LINUX Virtualization
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
QEMU Version 2.10.2 User Documentation I
QEMU version 2.10.2 User Documentation i Table of Contents 1 Introduction ::::::::::::::::::::::::::::::::::::: 1 1.1 Features :::::::::::::::::::::::::::::::::::::::::::::::::::::::: 1 2 QEMU PC System emulator ::::::::::::::::::: 2 2.1 Introduction :::::::::::::::::::::::::::::::::::::::::::::::::::: 2 2.2 Quick Start::::::::::::::::::::::::::::::::::::::::::::::::::::: 2 2.3 Invocation :::::::::::::::::::::::::::::::::::::::::::::::::::::: 3 2.3.1 Standard options :::::::::::::::::::::::::::::::::::::::::: 3 2.3.2 Block device options ::::::::::::::::::::::::::::::::::::::: 9 2.3.3 USB options:::::::::::::::::::::::::::::::::::::::::::::: 19 2.3.4 Display options ::::::::::::::::::::::::::::::::::::::::::: 19 2.3.5 i386 target only::::::::::::::::::::::::::::::::::::::::::: 26 2.3.6 Network options :::::::::::::::::::::::::::::::::::::::::: 27 2.3.7 Character device options:::::::::::::::::::::::::::::::::: 35 2.3.8 Device URL Syntax::::::::::::::::::::::::::::::::::::::: 39 2.3.9 Bluetooth(R) options ::::::::::::::::::::::::::::::::::::: 42 2.3.10 TPM device options ::::::::::::::::::::::::::::::::::::: 42 2.3.11 Linux/Multiboot boot specific ::::::::::::::::::::::::::: 43 2.3.12 Debug/Expert options ::::::::::::::::::::::::::::::::::: 44 2.3.13 Generic object creation :::::::::::::::::::::::::::::::::: 52 2.4 Keys in the graphical frontends :::::::::::::::::::::::::::::::: 58 2.5 Keys in the character backend multiplexer ::::::::::::::::::::: 58 2.6 QEMU Monitor ::::::::::::::::::::::::::::::::::::::::::::::: 59 2.6.1 Commands ::::::::::::::::::::::::::::::::::::::::::::::: -
Effective Virtual CPU Configuration with QEMU and Libvirt
Effective Virtual CPU Configuration with QEMU and libvirt Kashyap Chamarthy <[email protected]> Open Source Summit Edinburgh, 2018 1 / 38 Timeline of recent CPU flaws, 2018 (a) Jan 03 • Spectre v1: Bounds Check Bypass Jan 03 • Spectre v2: Branch Target Injection Jan 03 • Meltdown: Rogue Data Cache Load May 21 • Spectre-NG: Speculative Store Bypass Jun 21 • TLBleed: Side-channel attack over shared TLBs 2 / 38 Timeline of recent CPU flaws, 2018 (b) Jun 29 • NetSpectre: Side-channel attack over local network Jul 10 • Spectre-NG: Bounds Check Bypass Store Aug 14 • L1TF: "L1 Terminal Fault" ... • ? 3 / 38 Related talks in the ‘References’ section Out of scope: Internals of various side-channel attacks How to exploit Meltdown & Spectre variants Details of performance implications What this talk is not about 4 / 38 Related talks in the ‘References’ section What this talk is not about Out of scope: Internals of various side-channel attacks How to exploit Meltdown & Spectre variants Details of performance implications 4 / 38 What this talk is not about Out of scope: Internals of various side-channel attacks How to exploit Meltdown & Spectre variants Details of performance implications Related talks in the ‘References’ section 4 / 38 OpenStack, et al. libguestfs Virt Driver (guestfish) libvirtd QMP QMP QEMU QEMU VM1 VM2 Custom Disk1 Disk2 Appliance ioctl() KVM-based virtualization components Linux with KVM 5 / 38 OpenStack, et al. libguestfs Virt Driver (guestfish) libvirtd QMP QMP Custom Appliance KVM-based virtualization components QEMU QEMU VM1 VM2 Disk1 Disk2 ioctl() Linux with KVM 5 / 38 OpenStack, et al. libguestfs Virt Driver (guestfish) Custom Appliance KVM-based virtualization components libvirtd QMP QMP QEMU QEMU VM1 VM2 Disk1 Disk2 ioctl() Linux with KVM 5 / 38 libguestfs (guestfish) Custom Appliance KVM-based virtualization components OpenStack, et al. -
Security Assurance Requirements for Linux Application Container Deployments
