December 2018 the Monthly Newsletter of the Bays Mountain Astronomy Club

Total Page:16

File Type:pdf, Size:1020Kb

December 2018 the Monthly Newsletter of the Bays Mountain Astronomy Club December 2018 The Monthly Newsletter of the Bays Mountain Astronomy Club More on Edited by Adam Thanz this image. See FN1 Chapter 1 Cosmic Reflections William Troxel - BMAC Chair More on this image. See FN2 William Troxel More on Cosmic Reflections this image. See FN3 December is here. It is hard to believe that this is the last month December’s constellation winner is Sagitta. This month's of 2018. It seems like yesterday you voted for me as your new constellation is a new one for me. Jason was telling me about it. chairman. We have had a good six months. The annual picnic, My interest was peaked so I had to research this new StarFest and StarWatch events all have been wonderful. The constellation for myself. Of course, you know it is not a new weather has been much better for us, then it was in the spring constellation at all. It was first catalogued in the 2nd century by session, so we have seen a lot more of the public and that is a the greek astronomer Ptolemy. good thing. There are 3 different myths associated with this very small November’s program showcased our own Jason Dorfman as the constellation. The story is told that this is the arrow that was speaker. Jason always does a wonderful job when he shares his used by Heracles to kill the eagle Zeus sent to gnaw at knowledge, this time was no exception. Jason used the Prometheus’ liver. Prometheus was a sculptor that moulded men planetarium to explain how coordinates are used to help and women out of clay in the likeness of Gods and gave them catalogue stars. During his presentation, he set in motion the fire that he had stolen from the Gods. Zeus decided that he had advancement of the night sky while the grids were up showing to be punished for this act and chained him to Mt. Caucasus how the stars changed position during the night. It was very where the eagle Aquila would perpetually gnaw his liver, however interesting to see how all the tools work together. The really his liver grows back every night. unusual thing for me personally was how the early astronomers Here is where Heracles comes into the picture. Heracles, on one were able to map the stars, and come up with this mapping of his journeys, came across Prometheus and killed the eagle system that still works to this day. After the presentation Jason with the arrow freeing him. took questions from the members. I want to thank Jason again for his wonderful presentation. Bays Mountain Astronomy Club Newsletter December 2018 3 Sagitta the Arrow. Image from Stellarium, annotations by Adam Thanz 4 Bays Mountain Astronomy Club Newsletter December 2018 In another myth, Sagitta is identified as the arrow Apollo used to Astronomical Unit - noun, abv: AU; A unit of length, equal to the kill the Cyclopes because they made the thunderbolts of Zeus mean difference of the Earth from the Sun: approximately 93 that killed Apollo’s son, Asclepius the famous healer, who is million miles (150 million km). It is used when referring to the represented in the constellation Ophiuchus. distance to objects within the Solar System. Example of correct use of this term would be: The estimated distance to the planet The last myth I found has Sagitta associated with the arrow of Jupiter would be between 4.2 to 6.2 AU (astronomical units) Eros which made Zeus fall in love with Ganymede. This story tells depending on Jupiter's location in the Solar System. that Aquila guards the arrow in the night sky. Blueshift - noun; 1) a shift in the lines of an objects’ spectrum The Greeks knew this constellation as Oistos, it was the Romans toward the blue end. Blueshift indicates that an object is moving that changed the name to Sagitta as we call it today. toward the observer. The larger the blueshift, the faster the object All three of these myths refer to this constellation as an arrow. is moving. 2) the displacement of the spectrum to shorter Many stories told in different cultures sometimes refer to different wavelengths in the light coming from a distant celestial object characters or items however this one seems to hold the same moving toward the observer. item in all of the myths. Continue to research and see if you can I wanted to remind everyone about the December meeting. Our find other myths around other cultures and maybe on one of your speaker for that meeting will be our own Greg Love. Greg will star gazing sessions you will add this to your observing program. doing a presentation on binoculars in astronomy. Greg has invited I encourage you to read Jason's article as he talks about the you to bring your close-focus binoculars to the meeting as we will astronomical details of this constellation as we know it today. be in the Planetarium again and we will be able to use them to find objects on the dome. This would be a great meeting to invite I will be sharing each month a couple of astronomy terms for us your friends because he will also talk about how to pick a pair to to help build our vocabulary. The goal is to show the definition of start observing for those of you that are just starting out. Just as a the word or words as it is used in astronomy and in the culture reminder, the meeting will be on December 7, 2018 at 7 pm. I