Bouchard, Justin
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Early Years of the Acoustic Phonograph Its Developmental Origins and Fall from Favor 1877-1929
THE EARLY YEARS OF THE ACOUSTIC PHONOGRAPH ITS DEVELOPMENTAL ORIGINS AND FALL FROM FAVOR 1877-1929 by CARL R. MC QUEARY A SENIOR THESIS IN HISTORICAL AMERICAN TECHNOLOGIES Submitted to the General Studies Committee of the College of Arts and Sciences of Texas Tech University in Partial Fulfillment of the Requirements for the Degree of BACHELOR OF GENERAL STUDIES Approved Accepted Director of General Studies March, 1990 0^ Ac T 3> ^"^^ DEDICATION No. 2) This thesis would not have been possible without the love and support of my wife Laura, who has continued to love me even when I had phonograph parts scattered through out the house. Thanks also to my loving parents, who have always been there for me. The Early Years of the Acoustic Phonograph Its developmental origins and fall from favor 1877-1929 "Mary had a little lamb, its fleece was white as snov^. And everywhere that Mary went, the lamb was sure to go." With the recitation of a child's nursery rhyme, thirty-year- old Thomas Alva Edison ushered in a bright new age--the age of recorded sound. Edison's successful reproduction and recording of the human voice was the end result of countless hours of work on his part and represented the culmination of mankind's attempts, over thousands of years, to capture and reproduce the sounds and rhythms of his own vocal utterances as well as those of his environment. Although the industry that Edison spawned continues to this day, the phonograph is much changed, and little resembles the simple acoustical marvel that Edison created. -
PNWAS Audioletter May 2011
May 2011 n a m t t i P e o J y b s o t o h p by Joe Pittman any members commented that club’s system) throughout the presenta- digital recorder changed the audiophile the April meeting was one of the tion (see play list). world. best meetings ever. We were fortunate Unfortunately, the presentation was The sample music was out- to have Jules Bloomenthal give us a so comprehensive, I can’t go over it all standing, with some of the members, slide-show presentation of the back- here (I was too busy listening and not immediately hunting for the recordings ground and history of the Soundstream taking notes anyway). But highlights on the internet after the meeting (a new digital recorder. He brought the original included the hard science involved with competitive event?) commercial unit (which he now owns) the original design by Dr. Thomas Jules mentioned that he’s writing a that was used to make the first re- Stockham, Jr., the early years of Sound- book about Soundstream. So I hope it cording (it was on static display) and he stream (1971-1979), the famous Telarc comes out some day, it would be a great played example recordings (on the recording of the 1812 Overture using read. Thanks Jules for the outstanding real canons, and how Soundstream’s presentation! Pacific Northwest Audio Society, P.O. Box 435, Mercer Island, WA 98040 ● www.audiosociety.org 2 first commercial digital recorder. cinating background and history ofJules the Bloomenthal creation kick’s of off the the meeting with the fas- Pacific Northwest Audio Society Audioletter May -
The Lab Notebook
Thomas Edison National Historical Park National Park Service U.S. Department of the Interior The Lab Notebook Upcoming Exhibits Will Focus on the Origins of Recorded Sound A new exhibit is coming soon to Building 5 that highlights the work of Thomas Edison’s predecessors in the effort to record sound. The exhibit, accompanied by a detailed web presentation, will explore the work of two French scientists who were pioneers in the field of acoustics. In 1857 Edouard-Léon Scott de Martinville invented what he called the phonautograph, a device that traced an image of speech on a glass coated with lampblack, producing a phonautogram. He later changed the recording apparatus to a rotating cylinder and joined with instrument makers to com- mercialize the device. A second Frenchman, Charles Cros, drew inspiration from the telephone and its pair of diaphragms—one that received the speaker’s voice and the second that reconstituted it for the listener. Cros suggested a means of driving a second diaphragm from the tracings of a phonauto- gram, thereby reproducing previously-recorded sound waves. In other words, he conceived of playing back recorded sound. His device was called a paléophone, although he never built one. Despite that, today the French celebrate Cros as the inventor of sound reproduction. Three replicas that will be on display. From left: Scott’s phonautograph, an Edison disc phonograph, and Edison’s 1877 phonograph. Conservation Continues at the Park Workers remove the light The Renova/PARS Environ- fixture outside the front mental Group surveys the door of the Glenmont chemicals in Edison’s desk and home. -
High Bandwidth Acoustics – Transients/Phase/ and the Human Ear
