<<

DIFFERENTIAL GEOMETRY ATTACKS THE TORUS William Schulz Department of and Statistics Northern Arizona University, Flagstaff, AZ 86011

1. INTRODUCTION

This is a pdf showing computations of Differential Geometry quantities using the Torus as example. No advantage is taken of the particular qualities of the torus; the calcu- lations are done as they would be for any , but of course have simpler results because the surface is simple. We make use of the embedding at the beginning to get the metric coefficients (gij ) and then proceed in a Riemannian manner. For the torus enthusiast I have added a section at the end that treats the normal vector and uses it to find the Gaussian .

2. NOTATION AND METRIC COEFFICIENTS

We begin by parametrizing the torus by longitude and as usual. The torus is parametrized by θ which is the angle going round the big sweep of the torus from 0 to 2π and by φ which is the angle going around the little waist of the torus, also from 0 to 2π. The parametrization is

~x(θ, φ)=< (R + r cos φ)cos θ, (R + r cos φ) sin θ, r sin φ> Remember that for systematic computation purposes we set the parameters u1 = θ and u2 = φ. This order guarantees that the normal vector will point outward. Next we compute the unit tangent vectors:

∂~x ~e1 = ∂u1 = < −(R + r cos φ) sin θ, (R + r cos φ)cos θ, 0 >

∂~x ~e2 = ∂u2 = < −r sin φ cos θ, −r sin φ sin θ, r cos φ >

Next is to find the of metric coefficients gij = ei · ej . These are easily found to be

2 2 2 2 g11 = e1 · e1 = (R + r cos φ) sin θ + (R + r cos φ) cos θ +0 = (R + r cos φ)2

g12 = e1 · e2 = (R + r cos φ)r(sin θ sin φ cos θ − cos θ sin φ sin θ) = 0 2 2 2 2 2 2 g22 = e2 · e2 = r (sin φ cos θ + sin φ sin θ + cos φ) = r2

1 In matrix form this is (R + r cos φ)2 0 (g )= ij 0 r2   We will also need the inverse matrix 1 ij −1 (R+r cos φ)2 0 (g ) = (gij ) = 1 0 2  r 

3 AND CURVATURE FORMS

We first want to compute the Christoffel symbols for which we need the basic formulas 1 ∂g ∂g ∂g Γ = ik + jk − ij ij|k 2 ∂uj ∂ui ∂uk and   i im Γjk = g Γjk|m i i From these we get, remembering that Γjk =Γkj , 1 ∂g Γ = 11 =0 11|1 2 ∂u1 1 ∂g ∂g ∂g Γ = 12 + 12 − 11 = (R + r cos φ)r sin φ 11|2 2 ∂u1 ∂u1 ∂u2 1∂g ∂g ∂g  Γ = 11 + 21 − 12 = −(R + r cos φ)r sin φ 12|1 2 ∂u2 ∂u1 ∂u1 1∂g ∂g ∂g  Γ = 12 + 22 − 12 =0 12|2 2 ∂u2 ∂u1 ∂u2 1∂g ∂g ∂g  Γ = 21 + 21 − 22 =0 22|1 2 ∂u2 ∂u2 ∂u1 1∂g  Γ = 22 =0 22|2 2 ∂u2 Then 1 1m 11 Γ11 = g Γ11|m = g Γ11|1 =0 2 2m 22 Γ11 = g Γ11|m = g Γ11|2 = 1 (R + r cos φ) sin φ = ((R + r cos φ)r sin φ)= r2 r 1 1m 11 Γ12 = g Γ12|m = g Γ12|1 = 1 r sin φ = − (R + r cos φ)r sin φ = − (R + r cos φ)2 (R + r cos φ) 2 2m 22  Γ12 = g Γ12|m = g Γ12|2 =0 1 1m 11 Γ22 = g Γ22|m = g Γ22|1 =0 2 2m 22 Γ22 = g Γ22|m = g Γ22|2 =0