NISTIR 8176 Security Assurance Requirements for Linux Application Container Deployments Ramaswamy Chandramouli This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8176 NISTIR 8176 Security Assurance Requirements for Linux Application Container Deployments Ramaswamy Chandramouli Computer Security Division Information Technology Laboratory This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8176 October 2017 U.S. Department of Commerce Wilbur L. Ross, Jr., Secretary National Institute of Standards and Technology Walter Copan, NIST Director and Under Secretary of Commerce for Standards and Technology NISTIR 8176 SECURITY ASSURANCE FOR LINUX CONTAINERS National Institute of Standards and Technology Internal Report 8176 37 pages (October 2017) This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8176 Certain commercial entities, equipment, or materials may be identified in this document in order to describe an experimental procedure or concept adequately. Such identification is not intended to imply recommendation or endorsement by NIST, nor is it intended to imply that the entities, materials, or equipment are necessarily the best available for the purpose. This p There may be references in this publication to other publications currently under development by NIST in accordance with its assigned statutory responsibilities. The information in this publication, including concepts and methodologies, may be used by federal agencies even before the completion of such companion publications. Thus, until each ublication is available free of charge from: http publication is completed, current requirements, guidelines, and procedures, where they exist, remain operative. For planning and transition purposes, federal agencies may wish to closely follow the development of these new publications by NIST. -
The First Attempt Our Next Attempt Conclusion
Dr. Henry Neeman, Director of Oscer Chris Franklin, Computer Science undergrad, IT employee Dr. Horst Severini, Associate Director for Remote & Heterogeneous Computing Joshua Alexander, Computer Engineering undergrad, IT employee What is Condor®? The first attempt ® Condor is a program developed by the University of Wisconsin to allow desktop computers to The initial solution we devised was to install VMWare® within a native Linux install, and then to install Windows inside VMWare®. The steps harness idle time to perform computationally intensive operations. See were: “http://www.cs.wisc.edu/condor/” for more information about Condor®. 1. Install Linux as the native host operating system Why do you need it? 2. Install Condor inside Linux 3. Install VMWare® inside Linux ® Condor® provides free computing cycles for scientific and research use, which extends current 4. Install Windows inside VMWare super-computing resources by adding additional computing time. We installed this solution on approximately 200 lab computers across OU’s campus during the summer of 2005. During testing, we noticed a significant performance decrease using Windows inside VMWare®. To alleviate this problem, we changed VMWare® to use raw disk mode. This mode significantly increased disk performance inside VMWare®. If this is so simple, why can’t I just install it? Once we deployed VMWare® in the labs, several more issues appeared: ® Most scientific and research programs are designed for Linux, but most desktops are running • CD/DVD Burning from inside VMWare did -
A Virtual Machine Environment for Real Time Systems Laboratories
AC 2007-904: A VIRTUAL MACHINE ENVIRONMENT FOR REAL-TIME SYSTEMS LABORATORIES Mukul Shirvaikar, University of Texas-Tyler MUKUL SHIRVAIKAR received the Ph.D. degree in Electrical and Computer Engineering from the University of Tennessee in 1993. He is currently an Associate Professor of Electrical Engineering at the University of Texas at Tyler. He has also held positions at Texas Instruments and the University of West Florida. His research interests include real-time imaging, embedded systems, pattern recognition, and dual-core processor architectures. At the University of Texas he has started a new real-time systems lab using dual-core processor technology. He is also the principal investigator for the “Back-To-Basics” project aimed at engineering student retention. Nikhil Satyala, University of Texas-Tyler NIKHIL SATYALA received the Bachelors degree in Electronics and Communication Engineering from the Jawaharlal Nehru Technological University (JNTU), India in 2004. He is currently pursuing his Masters degree at the University of Texas at Tyler, while working as a research assistant. His research interests include embedded systems, dual-core processor architectures