Txminer: Identifying Transmitters in Real-World Spectrum Measurements

Total Page:16

File Type:pdf, Size:1020Kb

Txminer: Identifying Transmitters in Real-World Spectrum Measurements 2015 IEEE International Symposium on Dynamic Spectrum Access Networks (DySPAN) TxMiner: Identifying transmitters in real-world spectrum measurements Mariya Zheleva Ranveer Chandra, Aakanksha Chowdhery, Computer Science Ashish Kapoor, Paul Garnett University at Albany, SUNY Microsoft Research [email protected] ranveer, ac, akapoor, paulgar @microsoft.com { } Abstract—Knowledge about active radio transmitters is crit- ical for multiple applications: spectrum regulators can usethis information to assign spectrum, licensees can identify spectrum usage patterns and better provision their future needs, and dynamic spectrum access applications can leverage such knowl- edge to pick operating frequency. Despite the importance of transmitter identification the current work in this space is limited Fig. 1. Example of overlapping transmitters. and requires prior knowledge of transmitter signatures to identify active radio transmitters. More naive approaches are limited to detecting power levels and do not identify characteristics of operate in this band. While the first question can be approached the active transmitter. To address these challenges we propose by simple estimation of power level in a given band, the other TxMiner;asystemthatidentifiestransmittersfromrawspectrum measurements without prior knowledge of transmitter signatures. two questions require more elaborate analysis of spectrum TxMiner harnesses the observation that wireless signal fading occupancy. Such analysis needs to answer questions such as are follows a Rayleigh distribution and applies a novel machine there more than one transmitters in a given band, and what are learning algorithm to mine transmitters. We evaluate TxMiner on their received powers, operating frequencies, bandwidth and real-world spectrum measurements between 30MHz and 6GHz. temporal characteristics. Learning these characteristicsfrom The evaluation results show that TxMiner identifies transmitters raw spectrum measurements is critical for improved policing robustly. We then make use of TxMiner to map the number of and technological advancements in the DSA domain. active transmitters and their frequency and temporal characteris- tics over 30MHz-6GHz, we detect rogue transmitters and identify Despite the need for deep understanding of spectrum opportunities for dynamic spectrum access. occupancy, there does not exist a platform to create such nationwide spectrum usage footprint. This is primarily due to I. INTRODUCTION lack of scalable infrastructure for collection and processing of RF spectrum measurements. Traditionally, spectrum occu- There is an increased demand for additional RF spectrum to pancy is analyzed via spectrum analyzers that capture large support mobile data communication. However, nearly all the amounts of data. The latter poses challenges in scalable data RF spectrum has been allocated for different purposes, e.g. storage. Furthermore, the current approaches to mining and TV, radio, cellular, radars, satellites, etc. Therefore, spectrum summarizing spectrum measurements are very limited, making regulators worldwide are investigating the use of Dynamic it hard to evaluate the collected spectrum data. Spectrum Access (DSA) techniques, such as in the TV white spaces or tiered access in 3.5 GHz of spectrum, to meet the Current approaches to spectrum summarization require additional demand. Using these techniques, mobile devices can prior knowledge of transmitter signatures and fine-grained send and receive packets over a frequency as long as they do spectrum measurements [9, 14], both of which are difficult not interfere with the licensed user of that frequency. to obtain in wide-band sweep-based spectrum sensing. Other, more general approaches, make use of measured power level To identify new spectrum for DSA, the government and in order to determine spectrum occupancy [17], however they spectrum regulators worldwide have expressed a desire to can be very inaccurate in creating a spectrum inventory. To il- create large-scale spectrum inventory in order to determine lustrate the problems related to spectrum traces summarization spectrum usage at different locations over long periods of let us consider the example in Figure 1. The top part of the time [6]. For example, in the