Project Number: FB IQP HB10 HIGH BANDWIDTH ACOUSTICS – TRANSIENTS/PHASE/ AND THE HUMAN EAR An Interactive Qualifying Project Submitted to the Faculty of the WORCESTER POLYTECHNIC INSTITUTE In partial fulfillment of the requirements for the Degree of Bachelor of Science By Samir Zutshi 8/26/2010 Approved: Professor Frederick Bianchi, Major Advisor Daniel Foley, Co-Advisor Abstract Life over 20 kHz has been a debate that resides in the audio society today. The research presented in this paper claims and confirms the existence of data over 20 kHz. Through a series of experiments involving various microphone types, sampling rates and six instruments, a short-term Fourier transform was applied to the transient part of a single note of each instrument. The results are graphically shown in spectrum form alongside the wave file for comparison and analysis. As a result, the experiment has given fundamental evidence that may act as a base for many branches of its application and understanding, primarily being the effect of this lost data on the ears and the mind. Table of Contents 1. List of Figures 3 2. Introduction 5 3. Terminology 5 4. Background Information 11 a. Timeline of Digital Audio 12 5. Preparatory 17 6. Theory 17 7. Zero-Degree Phase Shift Environment 17 8. Short Term Fourier Transform 20 9. Experimental Data 22 10. Analysis and Discussion 34 11. Conclusion 36 12. Bibliography 36 Page | 2 List of Figures 1. Amplitude and Phase diagram 6 2. Harmonic Series 8 3. Reduction of continuous to discrete signal 9 4. Analog Signal 9 5. Resulting Sampled Signal 9 6. -
UC San Diego UC San Diego Electronic Theses and Dissertations
UC San Diego UC San Diego Electronic Theses and Dissertations Title Investigation of bit patterned media, thermal flying height control sliders and heat assisted magnetic recording in hard disk drives Permalink https://escholarship.org/uc/item/3nd3d29b Author Zheng, Hao Publication Date 2011 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA, SAN DIEGO Investigation of Bit Patterned Media, Thermal Flying Height Control Sliders and Heat Assisted Magnetic Recording in Hard Disk Drives A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Engineering Sciences (Mechanical Engineering) by Hao Zheng Committee in charge: Professor Frank E. Talke, Chair Professor David J. Benson Professor Eric Fullerton Professor Philip E. Gill Professor Hidenori Murakami 2011 Copyright Hao Zheng, 2011 All rights reserved. This dissertation of Hao Zheng is approved, and it is acceptable in quality and form for publication on microfilm and electronically: Chair University of California, San Diego 2011 iii to my parents Yanping Duan and Guangyuan Zheng iv TABLE OF CONTENTS Signature Page ............................................................................................................... iii Dedication .................................................................................................................... iv Table of Contents .......................................................................................................... -
Psaudio Copper
Issue 133 MARCH 29TH, 2021 Copper has a new look! So does the rest of the PS Audio website, the result of countless hours of hard work. There's more functionality and easier access to articles, and additional developments will come. There will be some temporary glitches and some tweaks required – like high-end audio systems, magazines sometimes need tweaking too – but overall, we're excited to provide a better and more enjoyable reading experience. I now hand over the column to our esteemed Larry Schenbeck: Dear Copper Colleagues and Readers, Frank has graciously asked if I’d like to share a word or two about my intention to stop writing Too Much Tchaikovsky. So: thanks to everyone who read and enjoyed it – I wrote it for you. If you added comments occasionally, you made my day. I also wrote the column so I could keep learning, especially about emerging creatives and performers in classical music. Getting the chance to stumble upon something new and nourishing had sustained me in the academic world – it certainly wasn’t the money! – and I was grateful to continue that in Copper. So why stop? Because, as they say, there is a season. It has become considerably harder for me to stumble upon truly fresh sounds and then write freshly thereon. Here I am tempted to quote Douglas Adams or Satchel Paige, who both knew how to deliver an exit line. But I’ll just say (since Frank has promised to leave the light on), goodbye for now. The door is open, Larry, and we can’t thank you enough for your wonderful contributions. -
New Technologies for Preservation and Access to Recorded Sound
