A Basic Assumptions

Total Page:16

File Type:pdf, Size:1020Kb

A Basic Assumptions A Basic Assumptions In this chapter, we repeat the basic assumptions for plane and solid geometry, plus a number of definitions. Definition. A metric space is a set M with a metric d. We call the elements of M the points of the metric space. To every pair of points X and Y ,the metric d associates a real number, the distance from X to Y . This distance satisfies the following properties: for every X, Y , Z in M, 1. d(X, Y ) ≥ 0; 2. d(X, Y ) = 0 if and only if X = Y ; 3. d(X, Y )=d(Y,X); 4. d(X, Z) ≤ d(X, Y )+d(Y,Z). Basic Assumption 1 The Euclidean plane V and 3-space W are both metric spaces containing more than one point. Definition. For any pair of points A and B in a metric space M with metric d, the line segment [AB]isgivenby [AB]={ X ∈ M : d(A, X)+d(X, B)=d(A, B) } . If A and B are distinct, the line AB is given by AB = { X : X ∈ [AB]orB ∈ [AX]orA ∈ [XB] } . Basic Assumption 2 Every line l in the plane or in 3-space admits an iso- metric surjection ϕ from l to R. Basic Assumption 3 The Euclidean plane V and 3-space W each contain three noncollinear points. 334 A Basic Assumptions Definition. For lines in the plane V we define the notions parallel and inter- secting. We say that lines m and n are parallel if m = n or m ∩ n = ∅.Ifm and n are not parallel, we say that m and n are intersecting lines. We call the point P the intersection point of the lines l and m if P lies on both l and m. Basic Assumption 4 For every point P and every line m of the plane V , there exists a unique line passing through P and parallel to m. Definition. Let l and m be intersecting lines of the plane V with common point C.Wesaythatl is perpendicular to m if for every point A of l and every point B of m we have d(C, A)2 + d(C, B)2 = d(A, B)2 . Basic Assumption 5 For every point P and every line m of the plane V , there exists a line l through P that is perpendicular to m. In the plane V , two intersecting lines l and m define four angles.IfP is the intersection point of the lines, any two points A and B other than P on l and m, respectively, determine exactly one of these angles. Every angle has an interior. Definition. We say that an angle P is congruent to an angle Q if there is an isometric surjection from angle P onto angle Q. Basic Assumption 6 The intersection of any angle P in the plane V and the circle (P, r) with center P and radius r is an arc. If r =1, we denote the length of this arc by ∠P ;ifr = R, the length of the arc is equal to R × ∠P . Moreover, we have the following properties: 1. 0 < ∠P<πfor every angle P . 2. If angles P and Q are congruent, then ∠P = ∠Q. 3. For every real number c satisfying 0 <c<∠AP B, there exists a point Q in the interior of angle AP B such that c = ∠AP Q. 4. If a point Q lies in the interior of angle AP B,then ∠AP B = ∠AP Q + ∠QP B . Definition. Let A, B,andC be three noncollinear points in W .Theplane α through A, B,andC is the subset of W with the following properties: 1. A, B,andC lie in α. 2. If D and E are distinct points of α, then the line DE lies completely inside α. 3. A point X lies in α if and only if there is a series of points X1, X2,...,Xn = X such that for 1 ≤ i ≤ n the point Xi is either equal to A, B,orC, or lies on the line XkXl for some 1 ≤ k<i,1≤ l<i. A Basic Assumptions 335 Basic Assumption 7 For every plane α in W there is an isometric surjec- tion ϕ from α onto the Euclidean plane V . Definition. Two noncoplanar lines in W are called skew. Two coplanar lines