US, the goal of the Spectrum figure plots power spectral density (PSD) measured over the Inventory Bill [2] is to create a nationwide footprint of spec- course of 90 seconds between 700 and 900MHz. The bottom trum usage over time. Based on these measurements, spectrum figure plots a maxhold of PSD in the entire frequency range, regulators can open new portions of the spectrum for DSA [5]. that is the maximum measured PSD value in each frequency Furthermore, new DSA technologies can be designed taking bin. Arguably, in some parts of the spectrum there exist more into account the characteristics of these bands. than one transmitters that occupy the same band in a time- Creating such national spectrum inventory is aimed at division fashion. Direct analysis of the data in time-frequency answering various questions including (i) how much spectrum domain is prone to errors due to the noisy nature of raw is occupied and how much is idle, (ii) how many transmitters spectrum signals. Analysis of the maxhold, on another hand, occupy a given frequency band, and (iii) are they authorized to can provide intuition of occupied fractions of this spectrum 978-1-4799-7452-8/15/$31.00 ©2015 IEEE 99 2015 IEEE International Symposium on Dynamic Spectrum Access Networks (DySPAN) but hides the time-frequency characteristics of the signal;that we apply TxMiner on real world spectrum traces in Section IV is if multiple transmitters share the same frequency band they in order to demonstrate TxMiner’s capabilities to create a will be considered as a single transmitter. Furthermore, using nationwide spectrum inventory and thus benefit both regulators maxhold-based analysis, one cannot determine the temporal as well as DSA technology designers. We finalize the paper patterns of the signal. with discussion and conclusion in Section VI. To address these challenges we design a new technique, called TxMiner, that identifies transmitters from raw spec- II. TXMINER:IDENTIFYING TRANSMITTERS IN trum measurements, even when the transmitter characteristics SPECTRUM OBSERVATORY DATA are not known and the spectrum sensing resolution is low. TxMiner leverages the phenomenon that fading of non-line- Traditionally, spectrum occupancy is analyzed manually of-sight wireless signals typically follows a Rayleigh distri- by the use of tools, such as spectrograms of power spectral bution, while noise follows a Gaussian distribution [7]. Thus, density. While such tools are informative, they are not very the raw spectrum samples can be modeled as a mixture of actionable. Particularly, they do not allow automated, fine- Rayleigh distributions capturing the ongoing transmissions, grained, long-term observation of spectrum occupancy patterns and a Gaussian representing the noise. Based on this obser- that are needed to inform DSA system design and policy. We vation we design a machine learning algorithm that extracts propose TxMiner to solve the above problems by identifying Rayleigh and Gaussian sub-populations from a given RF signal transmitters in raw Spectrum Observatory data without prior population. There are two challenges associated with such knowledge of transmitter characteristics. TxMiner enablessev- approach to transmitter characterization. First, the performance eral new and exciting applications including mapping spectrum of our Rayleigh-Gaussian mixture model is dependent on the occupancy, identifying rogue transmitters, DSA beyond TV initialization of the model. To address this challenge, we white spaces and spectrum management. design a multi-scale initialization scheme, presented in detail Applications of TxMiner: The problem of spectrum map- in Section II-D. Second, in order to extract frequency and ping and management is relevant worldwide. In the US the temporal transmitter characteristics we need to perform time- FCC has been mandated by Congress to create a spectrum frequency analysis of the collected data. Towards this end, we usage map to be included in the Spectrum Inventory Bill [1]. design a post-processing technique detailed in Section II-E. In developing countries, spectrum regulators often do not know Thus, TxMiner is comprised of three critical components: (i) how spectrum is being used2.TxMinercanbeappliedin multi-scale initialization, (ii) Rayleigh-Gaussian representation both scenarios for advanced mapping of spectrum occupancy, of raw spectrum measurements and (iii) post-processing for which in turn enables effective