Appendix D Fire Load Energy Densities

Total Page:16

File Type:pdf, Size:1020Kb

Appendix D Fire Load Energy Densities Fire Engineering Design Guide A H Buchanan editor university of canterbury • fire engineering programme centre for advanced engineering • christchurch • new zealand second edition • april 2001 ISBN 0-908993-21-8 Printing History First Edition 1994 Reprinted April 1995 Reprinted December 1996 Second Edition April 2001 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, transmitted, or otherwise disseminated, in any form or by any means, except for the purposes of research or private study, criticism or review, without the prior permission of the Centre for Advanced Engineering. Copyright © 2001 Centre for Advanced Engineering Publisher Centre for Advanced Engineering University of Canterbury Private Bag 4800 Christchurch New Zealand Editorial Services, Graphics and Book Design Charles Hendtlass, Centre for Advanced Engineering. Graphics reproduced from the first edition drawn by Janine Griffin. Printing Wickliffe Press, Christchurch Cover Design Origin Design, Wellington Photograph Credits Cover photograph shows the Canterbury Regional Council building fire of 17 November 1992. Disclaimer It will be noted that the authorship of this document has been attributed to the many individuals and organisations involved in its production. While all sections have been subject to review and final editing, the opinions expressed remain those of the authors responsible and do not necessarily reflect the views of the Centre for Advanced Engineering. No responsibility is taken by the authors, their employers or sponsoring organisations for the safety of any persons or property in buildings designed using this document or the buildings themselves. Recommendations need to be interpreted with care and judgement. Preface The purpose of this Design Guide is to provide an introduction to fire engineering. It will be useful for those wishing to carry out or review specific fire engineering designs to meet the requirements of the New Zealand Building Code or the Building Code of Australia. The first edition of this Guide reported the findings of a study group formed by the Structural Engineering Society New Zealand, and the New Zealand Fire Protection Association in 1992, following the introduction of the Building Act in 1991. The Building Act consolidated a wide range of previous legislation relating to building construction, established the Building Industry Authority (BIA), and required all new construction to be in accordance with the New Zealand Building Code, in a performance-based framework. The fire safety performance requirements of the Building Code can be met either by complying with the prescriptive provisions of the BIA Acceptable Solution, or by an “alternative solution” involving specific fire engineering design. This Guide provides a framework for carrying out specific fire engineering design when the Acceptable Solution is not applicable, the owner’s requirements go beyond those of the Building Code, or when additional benefits in cost or safety are warranted. The second edition of this Design Guide has been produced by members of the original study group, with help from several new contributors. It has been updated throughout with new material and recent references. New sections include: • Documentation and peer reviews • Domestic fire safety • Design fires for computer modelling • Updated tenability limits • New fire detector technology • Regulatory framework in Australia Fire protection engineering is a vast and rapidly expanding discipline. It is hoped that this book will provide a useful introduction to the subject for all those involved in the design or assessment of fire safety in buildings, and for many others including students and fire fighters. Andy Buchanan University of Canterbury March 2001 i ii Australian Preface I wish to welcome Australian readers to the Fire Engineering Design Guide. While this Design Guide was written primarily for use in New Zealand, the second edition has been modified with the Australian design process and the Australian practitioner in mind. Clearly a number of aspects of the building codes, legislation and regulations differ between Australia and New Zealand. However, there is a similarity between many of the Performance Requirements, and