2 For future purposes we place these in matrices:

1 1 r sin φ i Γ11 Γ21 0 − R+r cos φ γ1 = (Γj1)= 2 2 = (R+r cos φ) sin φ Γ11 Γ21 0   r ! and Γ1 Γ1 − r sin φ 0 γ = (Γi )= 12 22 = R+r cos φ 2 j2 Γ2 Γ2 0 0  12 22    Now we want the connection one forms. These are defined by

i i k ωj =Γjk du or in matrix form by Γ1 Γ1 Γ1 Γ1 (ω i)= 11 21 du1 + 12 22 du2 j Γ2 Γ2 Γ2 Γ2  11 21   12 22  which explicitly for the sphere gives

0 − r sin φ − r sin φ 0 (ω i)= R+r cos φ dθ + R+r cos φ dφ j (R+r cos φ) sin φ 0 0 0 r !   or r sin φ r sin φ i − R+r cos φ dφ − R+r cos φ dθ (ωj )= (R+r cos φ) sin φ r dθ 0 ! Next we want to compute the Riemann Curvature Form which is given by Ω= dω + ω ∧ ω As the calculations are gross and the intermediate results of almost no interest, they will be relegated to an Appendix to this section. The final result is

r cos φ 0 R+r cos φ Ω= dω + ω ∧ ω = cos φ dθ ∧ dφ − r (R + r cos φ) 0 ! Recalling that here the matrix entries of Ω is R 1 R 1 Ω= 1 12 2 12 dθ ∧ dφ R 2 R 2  1 12 2 12  we can read off the values of the as

1 1 r cos φ R1 12 =0 R2 12 = R+r cos φ 2 cos φ 2 R1 12 = − r (R + r cos φ) R2 12 =0 We can now get the from the good old standard formula of Gauss g R m K = − 2m 1 12 det(gij )

3 which here gives us g R 2 K = − 22 1 12 det(gij ) r2 (− cos φ) (R + r cos φ) = − r r2(R + r cos φ)2 cos φ = r(R + r cos φ) It is amusing to compute the curvatura integra at this point. 2π 2π cos φ K dS = det(gij)dθdφ T 2 0 0 r(R + r cos φ) Z Z Z q 2π 2π cos φ = r(R + r cos φ)dθdφ r(R + r cos φ) Z0 Z0 2π 2π 2π = cos φ dθdφ =2π cos φ dφ =0 Z0 Z0 Z0 which is the result we expect from the Gauss-Bonnet theorem. APPENDIX: Calculation of the Riemann Curvature Tensor Recall that the curvature form ω is given by

ω = γ1dθ + γ2dφ where

1 1 r sin φ i Γ11 Γ21 0 − R+r cos φ γ1 = (Γj1)= 2 2 = (R+r cos φ) sin φ Γ11 Γ21 0   r ! and Γ1 Γ1 − r sin φ 0 γ = (Γi )= 12 22 = R+r cos φ 2 j2 Γ2 Γ2 0 0  12 22    To compute dω we need ∂ r sin φ (R + r cos φ)(r cos φ) − (r sin φ)(−r sin φ) − = − ∂φ R + r cos φ (R + r cos φ)2   r(R cos φ + r) = − (R + r cos φ)2 and ∂ (R + r cos φ) sin φ 1 = (R cos φ + r(cos2 φ − sin2 φ)) ∂φ r r   so we have

r(R cos φ+r) 0 2 dω (R+r cos φ) dθ dφ = 1 2 2 ∧ − r (R cos φ + r(cos φ − sin φ))) 0 !