spectrum use and regulation. actual transmitter identification. Furthermore, it can inform spectrum management by answer- We evaluate TxMiner on spectrum measurements collected ing questions such as (i) how many types of transmitters by the Spectrum Observatory1,aswellasonseveralcontrolled are using the channel? (ii) how many transmitters of each transmissions, and we have found that it can accurately iden- type are present? and (iii) what is the noise floor of the tify transmitters of different types including WiMax, TV & channel when these transmissions are not present? TxMiner FM broadcasts, as well as proprietary DSA protocols. We can also be useful in identifying rogue transmitters by detecting demonstrate TxMiner’s ability to map the number of active discrepancies between expected and detected transmitters in a transmitters
Recommended publications
  • Revisions to Microwave Spectrum Utilization Policies in the Range of 1-20 Ghz
    SP 1-20 GHz January 1995 Spectrum Management Spectrum Utilization Policy Revisions to Microwave Spectrum Utilization Policies in the Range of 1-20 GHz Notice No. DGTP-002-95 Amended by: DGTP-006-99 Amendments to the Microwave Spectrum Utilization Policies in the 1-3 GHz Frequency Range (October 1999) DGTP-006-97 Proposals to Provide New Opportunities for the Use of the Radio Spectrum in the 1-20 GHz Frequency Range (August 1997) DGTP-007-97 Spectrum Policy Provisions to Permit the Use of Digital Radio Broadcasting Installations to Provide to Non-Broadcasting Services (September 1997) DGTP-004-97 Licence Exempt Personal Communications Services in the Frequency Band 1910-1930 MHz (April 1997) DGTP-005-95 / Policy and Call for Applications: Wireless Personal Communications Services in the 2 GHz Range, Implementing PCS DGRB-002-95 in Canada (June 1995) DGTP-007-00 / Policy and Licensing Procedures for the Auction of the Additional PCS Spectrum in the 2 GHz Frequency Range DGRB-005-00 (June 2000) DGTP-003-01 Revisions to the Spectrum Utilization Policy for Services in the Frequency Range 2285-2483.5 MHz (June 2001) DGRB-003-03 Policy and Licensing Procedures for the Auction of Spectrum Licences in the 2300 MHz and 3500 MHz Bands (September 2003) DGRB-006-99 Policy and Licensing Procedures - Multipoint Communications Systems in the 2500 MHz Range (June 1999) DGTP-004-04 Revisions to Allocations in the Band 2500-2690 MHz and Consultation on Spectrum Utilization (April 2004) DGTP-008-04 Revisions to Spectrum Utilization Policies in the 3-30 GHz
    [Show full text]
  • Radio Spectrum a Key Resource for the Digital Single Market
    Briefing March 2015 Radio spectrum A key resource for the Digital Single Market SUMMARY Radio spectrum refers to a specific range of frequencies of electromagnetic energy that is used to communicate information. Applications important for society such as radio and television broadcasting, civil aviation, satellites, defence and emergency services depend on specific allocations of radio frequency. Recently the demand for spectrum has increased dramatically, driven by growing quantities of data transmitted over the internet and rapidly increasing numbers of wireless devices, including smartphones and tablets, Wi-Fi networks and everyday objects connected to the internet. Radio spectrum is a finite natural resource that needs to be managed to realise the maximum economic and social benefits. Countries have traditionally regulated radio spectrum within their territories. However despite the increasing involvement of the European Union (EU) in radio spectrum policy over the past 10 to 15 years, many observers feel that the management of radio spectrum in the EU is fragmented in ways which makes the internal market inefficient, restrains economic development, and hinders the achievement of certain goals of the Digital Agenda for Europe. In 2013, the European Commission proposed legislation on electronic communications that among other measures, provided for greater coordination in spectrum management in the EU, but this has stalled in the face of opposition within the Council. In setting out his political priorities, Commission President Jean-Claude Juncker has indicated that ambitious telecommunication reforms, to break down national silos in the management of radio spectrum, are an important step in the creation of a Digital Single Market. The Commission plans to propose a Digital Single Market package in May 2015, which may again address this issue.