should there be a difference. This will also help when you are hope to see everyone at the meeting. explaining our hobby to people who are not familiar with our field of interest. This month I will start with the words "Astronomical Lastly, I wanted to share some upcoming events for the club. The Unit" and "blueshift." club dinner is coming up in January 2019. I will have all the details 5 Bays Mountain Astronomy Club Newsletter December 2018 at the next meeting. I will also be asking you for a rough count for those of you that think you will be interested in being part of the Messier Marathon that is set for March of 2019. This is only a rough count to see if enough members are interested in this “Club Members Only” event. Until next time… Clear Skies. References: Users.skynet.be.com www.oxfordreference.com http://www.seasky.org/astronomy/astronomy-glossary.html#B 6 Bays Mountain Astronomy Club Newsletter December 2018 Chapter 2 BMAC Notes More on this image. See FN4 More on BMAC News this image. See FN3 BoBfest 2019 Make plans for the Regional Gathering of Amateur Astronomers 2019, aka BoBfest on February 2, 2019! That’s right, BoBfest 2019 will be on Groundhog Day. See you all at the Catawba Science Center in Hickory, NC! Bays Mountain Astronomy Club Newsletter December 2018 8 Jason Dorfman using the planetarium instrument to illustrate celestial motions! Image from Robin Byrne. 9 Bays Mountain Astronomy Club Newsletter December 2018 Chapter 3 Celestial Happenings Jason Dorfman More on this image. See FN5 Jason Dorfman More on Celestial Happenings this image. See FN3 It's hard to believe that it's already the end of the year. The Sun locating it. Through a scope you'll see a 9" diameter disk looking is setting early and the colder temperatures are already 86% illuminated. Its appearance will not change much over the beginning to set in. This is great for astronomy enthusiasts - month. Mars will dim by about a half magnitude as its diameter longer nights and clearer skies create the perfect conditions for decreases slightly to about 7.5". observing the night sky. Mars will make a conjunction with the ice giant Neptune this Planets month. Though much larger than Mars, Neptune's great distance As the twilight glow of the setting Sun begins to fade, look low in from the Sun makes it unobservable without a telescope or the southwest for the beautiful ringed world, Saturn. On the 1st, binoculars. On the 1st, look about 3.6° to the ENE of Mars to find 45 minutes after sunset, it will be about 10° above the horizon. At this icy, blue world shining at magnitude +7.9. You won't see any magnitude +0.5, you'll be able to easily find it. However, due to features with Neptune as it's disk spans just 2.3". Both planets its proximity to the horizon, observations of Saturn will not be are moving eastward against the background stars but Mars is spectacular. As the month continues, Saturn will appear lower moving much more swiftly, lessening the gap between the two and lower each night at the same time, disappearing into the by 0.6° everyday. On the 6th, Neptune will be just 23' to the ENE bright light of the setting Sun by mid-month. of Mars. The true conjunction occurs at 9:08 a.m. on the 7th when Mars will be just 2.2' north of Neptune. Of course, at that Mars, on the other hand, is still positioned for some good hour both will be well below the horizon for our location (and the observations against the background stars of Aquarius. Look Sun will be up)! By the time the Sun goes down, Mars will have due south an hour after sunset and about 45° up from the moved to 16' to the NE of Neptune. horizon to find the "Red Planet" at the start of the month.
Recommended publications
  • Insights from the Thorium Abundance Distribution in South Pole-Aitken Basin
    Lunar and Planetary Science XXXVIII (2007) 1697.pdf DID A KREEP-LIKE COMPONENT EXIST ON THE FAR SIDE OF THE MOON?: INSIGHTS FROM THE THORIUM ABUNDANCE DISTRIBUTION IN SOUTH POLE-AITKEN BASIN. J. J. Hagerty1, D. J. Lawrence1, B. R. Hawke2, R. C. Elphic1, T. H. Prettyman1, and W. C. Feldman1, 1Los Alamos National Laboratory, ISR-1, MS D466, Los Alamos, NM 87545, email: [email protected]. 2University of Hawaii, Honolulu, HI 96822. Introduction: Most models for the evolution of materials on top of those basalt ponds. These results the Moon predict that 99% fractional crystallization of provide important information that help us to evaluate a lunar magma ocean will produce a layer of melt en- the source of Th enhancements in SPA basin. riched in incompatible elements such as K, REE, and P Forward Modeling: As part of the forward model- (i.e., KREEP) [1]. The lateral extent and distribution of ing process, we re-create a specific portion of the lunar this “KREEP” layer, which contains an abundance of surface in which we can control the Th abundances of heat-producing elements such as Th and U, is currently specific geologic features [12,13]. We must also know a matter of debate. However some workers [2] have what Th abundances can be reasonably assigned to any proposed that the surficial distribution of Th, which given feature and/or lithology, which is why we use has been measured on a global-scale [3,4,5], can be analyses from the lunar sample suite to constrain the used as a proxy for determining the global distribution upper and lower bounds of our Th estimates.
