walnut Street, Suite 205 Boulder, CO 80301, USA
[email protected] Manuscript Pages: 32 Figures: 14 Keywords: Moon, surface; Impact processes; Infrared observations; Radar observations 1 Abstract Lunar Reconnaissance Orbiter (LRO) Diviner Radiometer, Mini-RF, and LRO Camera data were used to identify and characterize rocky lunar deposits that appear well separated from any potential source crater. Two regions are described: 1) A ~18,000 km2 area with elevated rock abundance and extensive melt ponds and veneers near the antipode of Tycho crater (167.5°E, 42.5°N). This region has been identified previously, using radar and imaging data. 2) A much larger and more diffuse region, covering ~730,000 km2, centered near 310°E, 35°S, containing elevated rock abundance and numerous granular flow deposits on crater walls. The rock distributions in both regions favor certain slope azimuths over others, indicating a directional component to the formation of these deposits. The spatial distribution of rocks are consistent with the arrival of ejecta from the west and northwest at low angles (~10–30°) above the horizon in both regions. The derived age and slope orientations of the deposits indicate that the deposits likely originated as ejecta from the Tycho impact event.