Cucurbit Resources in Namibia*

Total Page:16

File Type:pdf, Size:1020Kb

Cucurbit Resources in Namibia* Reprinted from: Perspectives on new crops and new uses. 1999. J. Janick (ed.), ASHS Press, Alexandria, VA. Cucurbit Resources in Namibia* Vassilios Sarafis Namibia has several cucurbits with potential for development into commercial crops either through se- lection or through the introduction of genes into known crops. Acanthosicyos horrida Welw. ex J.D. Hook., wild Citrullus ecirrhosus Cogn., and C. lanatus (Thunb.) Matsum. & Nakai in the Cucurbitaceae are examples of gene sources. The areas from which these plants come are arid and the plants derive their water needs from dew precipitation in the mornings, very occasional rains every few years, and deep ground water (Seely l987; Lovegrove 1993). ACANTHOSICYOS HORRIDA Acanthosicyos horrida forms clumps of vegetation in the dunes of the Sossuvlei region near Walvis Bay (Fig. 1) (Craven and Marais 1986; Lovegrove 1993; Klopatek and Stock 1994). Acanthosicyos horrida is a dioecious perennial cucurbit attaining a height of about 1.5 m (Fig. 2). It forms plants of one sex in single clumps which may touch plants of the same or other sex nearby (Fig. l). It bears deep water table seeking roots (G. Wardell–Johnson, pers. commun. 1998). The plants are totally leafless (Fig. 2) and have a fruiting habit of oblong spherical fruits reaching up to 25 cm average diameter. The plants are able to build up sand deposits around themselves and continuously grow to be above these sand deposits. New plants establish only when rain falls and quickly form deeply growing roots that seek the water table (G. Wardell–Johnson, pers. commun. 1998). The fruit may not be spaced apart and may occur in clusters of several touching each other. The fruits are spiny (Fig. 3). Maturation of the fruits occurs between February and April. The fruits do not change color and remain green on the outside but the flesh surrounding the seeds dissociates from the skin, turns orange in color (Fig. 4), extremely sweet in taste and strongly aromatic. Maturational changes are easily detected by the bushmen living in the area without breaking the fruit in any way. The fruits are used by the bushmen for two main purposes. The first is for the extraction of the seed which are consumed as pips by splitting in the mouth and the second is for pulp processing where the flesh is boiled and poured to form a fruit leather. This fruit leather is eaten throughout the year and is considerably less flavorful than the pulp. The plant thus forms an important food resource because of the easy storage of both the seeds and the dried pulp (leather). The fruits are eaten also when immature by animals including jackals and rodents who do not seem to be bothered by the bitter taste of the fruits caused by cucurbitacins (Hylands and Magd 1986). The mature pulp has a flavor which is aromatic and maybe due in part to sulphur components as in some types of Cucumis melo L. No trace can be tasted of cucurbitacins in the mature pulp. The pulp could be commercialized and used to make ice-cream, and could be freeze dried and chocolate coated. The seeds which are already sold to an European population in Walvis Bay can have their market expanded by selling the seeds either whole or dehusked in packaging developed for nuts. Their rarity should provide a premium price and help the economic existence of the bushmen in this area. Ice-cream manufacture and freeze drying facilities are only within 30 km of the bushmen. Partnerships with firms interested in commericalizing the unique, aromatic pulp of Acanthosicyos horrida could be fostered to further improve the economic existence of the native people in the area. CITRULLUS ECIRRHOSUS Citrullus ecirrhosus is a desert perennial (Fig. 5, 6) which is monoecious. Fruits mature (Fig. 7, 8) February to March. The leaves form an annual stems which die back each year. The leaves have a special feature where the lamina is curved over the mid-rib and the lateral veins so that when viewed from above the top surface is only visible in the vein regions and the leaves have a greenish white appearance due to the lower epidermis being reflected up as the upper surface of the leaf. This lower epidermis is covered with warts and hairs which account for the whitening effect. Both lower and upper epidermis contain similar amounts of *This project was supported by the Centre for Microscopy and Microanalysis, The University of Queensland and the Centre for Horticulture and Plant Sciences, University of Western Sydney, Hawkesbury. 