    [Show full text]
  • Planetary Surfaces
    Chapter 4 PLANETARY SURFACES 4.1 The Absence of Bedrock A striking and obvious observation is that at full Moon, the lunar surface is bright from limb to limb, with only limited darkening toward the edges. Since this effect is not consistent with the intensity of light reflected from a smooth sphere, pre-Apollo observers concluded that the upper surface was porous on a centimeter scale and had the properties of dust. The thickness of the dust layer was a critical question for landing on the surface. The general view was that a layer a few meters thick of rubble and dust from the meteorite bombardment covered the surface. Alternative views called for kilometer thicknesses of fine dust, filling the maria. The unmanned missions, notably Surveyor, resolved questions about the nature and bearing strength of the surface. However, a somewhat surprising feature of the lunar surface was the completeness of the mantle or blanket of debris. Bedrock exposures are extremely rare, the occurrence in the wall of Hadley Rille (Fig. 6.6) being the only one which was observed closely during the Apollo missions. Fragments of rock excavated during meteorite impact are, of course, common, and provided both samples and evidence of co,mpetent rock layers at shallow levels in the mare basins. Freshly exposed surface material (e.g., bright rays from craters such as Tycho) darken with time due mainly to the production of glass during micro- meteorite impacts. Since some magnetic anomalies correlate with unusually bright regions, the solar wind bombardment (which is strongly deflected by the magnetic anomalies) may also be responsible for darkening the surface [I].
    [Show full text]
  • Rare Astronomical Sights and Sounds
    Jonathan Powell Rare Astronomical Sights and Sounds The Patrick Moore The Patrick Moore Practical Astronomy Series More information about this series at http://www.springer.com/series/3192 Rare Astronomical Sights and Sounds Jonathan Powell Jonathan Powell Ebbw Vale, United Kingdom ISSN 1431-9756 ISSN 2197-6562 (electronic) The Patrick Moore Practical Astronomy Series ISBN 978-3-319-97700-3 ISBN 978-3-319-97701-0 (eBook) https://doi.org/10.1007/978-3-319-97701-0 Library of Congress Control Number: 2018953700 © Springer Nature Switzerland AG 2018 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors, and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made.
    [Show full text]
  • Scientists Provide New Explanation for the Far Side of the Moon's Strange
    PRESS RELEASE Source: ELSI, Tokyo Institute of Technology, Japan For immediate release: June 22, 2020 Title: Scientists provide new explanation for the far side of the Moon’s strange asymmetry Subtitle: Earth’s Moon has a ‘near side’ that is perpetually Earth‐facing and a ‘far side’, which always faces away from Earth. The composition of the Moon’s near side is oddly different from its far side, and scientists think they finally understand why. Release summary: The Earth‐Moon system’s history remains mysterious. Scientists believe the two formed when a Mars‐sized body collided with the proto‐Earth. Earth ended up being the larger daughter of this collision and retained enough heat to become tectonically active. The Moon, being smaller, likely cooled down faster and geologically ‘froze’. The apparent dynamism of the Moon challenges this idea. New data suggest this is because radioactive elements were distributed uniquely after the catastrophic Moon‐forming collision. Full‐text release: The Earth‐Moon system’s history remains mysterious. Scientists believe the two formed when a Mars‐sized body collided with the proto‐Earth. Earth ended up being the larger daughter of this collision and retained enough heat to become tectonically active. The Moon, being smaller, likely cooled down faster and geologically ‘froze’. The apparent early dynamism of the Moon challenges this idea. New data suggest this is because radioactive elements were distributed uniquely after the catastrophic Moon‐ forming collision. Earth’s Moon, together with the Sun, is a dominant object in our sky and offers many observable features which keep scientists busy trying to explain how our planet and the Solar System formed.