fire safety engineering in both countries is based on common fundamentals of fire science and engineering. This Design Guide therefore provides a range of analytical methods, data and design approaches, which many Australian fire engineers and approval authorities may find useful. It also highlights the Australian performance requirements and refers to Australian standards and other documents to which design professionals in Australia and New Zealand may refer. This Fire Engineering Design Guide does not replace the “Fire Engineering Guidelines” developed by the Fire Code Reform Centre for use in Australia. Rather it is complementary and offers Australian fire engineers an additional information resource in a rapidly expanding field of endeavour. Peter Johnson Arup Fire, Melbourne March 2001 iii iv Acknowledgements The first edition of this document was produced by a study group formed by the New Zealand Structural Engineering Society and the New Zealand Fire Protection Association in 1992. The second edition was produced with the help of many of the original authors and some new contributors in 2000, incorporating corrections and improvements. The original study group and new contributors include the following: Andy Buchanan (Convenor) University of Canterbury Dave Allen New Zealand Fire Service David Barber Arup Fire, Melbourne David Barnard Cement and Concrete Association Cliff Barnett Macdonald Barnett Partners Ian Billings Beca Carter Hollings and Ferne Richard Brand Beca Carter Hollings and Ferner Barry Brown Fraser Thomas Ltd Peter Byrne Sinclair Knight Merz Carol Caldwell Caldwell Consulting Ltd Jim Clarke Fraser Thomas Ltd Paul Clements Fire Risk Consultants Charles Clifton N.Z. Heavy Engineering Research Association Simon Davis New Zealand Fire Service Roger Estall M&M Protection Consultants Charley Fleischmann University of Canterbury Marianne Foley Holmes Fire and Safety, Sydney John Fraser N.Z. Fire Protection Association Hans Gerlich Winstone Wallboards Ltd Tony Gibson Gibson Consultants Peter Johnson Arup Fire, Melbourne Sandy Lawson Institution of Fire Engineers Peter Lowe University of Auckland Peter Smith Spencer Holmes Ltd Mike Spearpoint University of Canterbury Ian Thomas BHP Melbourne Research Laboratory Colleen Wade Building Research Association of New Zealand The text was assembled and edited by Andy Buchanan who wrote most of the material not referred to below. Major contributions were made by Cliff Barnett (Chapters 6,8 & 13), Stuart Bould (Chapter 9), Richard Brand (Chapter 10), Barry Brown (Chapter 15), Peter Byrne (Chapters 12 & 13), Paul Clements (Chapter 11), Charles Clifton (Chapter 5), Charley Fleischmann (Chapter 6 & 14), Russell Gregory (Chapter 9), Peter Johnson (Chapter 16) and Colleen Wade (Chapter 8). Committee members of the New Zealand Chapter of the Society of Fire Protection Engineers assisted with reviewing the second edition. Final editing for publication was done by Charles Hendtlass of the Centre for Advanced Engineering, University of Canterbury. Graphics were done by Charles Hendtlass and Janine Griffin. Financial assistance to this project was provided by the Centre for Advanced Engineering. The contributions of the employer organisations listed above are gratefully acknowledged. v Structural Engineering Society New Zealand The New Zealand Structural Engineering Society (SESOC) promotes the science, art and practise of structural engineering, the advancement and dissemination of knowledge relating to structural engineering and provides a forum for structural engineering practitioners to communicate among themselves and the public. The Society is a technical group of the Institution of Professional Engineers New Zealand (IPENZ). [www.sesoc.org.nz] Fire Protection Association The New Zealand Fire Protection Association (FPA) actively promotes fire prevention, fire detection and fire protection, encourages and provides training for the fire protection community, and is a forum for all activities which relate to the protection of life and property from fire. Society of Fire Protection Engineers The New Zealand Chapter of the Society of Fire Protection Engineers (SFPE)is a professional association for those with an interest in the development, application and promotion of scientific and engineering methods to reduce the risk and effects of unwanted