    [Show full text]
  • PSAD-79-48A an Unclassified Version of a Classified Report
    STUDYBY THE STAFFOF THE‘U.S. General Accounting Office An Unclassified Version Of A Classified Report Entitled “The Navy’s Strategic Communications Systems--Need For Management Attention And Decisionmaking” Peacetime communications systems provide reliable day-to-day communications to the strategic submarine force. However, the Navy’s most survivable wartime communica- tions link to nuclear-powered strategic submarines--the TACAMO aircraft--has cer- tain problems which need attention. Also, the Navy should reconsider whether another peacetime communications system--the extremely low frequency system--is needed. COMPTROLLER GENERAL OF THE UNITED STATES WASHINGTON. O.C. 20548 B-168707 To the President of the Senate and the Speaker of the House of Representatives This report is an unclassified version of a SECRET report (PSAD-79-48, March 19, 1979) to the Congress that describes the various communications systems used by our strategic submarine force and questions the need for the extremely low frequency system. Also, the report addresses the need for support of the TACAMO comnunications system. We made this study because of widespread congressional interest in strategic communications systems, especially the TACAMO and proposed extremely low frequency systems. These issues are receiving increased recognition, and the Navy plans to spend millions of dollars to improve the TACAMO system and conduct research and development on the extremely low frequency system. Copies of this report are being sent to the Secretary of Defense and the Secretary of the Navy. Comptroller General of the United States COMPTROLLER GENERAL'S THE NAVY'S STRATEGIC REPORT TO THE CONGRESS COMMUNICATIONS SYSTEMS--NEED FOR MANAGEMENT ATTENTION AND DECISIONMAKING ------DIGEST Peacetime communications systems provide reliable day-to-day communications to the strategic submarine force.
    [Show full text]
  • Chapter 4, Current Status, Knowledge Gaps, and Research Needs Pertaining to Firefighter Radio Communication Systems
    NIOSH Firefighter Radio Communications CHAPTER IV: STRUCTURE COMMUNICATIONS ISSUES Buildings and other structures pose difficult problems for wireless (radio) communications. Whether communication is via hand-held radio or personal cellular phone, communications to, from, and within structures can degrade depending on a variety of factors. These factors include multipath effects, reflection from coated exterior glass, non-line-of-sight path loss, and signal absorption in the building construction materials, among others. The communications problems may be compounded by lack of a repeater to amplify and retransmit the signal or by poor placement of the repeater. RF propagation in structures can be so poor that there may be areas where the signal is virtually nonexistent, rendering radio communication impossible. Those who design and select firefighter communications systems cannot dictate what building materials or methods are used in structures, but they can conduct research and select the radio system designs and deployments that provide significantly improved radio communications in this extremely difficult environment.4 Communication Problems Inherent in Structures MULTIPATH Multipath fading and noise is a major cause of poor radio performance. Multipath is a phenomenon that results from the fact that a transmitted signal does not arrive at the receiver solely from a single straight line-of-sight path. Because there are obstacles in the path of a transmitted radio signal, the signal may be reflected multiple times and in multiple paths, and arrive at the receiver from various directions along various paths, with various signal strengths per path. In fact, a radio signal received by a firefighter within a building is rarely a signal that traveled directly by line of sight from the transmitter.
    [Show full text]
  • Spectrum and the Technological Transformation of the Satellite Industry Prepared by Strand Consulting on Behalf of the Satellite Industry Association1
    Spectrum & the Technological Transformation of the Satellite Industry Spectrum and the Technological Transformation of the Satellite Industry Prepared by Strand Consulting on behalf of the Satellite Industry Association1 1 AT&T, a member of SIA, does not necessarily endorse all conclusions of this study. Page 1 of 75 Spectrum & the Technological Transformation of the Satellite Industry 1. Table of Contents 1. Table of Contents ................................................................................................ 1 2. Executive Summary ............................................................................................. 4 2.1. What the satellite industry does for the U.S. today ............................................... 4 2.2. What the satellite industry offers going forward ................................................... 4 2.3. Innovation in the satellite industry ........................................................................ 5 3. Introduction ......................................................................................................... 7 3.1. Overview .................................................................................................................. 7 3.2. Spectrum Basics ...................................................................................................... 8 3.3. Satellite Industry Segments .................................................................................... 9 3.3.1. Satellite Communications ..............................................................................