New Technologies to Preserve and Access Historical Recorded Sound June 2013 Background Sound was first recorded in the 1850’s by the French inventor Edouard Leon Scott de Martinville who mechanically captured sound waves and traced them on paper. His “phonautograph” was a mechanical precursor to the modern storage oscilloscope but originally featured no possibility for reproduction of the recorded information. Sound was first recorded and reproduced by Thomas Edison, in 1877. Edison also mechanically captured sound waves, but embossed the vibrations on a tin foil cylinder. The impressions lodged in the foil surface could then be used to drive the recording process in reverse, resulting in an audible playback. From that time, until about 1950 when magnetic tape came into broad use, mechanical media such as foil, wax, plastic, shellac, and lacquer were the predominate materials which held recorded sound. Today, vast collections of historical sound recordings reside in the major archives such as the Library of Congress and the British Library, and in numerous other collections at museums, libraries, and academic institutions worldwide. The recordings contained within these collections are broad, diverse, and of great historical significance. Among the categories held in these collections are the following. • Field recordings of linguistic, cultural, and anthropological materials • Primary recordings of key musical artists, poets, and writers. • Recordings of sources which underlie much of modern music such as the American and European folk traditions. • Speeches & spoken words of historical figures. • Radio broadcast transcriptions. • Live performances and events. • Early technical tests and experiments on recording methods. • Public and private dictation and monitoring records, intelligence, and Presidential sources. -
HOW TO, D, °;;Ti
11 ° . i WORLDS LARGEST- SELLING'.,ÉLECTRONICS-MÁGÁZIh'Ee FEBRUARY 1978/$1 : °;;ti. T ° HOW TO, D, , .. rA Cá sette.71n arfacé tó On Elf Computer r ° - II' An_:.Átió'Blélrid-__,. ..tÁ.Coritról;to 'a- Hi -Fi Receiver - .,, The .V .1w: MicroMini Cassette Tape áfis ,Forx PC Guides Without Film or Ch micals! \\, ,0scar'scan: : 'Communications Satellites forr;Eyeryoné 1 , TESTÉD.T1-11S: ISSUE :Gárrard GT25 Turntable 1.',/({Sánsü-iAU-717.Stereó: Integrated Amplifier Slierwoód= Micro/CPU 100 Stereo FM Tuner Téñ;.Tec Century/21 CW Transce,iyer.,. 9' o _ L, 4Y-4: 50 , . 1. 4 3 ' 2 ADDRESS -- PROGRAMMER . 7 B r` P t'efi.. O 2 ' E LCPg= R w51"e"1- ,P ola 4,» °C. 41. I />FD°5 oo.ij v0 de> oldr .e>' oat, p 0 I 6 Z r`16 . V:y -nu; n.1 aa a0on311atiN Os79 Z0 ar 1130I11VO 1 . , - 6/MIN 01.411 060W05+9 961í0E of 14024 14278 ee ° Popular Electro rocs AmericanRadioHistory.Com Introducing the mobile that can move And ike all Cobras it comes equipped you out of the world of the ordinary with such standard features as an easy - and into the world of the serious CB'er. to -read LED channel indicator. The Cobra 138XLR Single Sideband. Switchable noise blanking and limiting. Sidebanding puts - p An RF/signal strength meter. And you in your own I SB LSr Cobra's exclusive DynaMike gain control. private world. A - d ' You'll find the 138XLR SSB wherever world where there's Cobras are sold. Wnich is almost every- less congestion. -
Historical Development of Magnetic Recording and Tape Recorder 3 Masanori Kimizuka
Historical Development of Magnetic Recording and Tape Recorder 3 Masanori Kimizuka ■ Abstract The history of sound recording started with the "Phonograph," the machine invented by Thomas Edison in the USA in 1877. Following that invention, Oberlin Smith, an American engineer, announced his idea for magnetic recording in 1888. Ten years later, Valdemar Poulsen, a Danish telephone engineer, invented the world's frst magnetic recorder, called the "Telegraphone," in 1898. The Telegraphone used thin metal wire as the recording material. Though wire recorders like the Telegraphone did not become popular, research on magnetic recording continued all over the world, and a new type of recorder that used tape coated with magnetic powder instead of metal wire as the recording material was invented in the 1920's. The real archetype of the modern tape recorder, the "Magnetophone," which was developed in Germany in the mid-1930's, was based on this recorder.After World War II, the USA conducted extensive research on the technology of the requisitioned Magnetophone and subsequently developed a modern professional tape recorder. Since the functionality of this tape recorder was superior to that of the conventional disc recorder, several broadcast stations immediately introduced new machines to their radio broadcasting operations. The tape recorder was soon introduced to the consumer market also, which led to a very rapid increase in the number of machines produced. In Japan, Tokyo Tsushin Kogyo, which eventually changed its name to Sony, started investigating magnetic recording technology after the end of the war and soon developed their original magnetic tape and recorder. In 1950 they released the frst Japanese tape recorder. -
Video and the Origins of Electronic Photography Revised