l and m are called parallel if either l = m or l ∩ m = ∅;otherwise,theyare called intersecting lines. Definition. Two planes α and β in W are called parallel if either α = β or α and β have no point in common. If the planes α and β are not parallel, then we say that they intersect each other. Basic Assumption 8 Two intersecting planes α and β meet in a straight line. Definition. Let l and m be two lines, and let C be an arbitrary point in 3-space. Draw the lines l and m passing through C and parallel to l and m, respectively. We say that l and m are perpendicular to each other if l and m are perpendicular to each other. Definition. Given a line l and a plane α in W ,wesaythatl is perpendicular to α if it is perpendicular to every line in α. Basic Assumption 9 For every point P and every plane α in W ,thereisa line l through P that is perpendicular to α. References 1. Bachmann, F., Aufbau der Geometrie aus dem Spiegelungsbegriff, Springer, Berlin, 1958; revised 2nd ed., 1973 2. Barnsley, M.F., Fractals Everywhere, Academic Press, Boston, 1988; revised 2nd ed., 1993 3. Berger, M., G´eom´etrie, vols. 1–5, CEDIC et Fernand Nathan, Paris, 1977; English translation Geometry I & II, Springer, Berlin, 1987 4. Bottema, O., Hoofdstukken uit de Elementaire Meetkunde, Servire, Den Haag 1944; revised 2nd ed., Epsilon Uitgaven, Utrecht, 1997; to be published in English by Springer, New York 5. Brauner, H., Lehrbuch der konstruktiven Geometrie, Springer, Wien, 1986 6. Brianchon, C.J. and J.V. Poncelet, G´eom´etrie des courves. Recherches sur la d´etermination d’une hyperbole ´equilat`ere, au moyen de quatres conditions donn´ees, Annales de Gergonne, 11, 1820–1821, 205–220 7. Brieskorn, E. and H. Knorrer¨ , Plane Algebraic Curves,Birkh¨auser, Basel, 1986 8. Cassels, J.W.S., An Introduction to the Geometry of Numbers, Springer, Berlin, 1997 (first published 1971) 9. Coxeter, H.S.M., Introduction to Geometry,2nd ed., Wiley, New York, 1969 10. Coxeter, H.S.M., Regular Polytopes,2nd edition, Macmillan, New York, 1963; revised edition, Dover, New York, 1973 11. Coxeter, H.S.M. and S.L. Greitzer, Geometry Revisited, New Mathematical Library 19, Mathematical Association of America, Washington, D.C., 1967 12. Coxeter, H.S.M., M. Emmer, R. Penrose, and M.L. Teuber,ed.,M.C. Es- cher, Arts and Science, Elsevier, North-Holland, Amsterdam, 1986 13. Cromwell, P.R, Polyhedra, Cambridge University Press, Cambridge, 1997 14. Descartes, The Geometry of Ren´e Descartes, with a Facsimile of the First Edition, translated by D. E. Smith and M. L. Latham, Open Court Publishing, 1925; reprinted Dover, New York, 1954 15. Descharnes, R. and G. Neret´ , Salvador Dal´ı, Edita, Lausanne, 1993 16. Devlin, K., Mathematics: The Science of Patterns, Scientific Americain Li- brary, HPHLP, New York, 1994 17. Ernst, B., Avonturen met onmogelijke figuren, Aramith, Amsterdam, 1985 18. Euclid, The Thirteen Books of the Elements, Vols. I, II, III, translated with introduction and commentary by T. L. Heath, Cambridge University Press, Cambridge, 1908; revised 2nd ed., Dover, New York, 1956 338 References 19. Feuerbach, K.W. Eigenschaften einiger merkw¨urdigen Punkte des geradlini- gen Dreiecks, Haarlem; 2nd ed., P. Visser Azn., 1908 20. Field, J.V., The Invention of Infinity, Mathematics and the Art in the Renais- sance, Oxford University Press, Oxford (USA), 1997 21. Goodstein, D.L. and J.R. Goodstein, Feynman’s Lost Lecture: The Motion of the Planets Around the Sun, Vintage, London, 1996 22. Greenberg, M.J., Euclidean and Non-Euclidean