and microprocessors. Page 12.152.1 Page © American Society for Engineering Education, 2007 A Virtual Machine Environment for Real Time Systems Laboratories Abstract The goal of this project was to build a superior environment for a real time system laboratory that would allow users to run Windows and Linux embedded application development tools concurrently on a single computer. These requirements were dictated by real-time system applications which are increasingly being implemented on asymmetric dual-core processors running different operating systems. A real time systems laboratory curriculum based on dual- core architectures has been presented in this forum in the past.2 It was designed for a senior elective course in real time systems at the University of Texas at Tyler that combines lectures along with an integrated lab. -
Running Windows Programs on Ubuntu with Wine Wine Importer Shanna Korby, Fotolia
KNoW-HoW Wine Running Windows programs on Ubuntu with Wine Wine importer Shanna Korby, Fotolia Korby, Shanna Users who move from Windows to Ubuntu often miss some of their favorite programs and games. Wouldn’t it be practical to run Windows applications on the free Ubuntu operating system? Time for a little taste of Wine. BY TIM SCHÜRMANN any Ubuntu migrants miss to develop something similar for Linux. Box or VMware, Wine does not emulate games and graphics programs A short while later, the first version of a whole PC and thus cannot be consid- Msuch as CorelDRAW or prod- Wine was released. Today, more than ered a real emulator. This also explains ucts such as Adobe Photoshop. The only 300 volunteer programmers from all over the name Wine, which means Wine Is solution is to install Windows parallel to the world continue to contribute to the Not an Emulator. Ubuntu – or try Wine, which tricks ap- Wine project. Because of the way Wine works, it of- plications into believing they are run- fers a number of advantages. Chiefly, ning on a Windows system. What’s in a Name? you do not need an expensive Windows The history of Wine goes back to the To run Windows programs on Ubuntu, license. Programs will run almost as fast year 1993. At the time, Sun developed a Wine uses a fairly complex trick: It sits as on the Redmond operating system, small tool to run Windows applications between the Windows application and and windows behave as if they belong on its own Solaris operating system, Ubuntu like a simultaneous interpreter. -
Introduction to Containers
Introduction to Containers Martin Čuma Center for High Performance Computing University of Utah [email protected] Overview • Why do we want to use containers? • Containers basics • Prepare your computer for containers • Build and deploy a container • Containers for complex software • https://www.surveymonkey.com/r/RDMBHMS 10/31/2017 http://www.chpc.utah.edu Slide 2 Hands on setup 1. Download the talk slides http://home.chpc.utah.edu/~mcuma/chpc/Containers17.pdf https://tinyurl.com/y8v44z95 2. If you have CHPC account, using terminal application (Mac terminal, PuTTY, GIT Shell) – ssh [email protected] 3. Make sure you can see singularity – which singularity 4. Make sure you can sudo singularity command – sudo singularity –version OR – if you don’t have CHPC account, use Singularity on your laptop 10/31/2017 http://www.chpc.utah.edu Slide 3 Why to use containers? 10/31/2017 http://www.chpc.utah.edu Slide 4 Software dependencies • Some programs require complex software environments – OS type and versions – Drivers – Compiler type and versions – Software dependencies • Python/R/MATLAB versions • glibc, stdlibc++ versions • Other libraries and executables • Python/R libraries 10/31/2017 http://www.chpc.utah.edu Slide 5 Reproducible research • Research outputs include software and data • Software reproducibility – Software repositories (svn, git) – Good but often software has dependencies • Data reproducibility – Data as publication supplementary info, centralized repositories (NCBI), … – Disconnected from the production environment -
Hypervisors Vs. Lightweight Virtualization: a Performance Comparison