    [Show full text]
  • Spectrum for the Next Generation of Wireless 11-012 Publications Office P.O
    Communications and Society Program MacCarthy Spectrum for the Spectrum for the Next Generation of Wireless Next Generation of Wireless By Mark MacCarthy Publications Office P.O. Box 222 109 Houghton Lab Lane Queenstown, MD 21658 11-012 Spectrum for the Next Generation of Wireless Mark MacCarthy Rapporteur Communications and Society Program Charles M. Firestone Executive Director Washington, D.C. 2011 To purchase additional copies of this report, please contact: The Aspen Institute Publications Office P.O. Box 222 109 Houghton Lab Lane Queenstown, Maryland 21658 Phone: (410) 820-5326 Fax: (410) 827-9174 E-mail: [email protected] For all other inquiries, please contact: The Aspen Institute Communications and Society Program One Dupont Circle, NW Suite 700 Washington, DC 20036 Phone: (202) 736-5818 Fax: (202) 467-0790 Charles M. Firestone Patricia K. Kelly Executive Director Assistant Director Copyright © 2011 by The Aspen Institute This work is licensed under the Creative Commons Attribution- Noncommercial 3.0 United States License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc/3.0/us/ or send a letter to Creative Commons, 171 Second Street, Suite 300, San Francisco, California, 94105, USA. The Aspen Institute One Dupont Circle, NW Suite 700 Washington, DC 20036 Published in the United States of America in 2011 by The Aspen Institute All rights reserved Printed in the United States of America ISBN: 0-89843-551-X 11-012 1826CSP/11-BK Contents FOREWORD, Charles M. Firestone ...............................................................v SPECTRUM FOR THE NEXT GENERATION OF WIRELESS, Mark MacCarthy Introduction .................................................................................................... 1 Context for Evaluating and Allocating Spectrum ........................................
    [Show full text]
  • NIST Time and Frequency Services (NIST Special Publication 432)
    Time & Freq Sp Publication A 2/13/02 5:24 PM Page 1 NIST Special Publication 432, 2002 Edition NIST Time and Frequency Services Michael A. Lombardi Time & Freq Sp Publication A 2/13/02 5:24 PM Page 2 Time & Freq Sp Publication A 4/22/03 1:32 PM Page 3 NIST Special Publication 432 (Minor text revisions made in April 2003) NIST Time and Frequency Services Michael A. Lombardi Time and Frequency Division Physics Laboratory (Supersedes NIST Special Publication 432, dated June 1991) January 2002 U.S. DEPARTMENT OF COMMERCE Donald L. Evans, Secretary TECHNOLOGY ADMINISTRATION Phillip J. Bond, Under Secretary for Technology NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY Arden L. Bement, Jr., Director Time & Freq Sp Publication A 2/13/02 5:24 PM Page 4 Certain commercial entities, equipment, or materials may be identified in this document in order to describe an experimental procedure or concept adequately. Such identification is not intended to imply recommendation or endorsement by the National Institute of Standards and Technology, nor is it intended to imply that the entities, materials, or equipment are necessarily the best available for the purpose. NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY SPECIAL PUBLICATION 432 (SUPERSEDES NIST SPECIAL PUBLICATION 432, DATED JUNE 1991) NATL. INST.STAND.TECHNOL. SPEC. PUBL. 432, 76 PAGES (JANUARY 2002) CODEN: NSPUE2 U.S. GOVERNMENT PRINTING OFFICE WASHINGTON: 2002 For sale by the Superintendent of Documents, U.S. Government Printing Office Website: bookstore.gpo.gov Phone: (202) 512-1800 Fax: (202)
    [Show full text]
  • Space Spectrum
    # Space Spectrum Statement Publication date: 19 January 2017 About this document This document sets out our strategy for space spectrum, covering the satellite and space science sectors, and including meteorological and earth observation satellites. These sectors already deliver important benefits and our strategy sets out the priorities we will focus on to enable further growth. Delivery of these priorities sits alongside our on-going activities in these sectors, including management of satellite filings and earth station licensing. Our aim is to deliver these in a high quality and efficient way and we will seek to further improve our processes. In addition, through our international representation work we support wider UK interests as appropriate. 1 Contents Section Page 1 Executive summary 3 2 Introduction 6 3 Our strategy 13 Annex Page 1 Summary of consultation responses 32 2 Glossary 53 2 Section 1 1 Executive summary Overview 1.1 This document sets out our strategy for space spectrum, covering the satellite and space science sectors and including meteorological and earth observation satellites. These sectors already deliver important benefits and our strategy identifies how we will enable further growth. 1.2 We will focus our policy efforts on enabling growth in satellite broadband and earth observation. We will do this by providing greater access to spectrum for these areas. This will include negotiating international agreements to free up spectrum for new uses, and by facilitating access to spectrum used by the public sector. We will monitor growth in other applications, such as the Internet of Things, to understand where we may need to take further action in the future.