Geometries,3rd ed., Freeman, New York, 1993 23. Grunbaum,¨ B. and G.C. Shephard, Tilings and Patterns, Freeman, New York, 1987 24. Hahn, Liang-Shin, Complex Numbers and Geometry, Mathematical Associa- tion of America, Washington, D.C., 1994 25. Hardy, G.H. and E.M. Wright, An Introduction to the Theory of Numbers, Oxford University Press, Oxford; 5th ed., 1980 26. Hartshorne, Robin, Geometry: Euclid and Beyond, Springer, New York, 2000 27. Heilbron, J.L., Geometry Civilized; History, Culture, and Technique,Claren- don Press, Oxford, 1998 28. Hofmann, K.H. and R. Wille,ed.,Symmetry of Discrete Mathematical Struc- tures and Their Symmetry Groups, A Collection of Essays, Research and Ex- position in Mathematics 15, Heldermann, Berlin, 1991 29. Hofstede, G., H.J. Meewis, Jac. Stolk, and C. Kros, Machineonderdelen, 18th edition, Morks, Dordrecht, 1970 30. Holden, A, Shapes, Space and Symmetry, Columbia University Press, New York, 1971; reprinted Dover, New York, 1991 31. Honsberger, R., Episodes in Nineteenth and Twentieth Century Euclidean Geometry, New Mathematical Library 37, Mathematical Association of Amer- ica, Washington, D.C., 1995 32. Hughes, B.B. Fibonacci’s De Practica Geometrie, Springer Verlag, New York, 2007 33. Huntley, H.E., The Divine Proportion, A Study in Mathematical Beauty, Dover, New York, 1970 34. Hutchinson, J.E., Fractals and Self Similarity, Indiana University Mathemat- ics Journal 30, 1981, 713–747 35. Jacobs, H.R., Geometry, Freeman, San Francisco, 1974 36. Kindt, M., Lessen in projectieve meetkunde,2nd ed., Epsilon, Utrecht, 1996 37. Kittel, C., Introduction to Solid State Physics,5th ed., Wiley, New York, 1976 38.
Recommended publications
  • The Stammler Circles
    Forum Geometricorum b Volume 2 (2002) 151–161. bbb FORUM GEOM ISSN 1534-1178 The Stammler Circles Jean-Pierre Ehrmann and Floor van Lamoen Abstract. We investigate circles intercepting chords of specified lengths on the sidelines of a triangle, a theme initiated by L. Stammler [6, 7]. We generalize his results, and concentrate specifically on the Stammler circles, for which the intercepts have lengths equal to the sidelengths of the given triangle. 1. Introduction Ludwig Stammler [6, 7] has investigated, for a triangle with sidelengths a, b, c, circles that intercept chords of lengths µa, µb, µc (µ>0) on the sidelines BC, CA and AB respectively. He called these circles proportionally cutting circles,1 and proved that their centers lie on the rectangular hyperbola through the circumcenter, the incenter, and the excenters. He also showed that, depending on µ, there are 2, 3 or 4 circles cutting chords of such lengths. B0 B A0 C A C0 Figure 1. The three Stammler circles with the circumtangential triangle As a special case Stammler investigated, for µ =1, the three proportionally cutting circles apart from the circumcircle. We call these the Stammler circles. Stammler proved that the centers of these circles form an equilateral triangle, cir- cumscribed to the circumcircle and homothetic to Morley’s (equilateral) trisector Publication Date: November 22, 2002. Communicating Editor: Bernard Gibert. 1Proportionalschnittkreise in [6]. 152 J.-P. Ehrmann and F. M. van Lamoen triangle. In fact this triangle is tangent to the circumcircle at the vertices of the circumtangential triangle. 2 See Figure 1. In this paper we investigate the circles that cut chords of specified lengths on the sidelines of ABC, and obtain generalizations of results in [6, 7], together with some further results on the Stammler circles.