fires. The Chapter is a Technical Group of the Institution of Professional Engineers New Zealand (IPENZ). [www.sfpe.org.nz] University of Canterbury The Fire Engineering Programme at the University of Canterbury in Christchurch, New Zealand, carries out research into many aspects of fire science and fire safety in buildings, and offers Masters and Ph.D. degrees in related topics. The programme is partially supported by the New Zealand Fire Service. [www.civil.canterbury.ac.nz] CAE The Centre for Advanced Engineering was established in May 1987 as a centre for the promotion and encouragement of innovation and excellence in engineering and technology, to commerorate the Centenary of the School of Engineering at the University of Canterbury. Through a range of projects, publications and symposia, CAE brings together selected groups of experts who provide specialist knowledge relevant to the engineering and related professions,
Recommended publications
  • Fundamentals of Applied Smouldering Combustion
    Western University Scholarship@Western Electronic Thesis and Dissertation Repository 6-20-2018 10:00 AM Fundamentals of Applied Smouldering Combustion Marco Zanoni The University of Western Ontario Supervisor Gerhard, Jason I. The University of Western Ontario Co-Supervisor Torero, Jose L. The University of Western Ontario Graduate Program in Civil and Environmental Engineering A thesis submitted in partial fulfillment of the equirr ements for the degree in Doctor of Philosophy © Marco Zanoni 2018 Follow this and additional works at: https://ir.lib.uwo.ca/etd Part of the Environmental Engineering Commons, and the Heat Transfer, Combustion Commons Recommended Citation Zanoni, Marco, "Fundamentals of Applied Smouldering Combustion" (2018). Electronic Thesis and Dissertation Repository. 5410. https://ir.lib.uwo.ca/etd/5410 This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of Scholarship@Western. For more information, please contact [email protected]. Abstract Smouldering combustion is defined as a flameless oxidation reaction occurring on the surface of the condensed phase (i.e., solid or liquid). Traditional research on smouldering was related to economic damages, fire risk, and death, due to the release of toxic gases and slow propagation rates. Recently, smouldering has been applied as an intentional, engineering technology (e.g., waste and contaminant destruction). Smouldering involves the transport of heat, mass, and momentum in the solid and fluid phases along with different chemical reactions. Therefore, numerical models are essential for the fundamental understanding of the process. Smouldering models either neglected heat transfer between phases (i.e., assumed local thermal equilibrium) or employed heat transfer correlations (i.e., under local thermal non- equilibrium conditions) not appropriate for smouldering.
    [Show full text]
  • Bowdrill Block of the Drill Can Spin In
    The Bearing The Bearing Block is made of a hard material that has a depression in it that the top end Bowdrill Block of the drill can spin in. It must be very comfortable in the hand Rubbing two sticks together to because we will be pushing down on it quite make fire is one of the mostMaking Our hard. quintessential bushcraft skills. Bowdrill Set The Bow In a Spruce/ The Coal Pine forest Catcher the best bearing block is a The Bearing piece of a dead sapling where the Block The Drill knots grow in a ring around the trunk. The Base Board The knots are very hard and we carve our depression into These are the parts of the bowdrill, we will look at them in detail but one of the knots. as an introduction: The Drill will be spun against The Base Board using The Bow. We lubricate the depression with Spruce/Pine resin. The friction between The Drill and The Base Board will grind them into A stone or wood dust and also heat the dust up to the point where it smoulders. shells work The smouldering dust is called a ‘coal’. as bearing blocks too. We will push The Drill into The Base Board using The Bearing Block. Finally The Coal Catcher holds the ground up wood so that doesn’t fall We look for on the cold earth. a stone with The Bow a depression Our Bow should be ridge in it and use (not springy) and be slightly the point curved. of another Shorter bows are much stone to easier to use but an arms grind the depression smooth.