Video and the Origins of Electronic Photography Peter Sachs Collopy Published in translation as “La vidéo et les origines de la photographie électronique,” Transbordeur: Photographie histoire société 3 (2019): 26–35. Over the last two decades, electronic media have usurped their photochemical predecessors. Most of what we now call photography is produced by light striking a charge-coupled device rather than silver halide crystals. Electronic imaging technology has largely replaced both still and moving image film. We’ve come to associate this technological revolution with digital media, programmable machines capable of reducing many forms of information—including the light captured by electronic sensors—into a single binary representation. “The general digitization of channels and information,” argues Friedrich Kittler, “erases the differences among individual media.… Inside the computers themselves everything becomes a number: quantity without image, sound, or voice.… A total media link on a digital base will erase the very concept of medium.”1 Digitization was not, though, the moment at which photography began to share a medium with sound and quantification. Our current association of the digital with progress can distract us from the historical fact that the most sophisticated electronic technologies have often been analog ones, processing information as continuous variations in voltage or current and recording it as continuous variations in magnetic fields. The discourse of the digital can also obscure continuities between electronic media, preventing us from seeing how much analog and digital modes of representing information have in common. Rather than thinking of the recent decline of film as a process of digitization, we might just as productively see it as a culmination of the rise of electronic photography, a phenomenon that has introduced into our visual experience not only the digital but also the analog. -
Press Release
( ( ( ( F i r s t S o u n d s ) ) ) ) making the earliest audio recordings accessible to all people for all time CONTACT: Meagan Hennessey David Giovannoni [email protected] [email protected] The World’s Oldest Sound Recordings Played For The First Time A group of researchers has succeeded in playing a sound recording of a human voice made in 1860 – 17 years before Thomas Edison invented the phonograph. Roughly ten seconds in length, the recording is of a person singing “Au clair de la lune, Pierrot répondit” – a snippet from a French folksong. It was made on April 9, 1860 by Parisian inventor Édouard-Léon Scott de Martinville on his “phonautograph” – a device that scratched sound waves onto a sheet of paper blackened by the smoke of an oil lamp. Scott never dreamed of playing back his recordings. But this morning, the dream Scott never had will come true. A cadre of audio historians, recording engineers, and scientists working in conjunction with the First Sounds initiative has transformed Scott’s smoked-paper tracings into sound. They will premiere Au Clair de la Lune at the annual conference of the Association for Recorded Sound Collections at Stanford University this morning. Examples of sounds evoked from French and American phon- autograph recordings made between 1857 and 1878 will also be played publicly for the first time. First Sounds historians Patrick Feaster and David Giovannoni began their search for surviving phonautograph recordings, or phonautograms, in the fall of 2007. In October they studied 19 examples held by the Edison National Historic Site, made in 1878 by Edison and his associates to study the noise of the Metropolitan Elevated Railroad in Manhattan. -
Manual of Analogue Sound Restoration Techniques
MANUAL OF ANALOGUE SOUND RESTORATION TECHNIQUES by Peter Copeland The British Library Analogue Sound Restoration Techniques MANUAL OF ANALOGUE SOUND RESTORATION TECHNIQUES by Peter Copeland This manual is dedicated to the memory of Patrick Saul who founded the British Institute of Recorded Sound,* and was its director from 1953 to 1978, thereby setting the scene which made this manual possible. Published September 2008 by The British Library 96 Euston Road, London NW1 2DB Copyright 2008, The British Library Board www.bl.uk * renamed the British Library Sound Archive in 1983. ii Analogue Sound Restoration Techniques CONTENTS Preface ................................................................................................................................................................1 Acknowledgements .............................................................................................................................................2 1 Introduction ..............................................................................................................................................3 1.1 The organisation of this manual ...........................................................................................................3 1.2 The target audience for this manual .....................................................................................................4 1.3 The original sound................................................................................................................................6