    [Show full text]
  • By DWG Arthur, Alice P. Agnieray, Ruth H. Pellicori, CA Wood, and T
    No. 50 THE SYSTEM OF LUNAR CRATERS, QUADRANT III by D. W. G. Arthur, Alice P. Agnieray, Ruth H. Pellicori, C. A. Wood, and T. Weller February 25, 1965 ABSTRACT The designation, diameter, position, central peak information, and state of completeness are listed for each discernible crater with a diameter exceeding 3.5 km in the third lunar quadrant. The catalog contains about 5200 items and is illustrated by a map in 11 sections. on the averted lunar hemisphere, and therefore, these Thistem Communication of Lunar Craters, is the which third is part a catalog of The in Sys four are not listed in the catalog. parts of all craters recognizable with reasonable The approximate positions and diameters for certainty on photographs and having a diameter these craters are: greater than 3.5 km. It is thus a continuation of the work in Comm. LPL Nos. 30 and 40, and the same Long. Lat. Diam, (.00Ir) Hausen -91?5 - 6 5 ? 6 9 9 . 5 conventions and format are used. Boltzmann -96?0 - 7 5 ? 5 3 9 . 1 As in the earlier parts, it was found necessary S t e f a n - 9 4 ? 0 - 7 2 ? 0 7 8 . 0 to add names for large craters in the extreme limb regions. The new crater names for Quadrant III are: The above are mere additions to the Blagg and Miiller scheme. A more notable innovation, which Baade German-American astronomer has already been authorized by the International Boltzmann Austrian physicist Astronomical Union at its 1964 general meeting at Drygalski German geographer Hamburg, is the addition of the name Mare Cogni- Hartwig German selenodetist tum (the known sea) for the dark area between Krasnov Russian selenodetic observer Riphaeus and the crater Guerike.
    [Show full text]
  • Relative Ages
    CONTENTS Page Introduction ...................................................... 123 Stratigraphic nomenclature ........................................ 123 Superpositions ................................................... 125 Mare-crater relations .......................................... 125 Crater-crater relations .......................................... 127 Basin-crater relations .......................................... 127 Mapping conventions .......................................... 127 Crater dating .................................................... 129 General principles ............................................. 129 Size-frequency relations ........................................ 129 Morphology of large craters .................................... 129 Morphology of small craters, by Newell J. Fask .................. 131 D, method .................................................... 133 Summary ........................................................ 133 table 7.1). The first three of these sequences, which are older than INTRODUCTION the visible mare materials, are also dominated internally by the The goals of both terrestrial and lunar stratigraphy are to inte- deposits of basins. The fourth (youngest) sequence consists of mare grate geologic units into a stratigraphic column applicable over the and crater materials. This chapter explains the general methods of whole planet and to calibrate this column with absolute ages. The stratigraphic analysis that are employed in the next six chapters first step in reconstructing
    [Show full text]
  • Lunar and Planetary Science XXXII (2001) 1074.Pdf
    Lunar and Planetary Science XXXII (2001) 1074.pdf VOYAGER IMAGES REVISITED: NEW VIEWS OF THE SATELLITES OF SATURN AND URANUS. P. J. Stooke1, 1Department of Geography, University of Western Ontario, London, Ontario, Canada N6A 5C2; [email protected]; www.uwo.ca/geog/faculty/stooke.htm Introduction: Voyager images of Saturn and its near the sub-Uranus point. At top near the planetshine moons are 20 years old, and images of the Uranian sys- terminator, the sinuous graben complex Kachina Chas- tem are 15 years old. Although much was learned from mata extends far into the northern hemisphere, possibly them, more may still be done using recent image proc- to the far limb. Additional details may be revealed by essing methods. Here I present results of a program of better noise removal. Unfortunately, few other Uranus reprocessing of images of the icy satellites of these two satellite images show useful details in planetshine. planets. Highlights include the identification of fea- Either the satellite is too far from the planet, and so tures illuminated by planetshine on the northern hemi- more weakly illuminated, or the ‘dark’ side is seen only sphere of Ariel, enigmatic markings on Enceladus and very obliquely in low phase angle views. the identification of new features on Rhea and Umbriel. This program will result in new maps of the Saturnian satellites in time for Cassini’s arrival. Images and Processing: This study makes use of all available images from the PDS Ring Node archive. An interesting observation, which this program will rectify, is that the USGS maps of all these satellites do not make full use of the image sets.