    [Show full text]
  • Properties of Orthocenter of a Triangle
    Properties Of Orthocenter Of A Triangle Macho Frederic last her respiratory so cubistically that Damien webs very seventh. Conciliable Ole whalings loads and abstinently, she tew her brewery selects primevally. How censorious is Tannie when chaste and epiblast Avery inosculated some gelds? The most controversial math education experts on triangle properties of orthocenter a triangle If we are able to find the slopes of the two sides of the triangle then we can find the orthocenter and its not necessary to find the slope for the third side also. And so that angle must be the third angle for all of these. An equation of the altitude to JK is Therefore, incenter, we have three altitudes in the triangle. What does the trachea do? Naturally, clarification, a pedal triangle for an acute triangle is the triangle formed by the feet of the projections of an interior point of the triangle onto the three sides. AP classes, my best attempt to draw it. Some properties similar topic those fail the classical orthocenter of similar triangle Key words and phrases orthocenter triangle tetrahedron orthocentric system. Go back to the orthocentric system again. Modern Geometry: An Elementary Treatise on the Geometry of the Triangle and the Circle. We say the Incircle is Inscribed in the triangle. Please enter your response. Vedantu academic counsellor will be calling you shortly for your Online Counselling session. The black segments have drawn a projection of a rectangular solid. You can help our automatic cover photo selection by reporting an unsuitable photo. And we know if this is a right angle, so this was B, it follows that.
    [Show full text]
  • Properties of Equidiagonal Quadrilaterals (2014)
    Forum Geometricorum Volume 14 (2014) 129–144. FORUM GEOM ISSN 1534-1178 Properties of Equidiagonal Quadrilaterals Martin Josefsson Abstract. We prove eight necessary and sufficient conditions for a convex quadri- lateral to have congruent diagonals, and one dual connection between equidiag- onal and orthodiagonal quadrilaterals. Quadrilaterals with both congruent and perpendicular diagonals are also discussed, including a proposal for what they may be called and how to calculate their area in several ways. Finally we derive a cubic equation for calculating the lengths of the congruent diagonals. 1. Introduction One class of quadrilaterals that have received little interest in the geometrical literature are the equidiagonal quadrilaterals. They are defined to be quadrilat- erals with congruent diagonals. Three well known special cases of them are the isosceles trapezoid, the rectangle and the square, but there are other as well. Fur- thermore, there exists many equidiagonal quadrilaterals that besides congruent di- agonals have no special properties. Take any convex quadrilateral ABCD and move the vertex D along the line BD into a position D such that AC = BD. Then ABCD is an equidiagonal quadrilateral (see Figure 1). C D D A B Figure 1. An equidiagonal quadrilateral ABCD Before we begin to study equidiagonal quadrilaterals, let us define our notations. In a convex quadrilateral ABCD, the sides are labeled a = AB, b = BC, c = CD and d = DA, and the diagonals are p = AC and q = BD. We use θ for the angle between the diagonals. The line segments connecting the midpoints of opposite sides of a quadrilateral are called the bimedians and are denoted m and n, where m connects the midpoints of the sides a and c.