    [Show full text]
  • Test Report No
    4417 Test Report No. AJFS2011010056FF Date: NOV.27, 2020 Page 1 of 4 ZHEJIANG ANJI RONGYI FURNITURE CO., LTD TANGPU INDUSTRY ZONE ANJI COUNTY ZHEJIANG The following sample(s) information was / were submitted and identified on behalf of the client. SGS is not responsible for the authenticity, integrity and results of the data and information and / or the validity of the conclusion arising therefrom. Results apply to the sample as received. Sample Description: MESH SGS Ref No.: AJHL2011500981OT Style/Item No.: / Test Requested: The Furniture and Furnishings (Fire) (Safety) Regulations 1988 S.I. No.1324 (amended 1989,1993 and 2010), Schedule 4, Part I, Cigarette test for cover fabrics and Schedule 5, Part I, Match test for cover fabrics. As specified in above standard(s) and incorporated with using ignition source 0 and 1 of BS 5852: Part 1:1979. Test Results: -- See attached sheet – Conclusion: The tested sample Meets the Requirements of Schedule 4 Part I and Schedule 5 Part I In Statutory Instrument 1988 No.1324 (Amended 1989, 1993 and 2010) the Furniture and Furnishings (Fire) (Safety) Regulations. Test Period: Sample Receiving Date : NOV.23, 2020 Test Performing Date : NOV.23, 2020 TO NOV.27, 2020 Signed for and on behalf of SGS-CSTC Co., Ltd. Anji Branch Allen Zou Lab Manager Test Report No. AJFS2011010056FF Date: NOV.27, 2020 Page 2 of 4 Test Conducted The Furniture and Furnishings (Fire) (Safety) Regulations 1988 S.I. No. 1324 (amended 1989, 1993 and 2010), Schedule 4 Part I and Schedule 5 Part I, Cigarette test and Match test for cover fabric.
    [Show full text]
  • Fire Growth and Smoke Spread Model for Fire Safety System Design: Experimental Verification
    Fire Growth and Smoke Spread Model for Fire Safety System Design: Experimental Verification M LUQ* and Y HE Center for Environmental Safety and Risk Engineering Victoria University of Technology 14428 MCMC, Melbourne, VIC 8001, Australia ABSTRACT A one-zone model (NRC C) and a two-zone model (CFAST) have been tested against experiments and used in the fire research community. However, the selection of either ofthem as a sub-model for a fire safety system model needs further verification against the experimental results under a variety of fire scenarios. In the present study, the performance of the above two models is evaluated with respect to accuracy, efficiency and simplicity. This study indicates that significant discrepancies exist between the experimental results and the results from both the CFAST model and the NRCC model. The CFAST model generally over-predicts the upper layer temperatures in the burn room but provides reasonable predictions in the adjacent enclosures. The CFAST model over-predicts CO concentrations when the air-handling system is turned on; the model under-predicts CO when the system is off. The NRCC model correlates the burning characteristics of the fuel with the burn room conditions. The results give a good agreement with the experimental results in the burn room for some fire scenarios but discrepancies exist for others. However, the NRCC fire model is applicable to the bum room only. It was found that the room-averaged temperatures for the bum room obtained from the CFAST model were in a good agreement with the experimental results and the NRCC model results.
    [Show full text]
  • View Article
    I THE LIBRARY r!f:~~·~~~·~~~ (I"'"',)) ...~. ,I!'!n .. - FIRE RESE.l\RGI STATION ~~.~~ ~~ ~~ I " 'I'1 . BOREHAM WOOD .11:: b \0 \; vf~~ . HERlS, .,.' CONFIDll'TIAL F.R. Note No. 48/1952., This report has not been published. and December, 1952. should be considered as confidential advance, information. No reference should be made to it in any publioation without, the written oonsent of the Direotor, Fire Research Station, Bareham Wood, Herts.' (Telephone: ELStree 1341 an~1797). ' DEI?.ARn!l!NT OF SCImTIFIC .AND nmUSTRIAL RF.SEARCH .AND FIRE OFFIClS' COMMITTEE JOINT FIRE RESEARCH ORGANIZATION SMOULDERING IN DUSTS AND FIBROUS MATERIALS PART V BEECH SAWDUST WITH AN INCIDliNT AIR IlRAUGHT by K.N. Palmer and M.D. Perry SUMMARY The effeot of an inoident airflow upon the smouldering of beech sawdust has been investigated in detail. The sawdust was fonned into small t:t~ains, as in earlier experiments tinder still-air oonditions, aild.placed in a small wind tunnel; smouldering was then' initiated by a small gas flame '~d the time of' travel over unit distance (smouldering time) was detennined. A'log'arithmio relationship was found betweeathe ~oulderingti.me arid, incident air velooity; the eff'edts of" variations in train size, sawdust particle size, and moisture content upon this relationship were comparatively slight. The' reduotion in the minimum depth of sawdust neoessary for suabadned smouldering was also invest~gated and it was shown that this depth could be reduced easily to .Leaa than 3 IIlIIlo by an inoident draught. ' , Some f'urther experdmenbs , desoribed in an AppenCi.ix, showed that flaming, could be produced in wood shavings or newspaper in contact with the smouldering sawdust and that only gentle airflows are neceasary, From these ,results it is concluded that an outbreak of fire could be a direot consequence, .