2015 IEEE International Conference on Cloud Engineering Hypervisors vs. Lightweight Virtualization: a Performance Comparison Roberto Morabito, Jimmy Kjällman, and Miika Komu Ericsson Research, NomadicLab Jorvas, Finland [email protected], [email protected], [email protected] Abstract — Virtualization of operating systems provides a container and alternative solutions. The idea is to quantify the common way to run different services in the cloud. Recently, the level of overhead introduced by these platforms and the lightweight virtualization technologies claim to offer superior existing gap compared to a non-virtualized environment. performance. In this paper, we present a detailed performance The remainder of this paper is structured as follows: in comparison of traditional hypervisor based virtualization and Section II, literature review and a brief description of all the new lightweight solutions. In our measurements, we use several technologies and platforms evaluated is provided. The benchmarks tools in order to understand the strengths, methodology used to realize our performance comparison is weaknesses, and anomalies introduced by these different platforms in terms of processing, storage, memory and network. introduced in Section III. The benchmark results are presented Our results show that containers achieve generally better in Section IV. Finally, some concluding remarks and future performance when compared with traditional virtual machines work are provided in Section V. and other recent solutions. Albeit containers offer clearly more dense deployment of virtual machines, the performance II. BACKGROUND AND RELATED WORK difference with other technologies is in many cases relatively small. In this section, we provide an overview of the different technologies included in the performance comparison. -
Sdruno (Extio) on Linux Using Wine 4.0 on Ubuntu 16.04 a Guide Put Together by the Community
SDRuno (ExtIO) on Linux using Wine 4.0 on Ubuntu 16.04 A Guide Put Together by The Community The following procedure outlines the approach used to get the ExtIO version of SDRuno running under Wine within a Linux environment. This was pulled together as a result of the efforts of various individuals on the SDRplay forum and we have found that it works on Ubuntu 16.04. Please note the following: • This is for x86 platforms ONLY and will not work on ARM systems • If you have little or no experience with Linux, this is not recommended. Linux is in our view, not for the inexperienced or faint-hearted users. • This is NOT an ‘official’ SDRplay flow. We will not be providing ANY support for users who try this and have problems. We recommend that if you are having problems that you reach out via our community forum and hopefully the people that figured this out will be in a better position to advise you. • This flow also works for HDSDR. It may also work for SDR# or any other Windows applications that use the RTL_TCP interface or the ExtIO interface. • This will NOT work with the main version of SDRuno (non ExtIO version) at present, but we hope that we will be able to provide hooks in the future so that it will. • This does not diminish our commitment to develop a fully-fledged native Linux version of SDRuno as part of our cross-platform development program. This is intended to open more options for dedicated Linux users. -
Running Telecom/TT-Link and Trafman Under Windows 7 (And Up) Using Dosbox
Running Telecom/TT-Link and Trafman under Windows 7 (and up) using DOSbox 3/31/2014 Documentation written for: Telecom/TT-Link V3.97 or later. TrafMan V6.43 or later. DOSbox V0.74 or later. COM/IP V4.9.5 or later. TrafMan & Telecom/TT-Link on Windows 7 Page 1 of 10 I. Introduction and Initial Emulator Setup Microsoft discontinued support for MS-DOS level programs starting with Windows 7. This has made the operation of Telecom/TT-Link and TrafMan on systems with a Windows 7 or later operating systems problematical, to say the least. However, it is possible to achieve functionality (with some limits) even on a Windows 7 computer by using what is known as a “DOS Emulator”. Emulator’s simulate the conditions of an earlier operating system on a later one. For example, one of the most common emulators is called DOSbox (http://sourceforge.net/projects/dosbox/ ) and it is available as a free download for both PC and Mac computers. DOSbox creates an artificial MS-DOS level environment on a Windows 7 computer. Inside this environment you can run most DOS programs, including TrafMan and Telecom/TT-Link. This document describes how to utilize the DOSbox emulator for running Telecom/TT-Link and TrafMan. It should be noted, however, that other emulators may also work and this document can serve as a guide for setting up and using similar DOS emulators as they are available. Initial DOSbox Emulator Setup: 1) Download the latest release of DOSbox (0.74 or later) to your PC and install it. -