4 Note the reversal of signs because the straightforward application of d to ω results in dφ ∧ dθ which is the wrong order. Next we compute ω ∧ ω. Recall that

ω = γ1dθ + γ2 dφ so that

ω ∧ ω = (γ1dθ + γ2 dφ) ∧ (γ1dθ + γ2 dφ)

= (γ1γ2 − γ2γ1) dθ ∧ dφ

So we need γ1γ2 and γ2γ1

0 − r sin φ r sin φ R+r cos φ − R+r cos φ 0 γ1γ2 = (R+r cos φ) sin φ 0 0 0 r !   0 0 = − sin2 φ 0   r sin φ r sin φ − R+r cos φ 0 0 − R+r cos φ γ2γ1 = 0 0 (R+r cos φ) sin φ 0   r ! 2 2 r sin φ 0 2 = (R+r cos φ) 0 0 ! so we have 2 2 r sin φ 0 − (R+r cos φ)2 ω ∧ ω = 2 dθ ∧ dφ − sin φ 0 ! To put dω and ω ∧ ω together we need

r(R cos φ + r) r2 sin2 rR cos φ + r2 − r2 sin2 φ − = (R + r cos φ)2 (R + r cos φ)2 (R + r cos φ)2 rR cos φ + r2 cos2 φ = (R + r cos φ)2 r cos φ(R + r cos φ) = (R + r cos φ)2 r cos φ = (R + r cos φ) so that we finally have

r cos φ 0 R+r cos φ Ω= dω + ω ∧ ω = cos φ dθ ∧ dφ − r (R + r cos φ) 0 !

5 4. The NORMAL VECTOR AND QUANTI- TIES ASSOCIATED WITH IT

Recall that the parametrization of the surface is ~x(θ, φ)=< (R + r cos φ)cos θ, (R + r cos φ) sin θ, r sin φ> with tangent vectors ~e1 and ~e2 given by ∂~x ~e1 = ∂u1 = < −(R + r cos φ) sin θ, (R + r cos φ)cos θ, 0 >

∂~x ~e2 = ∂u2 = < −r sin φ cos θ, −r sin φ sin θ, r cos φ > The normal vector ~n is given by ∂~x ∂~x ~n = × ∂u1 ∂u2 = < (R + r cos φ)r cos θ cos φ, (R + r cos φ)r sin θ cos φ, (R + r cos φ)r sin φ> = (R + r cos φ)r < cos φ cos θ, cos φ sin θ, sin φ> and its length, which also gives the multiplier in the area element for the torus, is |~n|2 = (R + r cos φ)2r2 cos2 φ cos2 θ + cos2 φ sin2 θ + sin2 φ = (R + r cos φ)2r2 |~n| = (R + r cos φ)r This gives a unit tangent vector nˆ =< cos φ cos θ, cos φ sin θ, sin φ> Recall the standard formula ∂ ~e i = ~e Γk +ˆnb ∂uj k ij ij

We wish to compute the bij . This is easy for donuts, because it is so easy to take derivatives ofn ˆ. We obviously have ∂ ~e b = i · nˆ ij ∂uj

Since ~ei · nˆ = 0, we can rewrite this as ∂nˆ b = −~e · ij i ∂uj We need ∂nˆ = < − cos φ sin θ, cos φ cos θ, 0 > ∂θ ∂nˆ = < − sin φ cos θ, − sin φ sin θ, cos φ> ∂φ

6 Now we have ∂nˆ b = − ~e · 11 1 ∂θ = − (R + r cos φ) sin2 φ cos φ + (R + r cos φ)cos2 φ cos φ +0 = −(R + r cos φ)cos φ  ∂nˆ b = b = − ~e · 21 12 2 ∂θ = − r sin φ cos θ cos φ sin θ − r sin φ sin θ cos φ cos θ +0 =0 ∂nˆ b = −~e ·  22 2 ∂φ = − r sin2 φ cos2 θ + r sin2 φ sin2 θr cos2 φ = −r and thus  −(R + r cos φ)cos φ 0 (b )= ij 0 −r   With this we can find the Gaussian Curvature which relates the infinitesmal area on the unit sphere to the infinitesmal area on the surface via the Gauss Map given byn ˆ:

det(b ) r((R + r cos φ)cos φ cos φ K ij = = 2 2 = det(gij ) r (R + r cos φ) r(R + r cos φ)

7