400 Fig. 1. View of Acanthosicyos horrida in sand dunes Fig. 2. A close up of Acanthosicyos horrida plants. at the Sossuvlei region near Walvis Bay Namibia. Note the leaflessness. Fig. 3. Back of a mature fruit of Acanthosicyos Fig. 4. Cross section through three fruits of horrida showing the large spines on the surface of the Acanthosicyos horrida. The one on the extreme right fruit. The distances separating the spines are small in is a bitter immature fruit of full size. The one on the young fruits. top an almost mature fruit with only a little bitterness. The bottom left hand fruit a fully mature fruit with a flesh having an orange color, no bitterness and very aromatic in flavor. Fig. 5. Citrullus ecirrhosus perennial plant growing approximately 20 km inland from Walvis Bay, show- Fig. 6. Citrullus ecirrhosus perennial plant showing ing a mature fruit on current years growth and brown young developing fruit in the foreground and the bend- dead stems from last years growth. ing of the leaves over the mid-rib and lateral veins. 401 Fig. 9. Citrullus lanatus mature fruit from a plant growing on a dry river bed approximately 20 km in- Fig. 7. Mature Citrullus ecirrhosus Fig. 8. Fruit of Citrullus ecirrhosus land from Walvis Bay, cut to show showing folded nature of the leaves cut showing white creamy flesh chlorophyll in the flesh and of the mid-rib and lateral veins. which is non juicy and brown seeds. browny-black seeds. The more stomata. The water relations of this plant are reliant on a deep water deeply colored regions of the flesh layer in the ground which the roots reach and possibly some water avail- are green. The flesh is more juicy ability from morning fogs and the very occasional rainfall. The fruit and than in Citrullus ecirrhosus. seeds contain cucurbitacins but the seeds are harvested in times of need and processed by crushing and decan- tation to remove the bitter substances. Citrulls ecirrhosus plants may be a source of drought tolerance genes for Citrulls lanatus. Successful crossability of Citrulls ecirrhosus and C. lanatus is discussed in Navot and Zamir (1986) and Navot et al. (1990). They have shown the way for breeding Citrullus lanatus containing genes from C. ecirrhosus. CITRULLUS LANATUS Citrullus lanatus wild plants seen near Walvis Bay have green fleshed fruit unknown from domesticated watermelons (Fig. 9). The genetics of fruit color in the watermelon, Citrullus colocynthis and ecirrhosus are discussed by Navot et al. (1990). White, yellow, orange, pink, red, and crimson flesh types are known. The green flesh color of this wild Citrullus lanatus (Fig. 9) is a unique feature which can be transferred to domes- tic watermelon due to the crossability of wild and domestic watermelons. This would offer a new fruit type for consumers to enjoy. A red flesh cultivated watermelon from the north of Namibia has some green zone within the fruit suggesting that the green flesh character can be easily introduced. However, the wild water- melon has cucurbitacins which would render them unfit for human consumption. Drought tolerance and green flesh color from C. ecirrhosus and wild Citrullus lanatus, could be valiable traits for watermelon improvement. REFERENCES Craven, P. and C. Marais. 1986. Namib Flora Swakopmund to the Giant Welwitschia via Goanikontes. Gamsberg MacMillan Publishers: Windhoek. p. 80–83. Hylands, P.J and M.S. Magd. 1986. Cucurbitacins from Acanthosicyos horridus. Phytochemistry 25:1681– 1684. Klopatek J.M. and W.D. Stock. 1994. Partitioning of nutrients in Acanthosicyos horrida, a keystone endemic species in the Namib Desert. J. Arid Environments 26:233–240.Lovegrove, B. 1993. The living deserts of Southern Africa. Fernwood Press, Vlaeberg, South Africa. p. 30, 47, 71, 158, 190. Navot, N. and D. Zamir. 1987. Isozyme and seed protein phylogeny of the genus Citrullus (Cucurbitaceae). Plant Syst. Evol. 156:61–68. Navot, N., M. Sarfatti, and D. Zamir. 1990. Linkage relationships of genes affecting bitterness and flesh colour in watermelon. J. Hered. 81:162–165. Seely, M. 1986. The Namib. Shell Namibia: Namibia. 2nd ed. 19, 43–45, 50, 84, 90. 402.