    [Show full text]
  • Downloaded from Bookstore.Ams.Org 30-60-90 Triangle, 190, 233 36-72
    Index 30-60-90 triangle, 190, 233 intersects interior of a side, 144 36-72-72 triangle, 226 to the base of an isosceles triangle, 145 360 theorem, 96, 97 to the hypotenuse, 144 45-45-90 triangle, 190, 233 to the longest side, 144 60-60-60 triangle, 189 Amtrak model, 29 and (logical conjunction), 385 AA congruence theorem for asymptotic angle, 83 triangles, 353 acute, 88 AA similarity theorem, 216 included between two sides, 104 AAA congruence theorem in hyperbolic inscribed in a semicircle, 257 geometry, 338 inscribed in an arc, 257 AAA construction theorem, 191 obtuse, 88 AAASA congruence, 197, 354 of a polygon, 156 AAS congruence theorem, 119 of a triangle, 103 AASAS congruence, 179 of an asymptotic triangle, 351 ABCD property of rigid motions, 441 on a side of a line, 149 absolute value, 434 opposite a side, 104 acute angle, 88 proper, 84 acute triangle, 105 right, 88 adapted coordinate function, 72 straight, 84 adjacency lemma, 98 zero, 84 adjacent angles, 90, 91 angle addition theorem, 90 adjacent edges of a polygon, 156 angle bisector, 100, 147 adjacent interior angle, 113 angle bisector concurrence theorem, 268 admissible decomposition, 201 angle bisector proportion theorem, 219 algebraic number, 317 angle bisector theorem, 147 all-or-nothing theorem, 333 converse, 149 alternate interior angles, 150 angle construction theorem, 88 alternate interior angles postulate, 323 angle criterion for convexity, 160 alternate interior angles theorem, 150 angle measure, 54, 85 converse, 185, 323 between two lines, 357 altitude concurrence theorem,
    [Show full text]
  • A Condition That a Tangential Quadrilateral Is Also Achordalone
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE Mathematical Communications 12(2007), 33-52 33 A condition that a tangential quadrilateral is also achordalone Mirko Radic´,∗ Zoran Kaliman† and Vladimir Kadum‡ Abstract. In this article we present a condition that a tangential quadrilateral is also a chordal one. The main result is given by Theo- rem 1 and Theorem 2. Key words: tangential quadrilateral, bicentric quadrilateral AMS subject classifications: 51E12 Received September 1, 2005 Accepted March 9, 2007 1. Introduction A polygon which is both tangential and chordal will be called a bicentric polygon. The following notation will be used. If A1A2A3A4 is a considered bicentric quadrilateral, then its incircle is denoted by C1, circumcircle by C2,radiusofC1 by r,radiusofC2 by R, center of C1 by I, center of C2 by O, distance between I and O by d. A2 C2 C1 r A d 1 O I R A3 A4 Figure 1.1 ∗Faculty of Philosophy, University of Rijeka, Omladinska 14, HR-51 000 Rijeka, Croatia, e-mail: [email protected] †Faculty of Philosophy, University of Rijeka, Omladinska 14, HR-51 000 Rijeka, Croatia, e-mail: [email protected] ‡University “Juraj Dobrila” of Pula, Preradovi´ceva 1, HR-52 100 Pula, Croatia, e-mail: [email protected] 34 M. Radic,´ Z. Kaliman and V. Kadum The first one who was concerned with bicentric quadrilaterals was a German mathematicianNicolaus Fuss (1755-1826), see [2]. He foundthat C1 is the incircle and C2 the circumcircle of a bicentric quadrilateral A1A2A3A4 iff (R2 − d2)2 =2r2(R2 + d2).
    [Show full text]
  • Angle Bisectors in a Quadrilateral Are Concurrent
    Angle Bisectors in a Quadrilateral in the classroom A Ramachandran he bisectors of the interior angles of a quadrilateral are either all concurrent or meet pairwise at 4, 5 or 6 points, in any case forming a cyclic quadrilateral. The situation of exactly three bisectors being concurrent is not possible. See Figure 1 for a possible situation. The reader is invited to prove these as well as observations regarding some of the special cases mentioned below. Start with the last observation. Assume that three angle bisectors in a quadrilateral are concurrent. Join the point of T D E H A F G B C Figure 1. A typical configuration, showing how a cyclic quadrilateral is formed Keywords: Quadrilateral, diagonal, angular bisector, tangential quadrilateral, kite, rhombus, square, isosceles trapezium, non-isosceles trapezium, cyclic, incircle 33 At Right Angles | Vol. 4, No. 1, March 2015 Vol. 4, No. 1, March 2015 | At Right Angles 33 D A D A D D E G A A F H G I H F F G E H B C E Figure 3. If is a parallelogram, then is a B C B C rectangle B C Figure 2. A tangential quadrilateral Figure 6. The case when is a non-isosceles trapezium: the result is that is a cyclic Figure 7. The case when has but A D quadrilateral in which : the result is that is an isosceles ∘ trapezium ( and ∠ ) E ∠ ∠ ∠ ∠ concurrence to the fourth vertex. Prove that this line indeed bisects the angle at the fourth vertex. F H Tangential quadrilateral A quadrilateral in which all the four angle bisectors G meet at a pointincircle is a — one which has an circle touching all the four sides.