Systemd As a Container Manager
systemd as a Container Manager Seth Jennings [email protected] Texas Linux Fest 2015 8/21/2015 Agenda ● Very quick overview of systemd ● What is a Linux Container ● systemd as a Container Manager ● Live Demo! Because I like to punish myself! Disclaimer What is systemd? ● systemd is a suite of system management daemons, libraries, and utilities designed as a central management and configuration platform for the Linux operating system. How Big Is This “Suite” ● systemd - init process, pid 1 ● journald ● logind ● udevd ● hostnamed ● machined ● importd ● networkd ● resolved ● localed ● timedated ● timesyncd ● and more! Don't Leave! ● No deep dive on all of these ● Focus on using systemd for container management – Spoiler alert: many of the systemd commands you already use work on containers managed by systemd too! What is a Linux Container ● What it is not – Magic ● conjured only from the mystical language of Go – Virtualization (hardware emulation) – A completely new concept never before conceived of by man since time began – An image format – An image distribution mechanism – Only usable by modular (microservice) applications at scale What is a Linux Container ● A resource-constrained, namespaced environment, initialized by a container manager and enforced by the kernel, where processes can run – kernel cgroups limits hardware resources ● cpus, memory, i/o ● special cgroup filesystem /sys/fs/cgroup – kernel namespacing limits resource visibility ● mount, PID, user, network, UTS, IPC ● syscalls clone(), setns(), unshare() What is a Linux Container ● The set of processes in the container is rooted in a process that has pid 1 inside the pid namespace of the container ● The filesystem inside the container can be as complex as a docker image or as simple as a subdirectory on the host (think chroot). -
Virtual Environment for Ipv6 Analysis
Virtual Environment for IPv6 Analysis ____________________________ Ricardo Alexander Saladrigas Advisor: Dr. Anna Calveras Barcelona DEDICATION To my parents, for giving me opportunities of immeasurable value and supporting me and my farfetched ideas. To my near family, for their accumulated efforts of improving our collective life. And to Maria Alexandra Siso, Robert Baumgartner, Alyssa Juday and Marc Ramirez for keeping me sane. i ACKNOWLEDGMENTS I extend my gratitude to everyone that has made my work possible. I express my thanks to the communities of VirtualBox, StackOverflow, ServerFault and Ubuntu Help as well as the Reddit communities for Linux and Networking for answering all my technical questions in detail and without prejudice I would like to thank Dr Anna Calveras for her guidance and patience. ii RESUMEN Nuestro objetivo fue la creación de una red compuesta de máquinas virtuales conectadas de forma específica a través de interfaces virtuales y con una seria de protocolos pre configurados que permiten la fácil creación de túneles IPv6 y traductores IPv6 a IPv4. Esta red les permitirá a profesores y estudiantes analizar y observar trafico IPv6 real sin la necesidad de una red física. La red está compuesta de múltiples Máquinas Virtuales Ubuntu y una Máquina Virtual Windows 7. La red puede ser fácilmente instalada en un ordenador corriendo Ubuntu o una distribución basada en Ubuntu. Un USB arrancable fue desarrollado para usar la red en un ordenador sin la necesidad de una instalación o de un sistema operativo especifico. Todas las máquinas virtuales Linux pueden fácilmente ser controladas a través de una terminal sin necesidad de clave utilizando una serie de scripts.