    [Show full text]
  • Spacecraft Deliberately Crashed on the Lunar Surface
    A Summary of Human History on the Moon Only One of These Footprints is Protected The narrative of human history on the Moon represents the dawn of our evolution into a spacefaring species. The landing sites - hard, soft and crewed - are the ultimate example of universal human heritage; a true memorial to human ingenuity and accomplishment. They mark humankind’s greatest technological achievements, and they are the first archaeological sites with human activity that are not on Earth. We believe our cultural heritage in outer space, including our first Moonprints, deserves to be protected the same way we protect our first bipedal footsteps in Laetoli, Tanzania. Credit: John Reader/Science Photo Library Luna 2 is the first human-made object to impact our Moon. 2 September 1959: First Human Object Impacts the Moon On 12 September 1959, a rocket launched from Earth carrying a 390 kg spacecraft headed to the Moon. Luna 2 flew through space for more than 30 hours before releasing a bright orange cloud of sodium gas which both allowed scientists to track the spacecraft and provided data on the behavior of gas in space. On 14 September 1959, Luna 2 crash-landed on the Moon, as did part of the rocket that carried the spacecraft there. These were the first items humans placed on an extraterrestrial surface. Ever. Luna 2 carried a sphere, like the one pictured here, covered with medallions stamped with the emblem of the Soviet Union and the year. When Luna 2 impacted the Moon, the sphere was ejected and the medallions were scattered across the lunar Credit: Patrick Pelletier surface where they remain, undisturbed, to this day.
    [Show full text]
  • Moon Viewing Guide
    MMoooonn MMaapp What lunar features can you find? Use this Moon Map & Viewing Guide to explore different areas of the Moon - no binoculars needed! MMoooonn VViieewwiinngg GGuuiiddee A quick look at the Moon in the night sky – even without binoculars - shows light areas and dark areas that reveal lunar history. Can you find these features? Use the Moon Map (above) to help. Sea of Tranquility (Mare Tanquilitatus) – Formed when a giant t! nd I asteroid hit the Moon almost 4 billion years ago, this 500-mile wide Fou dark, smooth, circular basin is the site of the Apollo 11 landing in 1969. Sea of Rains (Mare Imbrium) – Imbrium Basin is the largest t! nd I basin on the Moon that was formed by a giant asteroid almost 4 Fou billion years ago. Sea of Serenity (Mare Serenitatis) – Apollo 17 astronauts t! sampled some of the oldest rocks on the Moon from edges of nd I Fou the Sea of Serenity. These ancient rocks formed in the Moon’s magma ocean. Lunar Highlands – The lighter areas on the Moon are the lunar t! highlands. These are the oldest regions on the Moon; they formed nd I Fou from the magma ocean. Because they are so old, they have been hit by impact craters many times, making the highlands very rough. Want an extra challenge? If you have a telescope or pair of binoculars, try finding these features: Appenine Mountains (Montes Apenninus) – Did you know there are mountain ranges on the Moon? The rims of the craters and t! nd I basins rise high above the Moon’s surface.
    [Show full text]
  • Lunar Exploration Efforts
    Module 3 – Nautical Science Unit 4 – Astronomy Chapter 13 - The Moon Section 1 – The Moon What You Will Learn to Do Demonstrate understanding of astronomy and how it pertains to our solar system and its related bodies: Moon, Sun, stars and planets Objectives 1. Recognize basic facts about the Moon such as size, distance from Earth and atmosphere 2. Describe the geographical structure of the Moon 3. Describe the surface features of the Moon 4. Explain those theories that describe Moon craters and their formations Objectives 5. Describe the mountain ranges and riles on the surface of the Moon 6. Explain the effect moonquakes have on the Moon 7. Describe how the Moon’s motion causes its phases 8. Explain the basic reasons for Moon exploration Key Terms CPS Key Term Questions 1 - 12 Key Terms Maria - Mare or Maria (plural); Any of the several dark plains on the Moon and Mars; Latin word for “Sea” Reflectance - The ratio of the intensity of reflected radiation to that of the radiation that initially hits the surface. Key Terms Impact Crater - The cup shaped depression or cavity on the surface of the Earth or other heavenly bodies. Breccia - Rock composed of angular fragments of older rocks melded together as a result of a meteor impact. Regolith - The layer of disintegrated rock fragments (dust), just above the solid rock of the Moon’s crust. Key Terms Rilles - Cracks in the lunar surface similar to shallow, meandering river beds on the Earth. Phases The Moon’s motion in its orbit (of the Moon) - causes its phases (progressive changes in the visible portion of the Moon).