    [Show full text]
  • Orthocenters of Triangles in the N-Dimensional Space
    Divulgaciones Matemáticas Vol. 17 No. 2 (2016), pp. 114 Orthocenters of triangles in the n-dimensional space Ortocentros para triángulos en el espacio n-dimensional Horst Martini([email protected]) Fakultät für Mathematik, TU Chemnitz, 09107 Chemnitz, Germany Wilson Pacheco ([email protected]) Aljadis Varela ([email protected]) John Vargas ([email protected]) Departamento de Matematicas Facultad Experimental de Ciencias Universidad del Zulia Maracaibo - Venezuela Abstract We present a way to dene a set of orthocenters for a triangle in the n-dimensional space n R , and we show some analogies between these orthocenters and the classical orthocenter of a triangle in the Euclidean plane. We also dene a substitute of the orthocenter for tetra- hedra which we call G−orthocenter. We show that the G−orthocenter of a tetrahedron has some properties similar to those of the classical orthocenter of a triangle. Key words and phrases: orthocenter, triangle, tetrahedron, orthocentric system, Feuerbach sphere. Resumen Presentamos una manera de denir un conjunto de ortocentros de un triángulo en el n espacio n-dimensional R , y mostramos algunas analogías entre estos ortocentros y el or- tocentro clásico de un triángulo en el plano euclidiano. También denimos un sustituto del ortocentro para tetraedros que llamamos G−ortocentro. Se demuestra que el G−ortocentro de un tetraedro tiene algunas propiedades similares a los del ortocentro clásico de un trián- gulo. Palabras y frases clave: ortocentro, triángulo, tetraedro, sistema ortocéntrico, esfera de Feuerbach. 1 Introduction In the Euclidean plane, the orthocenter H of a triangle 4ABC is known as the unique point where the altitudes of the triangle intersect, i.e., the point at which the three lines perpendicular to Received 20/07/16.
    [Show full text]
  • Steiner's Theorems on the Complete Quadrilateral
    Forum Geometricorum b Volume 4 (2004) 35–52. bbb FORUM GEOM ISSN 1534-1178 Steiner’s Theorems on the Complete Quadrilateral Jean-Pierre Ehrmann Abstract. We give a translation of Jacob Steiner’s 1828 note on the complete quadrilateral, with complete proofs and annotations in barycentric coordinates. 1. Steiner’s note on the complete quadrilateral In 1828, Jakob Steiner published in Gergonne’s Annales a very short note [9] listing ten interesting and important theorems on the complete quadrilateral. The purpose of this paper is to provide a translation of the note, to prove these theorems, along with annotations in barycentric coordinates. We begin with a translation of Steiner’s note. Suppose four lines intersect two by two at six points. (1) These four lines, taken three by three, form four triangles whose circum- circles pass through the same point F . (2) The centers of the four circles (and the point F ) lie on the same circle. (3) The perpendicular feet from F to the four lines lie on the same line R, and F is the only point with this property. (4) The orthocenters of the four triangles lie on the same line R. (5) The lines R and R are parallel, and the line R passes through the midpoint of the segment joining F to its perpendicular foot on R. (6) The midpoints of the diagonals of the complete quadrilateral formed by the four given lines lie on the same line R (Newton). (7) The line R is a common perpendicular to the lines R and R. (8) Each of the four triangles in (1) has an incircle and three excircles.