    [Show full text]
  • Fire Fighting Controlled Burn-Offs
    This Best Practice Guide is being reviewed. The future of Best Practice Guides will be decided during 2015. Best practice guidelines for Fire Fighting Controlled Burn-Offs V ision, knowledge, performance competenz.org.nz He Mihi Nga pakiaka ki te Rawhiti. Roots to the East. Nga pakiaka ki te Raki. Roots to the North. Nga pakiaka ki te Uru. Roots to the West. Nga pakiaka ki te Tonga. Roots to the South. Nau mai, Haere mai We greet you and welcome you. ki te Waonui~ o Tane To the forest world of Tane. Whaia te huarahi, Pursue the path, o te Aka Matua, of the climbing vine, i runga, I te poutama on the stairway, o te matauranga.~ of learning. Kia rongo ai koe So that you will feel, te mahana o te rangimarie.~ the inner warmth of peace. Ka kaha ai koe, Then you will be able, ki te tu~ whakaiti, to stand humbler, ki te tu~ whakahi.~ Yet stand proud. Kia Kaha, kia manawanui~ Be strong, be steadfast. Tena koutou katoa. First edition December 2000 Revised edition January 2005 These Best Practice Guidelines are to be used as a guide to certain fire-fighting and controlled burnoff procedures and techniques. They do not supersede legislation in any jurisdiction or the recommendations of equipment manufacturers. FITEC believes that the information in the guidelines is accurate and reliable; however, FITEC notes that conditions vary greatly from one geographical area to another; that a greater variety of equipment and techniques are currently in use; and other (or additional) measures may be appropriate in a given situation.
    [Show full text]
  • The-Firewood-Poem (Congreve)
    The Firewood Poem - Lady Celia Congreve Published in the Times: March 2nd 1930 These hardwoods burn well and slowly, Holly logs will burn like wax, Ash, beech, hawthorn oak and holly. You could burn them green. Softwoods flare up quick and fine, Elm logs burn like smouldering flax, Birch, fir, hazel, larch and pine. With no flame to be seen. Elm and willow you'll regret, Beech logs for winter time, Chestnut green and sycamore wet. Yew logs as well sir. Green elder logs it is a crime, Beechwood fires are bright and clear, For any man to sell sir. If the logs are kept a year. Chestnut's only good, they say, Pear logs and apple logs, If for long 'tis laid away. They will scent your room. But Ash new or Ash old, And cherry logs across the dogs, Is fit for a queen with crown of gold. They smell like flowers of broom. But Ash logs smooth and grey, Birch and fir logs bum too fast, Buy them green or old, sir. Blaze up bright and do not last. And buy up all that come your way, It is by the Irish said, They're worth their weight in gold sir. Hawthorn bakes the sweetest bread. Elm wood bums like churchyard mould, Logs to Burn, Logs to burn, Logs to burn, E'en the very flames are cold. Logs to save the coal a turn. But Ash green or Ash brown, Here's a word to make you wise, Is fit for a queen with golden crown.