    [Show full text]
  • UNIT -1 Microwave Spectrum and Bands-Characteristics Of
    UNIT -1 Microwave spectrum and bands-characteristics of microwaves-a typical microwave system. Traditional, industrial and biomedical applications of microwaves. Microwave hazards.S-matrix – significance, formulation and properties.S-matrix representation of a multi port network, S-matrix of a two port network with mismatched load. 1.1 INTRODUCTION Microwaves are electromagnetic waves (EM) with wavelengths ranging from 10cm to 1mm. The corresponding frequency range is 30Ghz (=109 Hz) to 300Ghz (=1011 Hz) . This means microwave frequencies are upto infrared and visible-light regions. The microwaves frequencies span the following three major bands at the highest end of RF spectrum. i) Ultra high frequency (UHF) 0.3 to 3 Ghz ii) Super high frequency (SHF) 3 to 30 Ghz iii) Extra high frequency (EHF) 30 to 300 Ghz Most application of microwave technology make use of frequencies in the 1 to 40 Ghz range. During world war II , microwave engineering became a very essential consideration for the development of high resolution radars capable of detecting and locating enemy planes and ships through a Narrow beam of EM energy. The common characteristics of microwave device are the negative resistance that can be used for microwave oscillation and amplification. Fig 1.1 Electromagnetic spectrum 1.2 MICROWAVE SYSTEM A microwave system normally consists of a transmitter subsystems, including a microwave oscillator, wave guides and a transmitting antenna, and a receiver subsystem that includes a receiving antenna, transmission line or wave guide, a microwave amplifier, and a receiver. Reflex Klystron, gunn diode, Traveling wave tube, and magnetron are used as a microwave sources.
    [Show full text]
  • Consultation: Improving Spectrum Access for Wi-Fi
    Improving spectrum access for Wi-Fi Spectrum use in the 5 and 6 GHz bands CONSULTATION: Publication date: 17 January 2020 Closing date for responses: 20 March 2020 Contents Section 1. Overview 1 2. Introduction 3 3. Current and future use of Wi-Fi 7 4. Opening spectrum for Wi-Fi in the 5925-6425 MHz band 14 5. Making more efficient use of spectrum in the 5725-5850 MHz band 20 6. Conclusions and next steps 25 Annex A1. Responding to this consultation 26 A2. Ofcom’s consultation principles 29 A3. Consultation coversheet 30 A4. Consultation questions 31 A5. Legal framework 32 A6. Current and future demand for Wi-Fi 37 A7. Coexistence studies in the 5925-6425 MHz band 40 A8. Proposed updates to Interface Requirement 2030 62 A9. Glossary 65 Improving spectrum access for Wi-Fi 1. Overview Spectrum provides the radio waves that support wireless services used by people and businesses every day, including Wi-Fi. We are reviewing our existing regulations for spectrum for unlicensed use to meet future demand, address existing problems of slow speeds and congestion, and enable new, innovative applications. People and businesses in the UK are increasingly using Wi-Fi to support everyday activities and new applications are driving demand for faster and more reliable Wi-Fi. To meet this growing demand, we are proposing to increase the amount of spectrum available for Wi-Fi and other related wireless technologies, and to remove certain technical conditions that currently apply. What we are proposing – in brief We are proposing the following measures to improve the Wi-Fi experience for people and businesses: • Make the lower 6 GHz band (5925-6425 MHz) available for Wi-Fi.