    [Show full text]
  • ON the FEUERBACH-SPHERES of an ORTHOCENTI%IC SIMPLEX by E. EGEI~VARY (Budapest), Member of the Academy
    ON THE FEUERBACH-SPHERES OF AN ORTHOCENTI%IC SIMPLEX By E. EGEI~VARY (Budapest), member of the Academy 1. Attempting to extend the theorems of the geometry of the triangle to three and more dimensions it is known by experience that sCrict analogies exist only in the case of an orthoccntric tetrahedron or simplex, i. e., such one whose altitudes have a point in common. Actually it has been recognized rather long ago that the Feuerbach- circle (or nine-point circle) has no analogon in the case of a general tetra- hedron, but if the tetrahedron is orthocentric then there are two spheres (the ,,twelve-point" spheres), each of which can be regarded as the three dimensional extension of the Feuerbach-circle. Recent researches ~ have shown that with an orthocentric simplex in n- 1 dimensions n spheres may be associated so that the k-th sphere contains the orthocenters and the barycenters os all the /c -- 1 dimensional partial simplices. Consequently, in n- 1 dimensions there are n extensions of the Feuerbach-circle. These Feuerbach-spheres belong to the pencil which is determined by the circumsphere and the polarsphere. It is well known that the discussion of the Fcuerbach-figure is rather asymmetrical and cumbersome if one uses Cartesian coordinates. Therefore several writers, when dealing with the Feuerbach-circle, made use of triangular coordinates. The discussion in Cartesian coordinates becomes evea more clumsy in the case of three and more dimensions. In the present paper we wish to show that the Feuerbach-figure in any dimension is capable of a symmetrical and very intuitive analytic represen- tation by means of an orthocentric system os coordinates.
    [Show full text]
  • Bicentric Quadrilateral Central Configurations 1
    BICENTRIC QUADRILATERAL CENTRAL CONFIGURATIONS JAUME LLIBRE1 AND PENGFEI YUAN2 Abstract. A bicentric quadrilateral is a tangential cyclic quadri- lateral. In a tangential quadrilateral the four sides are tangents to an inscribed circle, and in a cyclic quadrilateral the four vertices lie on a circumscribed circle. In this paper we classify all planar cen- tral configurations of the 4-body problem, where the four bodies are at the vertices of a bicentric quadrilateral. 1. Introduction and statement of the results The well-known Newtonian n-body problem concerns with the mo- tion of n mass points with positive mass mi moving under their mutual attraction in Rd in accordance with Newton’s law of gravitation. The equations of the motion of the n-body problem are : n mj(xi xj) x¨i = − , 1 i n, − X r3 ≤ ≤ j=1,j=i ij 6 where we have taken the unit of time in such a way that the Newtonian d gravitational constant be one, and xi R (i = 1,...,n) denotes the ∈ position vector of the i-body, rij = xi xj is the Euclidean distance between the i-body and the j-body.| − | Alternatively the equations of the motion can be written mix¨i = iU(x), 1 i n, ∇ ≤ ≤ where x =(x1,...,xn), and m m U(x)= i j , X x x 1 i<j n i j ≤ ≤ | − | is the potential of the system. 2010 Mathematics Subject Classification. 70F07,70F15. Key words and phrases. Convex central configuration, four-body problem, bi- centric quadrilateral. 1 cat http://www.gsd.uab. 2 J.LLIBREANDP.YUAN The solutions of the 2-body problem (also called the Kepler problem) has been completely solved.