    [Show full text]
  • The Basis for Fire Safety Substantiating Fire Protection in Buildings
    The Basis for Fire Safety Substantiating fire protection in buildings Fire Safety Professorship René Hagen and Louis Witloks The Basis for Fire Safety Substantiating fire protection in buildings 1 Publication Details Authors René Hagen and Louis Witloks, Fire Safety professorship of the Instituut Fysieke Veiligheid, in close cooperation with various research groups of Brandweer Nederland, the organisation of Dutch fire services. Photographs Cover photo: Jan Beets Inside photos: René Hagen, Martin de Jongh, Rob Jastrzebski, Jeroen Schokker, Wikimedia and Instituut Fysieke Veiligheid Translation Esperanto WBT Support This publication was also made possible by Underwriters Laboratories and European Fire Safety Alliance (EuroFSA). The knowledge document entitled ‘The Basis for Fire Safety’ was originally written on the basis of the Dutch situation, but in practice, it was soon found to be applicable to situations outside the Netherlands as well. The approach to fire safety as described and elaborated in this document can be applied universally. It describes the backgrounds and provides a substantiation of fire protection measures and facilities. And they also apply internationally, since fire development and fire growth are not specific to just one country. When using this publication for situations outside the Netherlands, please remember that the statistical details stated only concern the Netherlands. Where regulations are referred to, as is specifically the case in chapter 6, this is Dutch legislation. However, the book is definitely suitable for international use as its main focus is on the backgrounds and substantiation of fire safety measures and facilities which are based on fire development, the spread of smoke, the behaviour of constructions and people's behaviour when fleeing a building, instead of on statutory requirements.
    [Show full text]
  • Selecting Design Fires
    Selecting design fires Staffansson, Leif 2010 Link to publication Citation for published version (APA): Staffansson, L. (2010). Selecting design fires. Department of Fire Safety Engineering and Systems Safety, Lund University. Total number of authors: 1 General rights Unless other specific re-use rights are stated the following general rights apply: Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal Read more about Creative commons licenses: https://creativecommons.org/licenses/ Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. LUND UNIVERSITY PO Box 117 221 00 Lund +46 46-222 00 00 Selecting design fires Leif Staffansson Department of Fire Safety Engineering and Systems Safety Lund University, Sweden Brandteknik och Riskhantering Lunds tekniska högskola Lunds universitet Report 7032 Lund 2010 Selecting design fires Leif Staffansson Lund 2010 Selecting design fires Leif Staffansson Report 7032 ISSN: 1402-3504 ISRN: LUTVDG/TVBB--7032--SE Number of pages: 105 Illustrations: Leif Staffansson Keywords Design fires, fire characteristics, heat release rate, deterministic analysis.
    [Show full text]
  • Self-Sustaining Smouldering Combustion As a Waste Treatment Process Treatment Process
    ProvisionalChapter chapter 6 Self-sustaining Smouldering Combustion as a Waste Treatment Process Treatment Process Luis Yermán Luis Yermán Additional information is available at the end of the chapter Additional information is available at the end of the chapter http://dx.doi.org/10.5772/64451 Abstract This chapter reviews the utilization of self-sustaining smouldering combustion as a treatment for solid or liquid waste, embedded in a porous matrix. Smouldering has been identified as an attractive solution to treat waste with high moisture content. The fundamental aspects of this technology, such as the experimental setup and the ignition mechanism, are described here. The operational parameters determine the physical properties of the media, and will dictate the self-sustainability of the process. A discussion on how the operational parameters affect the smouldering performance is also presented. The performance of smouldering is usually assessed by the peak temperatures and the velocity of propaga‐ tion of the smouldering front through the material. The potential sources for energy recovery are described. Importantly, as oxidation and pyrolysis coexist during smouldering, it was shown with potential for the recovery of pyrolysis products, such as pyrolysis oil. Finally, a brief insight on the gas emissions, and the perspectives regarding the technoeconomic viability in full-scale are also discussed. Keywords: smouldering combustion, self-sustaining, waste treatment, energy recov‐ ery, review 1. Introduction Smouldering is a complex process that involves heat and mass transfer in porous media, heterogeneous reactions at the solid/gas pore interface, thermochemistry and chemical kinetics [1]. It has been historically studied from a fire safety perspective because it represents a fire © 2016 The Author(s).