    [Show full text]
  • Blasts from the Past Historic Supernovas
    BLASTS from the PAST: Historic Supernovas 185 386 393 1006 1054 1181 1572 1604 1680 RCW 86 G11.2-0.3 G347.3-0.5 SN 1006 Crab Nebula 3C58 Tycho’s SNR Kepler’s SNR Cassiopeia A Historical Observers: Chinese Historical Observers: Chinese Historical Observers: Chinese Historical Observers: Chinese, Japanese, Historical Observers: Chinese, Japanese, Historical Observers: Chinese, Japanese Historical Observers: European, Chinese, Korean Historical Observers: European, Chinese, Korean Historical Observers: European? Arabic, European Arabic, Native American? Likelihood of Identification: Possible Likelihood of Identification: Probable Likelihood of Identification: Possible Likelihood of Identification: Possible Likelihood of Identification: Definite Likelihood of Identification: Definite Likelihood of Identification: Possible Likelihood of Identification: Definite Likelihood of Identification: Definite Distance Estimate: 8,200 light years Distance Estimate: 16,000 light years Distance Estimate: 3,000 light years Distance Estimate: 10,000 light years Distance Estimate: 7,500 light years Distance Estimate: 13,000 light years Distance Estimate: 10,000 light years Distance Estimate: 7,000 light years Distance Estimate: 6,000 light years Type: Core collapse of massive star Type: Core collapse of massive star Type: Core collapse of massive star? Type: Core collapse of massive star Type: Thermonuclear explosion of white dwarf Type: Thermonuclear explosion of white dwarf? Type: Core collapse of massive star Type: Thermonuclear explosion of white dwarf Type: Core collapse of massive star NASA’s ChANdrA X-rAy ObServAtOry historic supernovas chandra x-ray observatory Every 50 years or so, a star in our Since supernovas are relatively rare events in the Milky historic supernovas that occurred in our galaxy. Eight of the trine of the incorruptibility of the stars, and set the stage for observed around 1671 AD.
    [Show full text]
  • The Composition of the Lunar Crust: Radiative Transfer Modeling and Analysis of Lunar Visible and Near-Infrared Spectra
    THE COMPOSITION OF THE LUNAR CRUST: RADIATIVE TRANSFER MODELING AND ANALYSIS OF LUNAR VISIBLE AND NEAR-INFRARED SPECTRA A DISSERTATION SUBMITTED TO THE GRADUATE DIVISION OF THE UNIVERSITY OF HAWAI‘I IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN GEOLOGY AND GEOPHYSICS DECEMBER 2009 By Joshua T.S. Cahill Dissertation Committee: Paul G. Lucey, Chairperson G. Jeffrey Taylor Patricia Fryer Jeffrey J. Gillis-Davis Trevor Sorensen Student: Joshua T.S. Cahill Student ID#: 1565-1460 Field: Geology and Geophysics Graduation date: December 2009 Title: The Composition of the Lunar Crust: Radiative Transfer Modeling and Analysis of Lunar Visible and Near-Infrared Spectra We certify that we have read this dissertation and that, in our opinion, it is satisfactory in scope and quality as a dissertation for the degree of Doctor of Philosophy in Geology and Geophysics. Dissertation Committee: Names Signatures Paul G. Lucey, Chairperson ____________________________ G. Jeffrey Taylor ____________________________ Jeffrey J. Gillis-Davis ____________________________ Patricia Fryer ____________________________ Trevor Sorensen ____________________________ ACKNOWLEDGEMENTS I must first express my love and appreciation to my family. Thank you to my wife Karen for providing love, support, and perspective. And to our little girl Maggie who only recently became part of our family and has already provided priceless memories in the form of beautiful smiles, belly laughs, and little bear hugs. The two of you provided me with the most meaningful reasons to push towards the "finish line". I would also like to thank my immediate and extended family. Many of them do not fully understand much about what I do, but support the endeavor acknowledging that if it is something I’m willing to put this much effort into, it must be worthwhile.
    [Show full text]