    [Show full text]
  • Triangle Centres
    S T P E C N & S O T C S TE G E O M E T R Y GEOMETRY TRIANGLE CENTRES Rajasthan AIR-24 SSC SSC (CGL)-2011 CAT Raja Sir (A K Arya) Income Tax Inspector CDS : 9587067007 (WhatsApp) Chapter 4 Triangle Centres fdlh Hkh triangle ds fy, yxHkx 6100 centres Intensive gSA defined Q. Alice the princess is standing on a side AB of buesa ls 5 Classical centres important gSa ftUgs ge ABC with sides 4, 5 and 6 and jumps on side bl chapter esa detail ls discuss djsaxsaA BC and again jumps on side CA and finally 1. Orthocentre (yEcdsUnz] H) comes back to his original position. The 2. Incentre (vUr% dsUnz] I) smallest distance Alice could have jumped is? jktdqekjh ,fyl] ,d f=Hkqt ftldh Hkqtk,sa vkSj 3. Centroid (dsUnzd] G) ABC 4, 5 lseh- gS fd ,d Hkqtk ij [kM+h gS] ;gk¡ ls og Hkqtk 4. Circumcentre (ifjdsUnz] O) 6 AB BC ij rFkk fQj Hkqtk CA ij lh/kh Nykax yxkrs gq, okfil vius 5. Excentre (ckº; dsUnz] J) izkjafHkd fcUnq ij vk tkrh gSA ,fyl }kjk r; dh xbZ U;wure nwjh Kkr djsaA 1. Orthocentre ¼yEcdsUnz] H½ : Sol. A fdlh triangle ds rhuksa altitudes (ÅapkbZ;ksa) dk Alice intersection point orthocentre dgykrk gSA Stands fdlh vertex ('kh"kZ fcUnw) ls lkeus okyh Hkqtk ij [khapk x;k F E perpendicular (yEc) altitude dgykrk gSA A B D C F E Alice smallest distance cover djrs gq, okfil viuh H original position ij vkrh gS vFkkZr~ og orthic triangle dh perimeter (ifjeki) ds cjkcj distance cover djrh gSA Orthic triangle dh perimeter B D C acosA + bcosB + c cosC BAC + BHC = 1800 a = BC = 4 laiwjd dks.k (Supplementary angles- ) b = AC = 5 BAC = side BC ds opposite vertex dk angle c = AB = 6 BHC = side BC }kjk orthocenter (H) ij cuk;k 2 2 2 b +c -a 3 x;k angle.
    [Show full text]
  • The Secrets of Triangles: a Mathematical Journey
    2 3 Published 2012 by Prometheus Books The Secrets of Triangles: A Mathematical Journey. Copyright © 2012 by Alfred S. Posamentier and Ingmar Lehmann. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, digital, electronic, mechanical, photocopying, recording, or otherwise, or conveyed via the Internet or a website without prior written permission of the publisher, except in the case of brief quotations embodied in critical articles and reviews. Cover image © Media Bakery/Glenn Mitsui Jacket design by Jacqueline Nasso Cooke Inquiries should be addressed to Prometheus Books 59 John Glenn Drive Amherst, New York 14228–2119 OICE: 716–691–0133 FAX: 716–691–0137 WWW.PROMETHE SBOOKS.COM 16 15 14 13 12 5 4 3 2 1 Library of Congress Cataloging-in-Publication Data Posamentier, Alfred S. The secrets of triangles : a mathematical journey / by Alfred S. Posamentier and Ingmar Lehmann. p. cm. Includes bibliographical references and index. ISBN 978–1–61614–587–3 (cloth : alk. paper) ISBN 978–1–61614–588–0 (ebook) 1. Trigonometry. 2. Triangle. I. Lehmann, Ingmar. II. Title. QA531.P67 2012 516'.154—dc23 2012013635 4 Printed in the nited States of America on acid-free paper 5 6 Acknowledgments Preface 1. Introduction to the Triangle 2. Concurrencies of a Triangle 3. Noteworthy Points in a Triangle 4. Concurrent Circles of a Triangle 5. Special Lines of a Triangle 6. seful Triangle Theorems 7. Areas of and within Triangles 8. Triangle Constructions 9. Inequalities in a Triangle 10. Triangles and Fractals Appendix Notes References Index 7 The authors wish to extend sincere thanks for proofreading and useful suggestions to Dr.
    [Show full text]