    [Show full text]
  • Root Cause Analysis for Fire Events at Nuclear Power Plants
    IAEA-TECDOC-1112 Root cause analysis for fire events at nuclear power plants September 1999 The originating Section of this publication in the IAEA was: Engineering Safety Section International Atomic Energy Agency Wagramer Strasse 5 P.O. Box 100 A-1400 Vienna, Austria ROOT CAUSE ANALYSIS FOR FIRE EVENTS AT NUCLEAR POWER PLANTS IAEA, VIENNA, 1999 IAEA-TECDOC-1112 ISSN 1011–4289 © IAEA, 1999 Printed by the IAEA in Austria September 1999 FOREWORD Fire hazard has been identified as a major contributor to a plant's operational safety risk; the international nuclear power community (regulators, operators, designers) has been studying and developing tools for defending against this hazard. Considerable advances have been achieved in the past two decades in design and regulatory requirements for fire safety, fire protection technology and related analytical techniques. Likewise, substantial efforts have been undertaken worldwide to implement these advances in the interest of improving fire safety both at new nuclear power plants and at those in operation. The IAEA endeavours to provide assistance to Member States in improving fire safety in nuclear power plants. In order to achieve this general objective, the IAEA in 1993 launched a task on fire safety. The purpose of this task was to develop guidelines and good practices, to promote advanced fire safety assessment techniques, to exchange state of the art information between practitioners, and to provide engineering safety advisory services and training in the implementation of internationally accepted practices. This TECDOC addresses a systematic assessment of fire events using the root cause analysis (RCA) methodology. This methodology is recognized as an important element of fire safety assessment.
    [Show full text]
  • Fire Drill Procedure 35 Purpose Procedure Conducting a Fire Drill Conducting a Silent Fire Drill Observations Debriefing
    FIRE MARSHAL’S MANUAL A Resource for Healthcare Fire Marshal’s Fire Marshal‟s Manual Alberta Health Services Fire and Life Safety Version 3.0 Revised October 2013 Capital Management, Protective Services Overview A safe environment is an integral part of our patient focused quality health care system. AHS Protective Services is responsible for Fire and Life Safety (FLS) within our facilities throughout the province. Our mandate is to meet or exceed the guidelines and requirements of the Alberta Building and Fire Codes. A Fire Marshal and an Emergency Response Plan is mandatory for each facility and this manual is designed to provide guidance and education to designated Fire Marshal‟s. Protective Services Fire and Life Safety will provide Governance, Education and be a Resource to address and advise any fire safety concerns. Fire Marshal‟s Manual Alberta Health Services Fire and Life Safety Version 3.0 Revised October 2013 Capital Management, Protective Services Table of Contents Definitions 4 Section 1: Introduction Healthcare Fire Marshal Responsibilities 6 Owner/Operator Responsibilities 7 Employee Responsibilities 8 General Fire Safety Rules 9 Section 2: Emergency Codes 11 Section 3: Fire Inspection of the Facility Conducting Inspections 16 Semi-Annual Building Inspections Common Hazards Documentation Monthly Inspection of Portable Fire Extinguishers 18 Monthly Inspection of Fire Hoses 18 Self-contained Emergency Lighting Units (Battery Packs) 19 Monthly Inspection of Fire Separation Doors 19 Monthly Inspections of Fixed Kitchen Systems
    [Show full text]