    [Show full text]
  • RADIO SPECTRUM MANAGEMENT for a CONVERGING WORLD Original: English GENEVA — ITU NEW INITIATIVES PROGRAMME — 16-18 FEBRUARY 2004
    INTERNATIONAL TELECOMMUNICATION UNION Document: RSM/07 February 2004 WORKSHOP ON RADIO SPECTRUM MANAGEMENT FOR A ONVERGING ORLD C W Original: English GENEVA — ITU NEW INITIATIVES PROGRAMME — 16-18 FEBRUARY 2004 BACKGROUND PAPER: RADIO SPECTRUM MANAGEMENT FOR A CONVERGING WORLD International Telecommunication Union Radio Spectrum Management for a Converging World This paper has been prepared by Eric Lie <[email protected]>, Strategy and Policy Unit, ITU as part of a Workshop on Radio Spectrum Management for a Converging World jointly produced under the New Initiatives programme of the Office of the Secretary General and the Radiocommunication Bureau. The workshop manager is Eric Lie <[email protected]>, and the series is organized under the overall responsibility of Tim Kelly <[email protected]>, Head, ITU Strategy and Policy Unit (SPU). This paper was edited and formatted by Joanna Goodrick <[email protected]>. A complementary paper on the topic of Spectrum Management and Advanced Wireless Technologies as well as case studies on spectrum management in Australia, Guatemala and the United Kingdom can be found at: http://www.itu.int/osg/sec/spu/ni/spectrum/. The views expressed in this paper are those of the author and do not necessarily reflect the opinions of ITU or its membership. 2 Radio Spectrum Management for a Converging World Table of Contents 1 Introduction............................................................................................................................... 4 1.1 Trends in spectrum demand ...........................................................................................
    [Show full text]
  • Radio Spectrum Management
    ITU-R Basics Joaquin RESTREPO Head, OPS Division ITU, Radiocommunication Bureau ITU Regional Radiocommunication Seminar for Americas (RRS-13-Americas) Asunción, Paraguay, 8-12 July 2013 1. ITU 2. ITU-R 3. SPECTRUM MANAGEMENT 4. RADIO REGULATIONS 5. WRC-15 1. ITU 2. ITU-R 3. SPECTRUM MANAGEMENT 4. RADIO REGULATIONS 5. WRC-15 International Telecommunication Union Founded at Paris in 1865 as the International Telegraph Union. Present name in 1932 In 1947 became a specialized agency of the United Nations, responsible for issues concerning Information and Communication Technologies ITU coordinates the shared global use of the radio spectrum and satellite orbits, works to improve telecommunication infrastructure in the developing world, and assists in the development and coordination of worldwide technical standards. International Telecommunication Union ITU is headquartered in Geneva, Switzerland Americas Offices : Regional Office: Brasilia Area Offices: - Santiago (South America), - Tegucigalpa (Meso America) - Bridgetown (Caribbean) Also Region and Area Offices in: Asia, Africa, Europe International Telecommunication Union 193 Member States 579 Sector Members 175 Associates 52 Academia Member States Regional/National Sector Members SDO’s Associates e.g. ETSI, IEC Academia Telecom related UN bodies Regional organisations e.g. WIPO, WMO e.g. CITEL Industry fora e.g. WiMAX ITU Structure Sector ITU-T Sector ITU-D Telecommunication Assisting standardization implementation and - network and service operation of aspects telecommunications in (Bureau: TSB) developing countries Sector ITU-R (Bureau: BDT) Radiocommunication standardization and global spectrum management (Bureau: BR) ITU Basic Texts ITU is governed by their basic legal instruments, configured as international treaties and therefore binding on all signatory States.
    [Show full text]