Recommended publications
  • E-Content-Januaray (2021)
    K.N.G.Arts College for women Department of Botany I B.SC ALLIED BOTANY E-content-Januaray (2021) S.NO E-CONENT 1 UNIT-I 2 UNIT-III 3 UNITIV 18K2ZAB3 ALLIED BOTANY: TAXONOMY, ANATOMY, EMBRYOLOGY, HORTICULTURE AND ECOLOGY UNIT-I: TAXONOMY General outline of Bentham and Hooker’s classification. Detailed study and economic importance of the families: Rutaceae, Leguminosae, Cucurbitaceae, Euphorbiaceae and Poaceae. UNIT-III: EMBRYOLOGY Structure of mature anther and Ovule, Types of ovule. Double fertilization. Development of dicot embryo. UNIT-IV: HORTICULTURE Scope and Importance of Horticulture. Propagation method: Cutting, layering and grafting. Bonsai technique UNIT – I Dr.A.Pauline Fathima Mary, Guest lecturer in Botany, K.N.G.Arts College for Women (A). Thanjavur. UNIT III & IV Dr.S.Gandhimathi & Dr.A.Pauline Fathima Mary , Guest lecturer in Botany, K.N.G.Arts College for Women (A). Thanjavur. REFERENCES 1. Pandey B.P., 2001, Taxonomy. Of Angiosperms,S.Chand & company.Ltd.Newdelhi. 2. Pandey B.P., 2015(Edn), Plant Taxonomy. New central Book Agency,pvt Lit,New Delhi. 3. Rajaram,P.allied Botany 1983.CollegeBook Center.Thanjavur. 4. Kumar,K.N.,1999.Introduction of Horticulture ,Rajalakshmi Publication,Nagerkoil. UNIT – I BENTHAM AND HOOKER'S CLASSIFICATION OF PLANTS The outline of Bentham and Hooker's classification of plants is given below. The seeded plants are divided into three classes ' Dicotyledonae,Gymnospermae and Monocotyledonae Bentham and Hooker's classification of plants t is a natural system of classification and is based on important characters of the plants. Even today this system is being followed in India, United Kingdom and several other Commonwealth countries.
    [Show full text]
  • Phylogeny and Biogeorgraphy Of
    PHYLOGENY AND BIOGEOGRAPHY OF WATERMELON [CITRULLUS LANATUS (THUNB.) MATSUM. & NAKAI] BASED ON CHLOROPLAST, NUCLEAR SEQUENCE AND AFLP MOLECULAR MARKER DATA Jiarong Liu A thesis submitted to the Graduate Faculty of Auburn University in Partial Fulfillment of the Requirements for the Degree of Master in Science Auburn, Alabama August 8, 2005 PHYLOGENY AND BIOGEOGRAPHY OF WATERMELON [CITRULLUS LANATUS (THUNB.) MATSUM. & NAKAI] BASED ON CHLOROPLAST, NUCLEAR SEQUENCE AND AFLP MARKER DATA Jiarong Liu Permission is granted to Auburn University to make copies of this thesis at its discretion, upon request of individuals or institutions and at their expense. The author reserves all the publication rights. Signature of Author Date of Graduation iii VITA Jiarong (Rona) Liu, daughter of Maosheng Liu and Hongmei Ye, was born on November 7, 1981 in Suzhou, Jiangsu Province, the People’s Republic of China. She graduated in June 1999 from Suzhou No.3 High School. She attended Yangzhou University, Yangzhou, Jiangsu Province, P. R. China in 1999 and graduated in June, 2003 with a Bachelor of Science in Horticulture. In August 2003, she entered Graduate school at Auburn University, Auburn, Alabama to pursue a Master of science degree in Horticulture. She was employed as a Graduate Research Assistant and Teaching Assistant during her graduate studies. iv THESIS ABSTRACT PHYLOGENY AND BIOGEOGRAPHY OF WATERMELON [CITRULLUS LANATUS (THUNB.) MATSUM. & NAKAI] BASED ON CHLOROPLAST, NUCLEAR SEQUENCE AND AFLP MARKER DATA Jiarong Liu Master of Science, July 12, 2005 (B.S., Yangzhou University, 2003) 75 Typed pages Directed by Fenny Dane Watermelons [Citrullus lanatus (Thunb.) Matsum. & Nakai], together with cucumbers, melons of various sorts, summer squashes, winter squashes and pumpkins are the principal food plants of the gourd family (Cucurbitaceae).
    [Show full text]
  • M Gerber Orcid.Org 0000-0002-5118-4087
    Determining strategies of Acanthosicyos horridus (!nara) to exploit alternative atmospheric moisture sources in the hyper-arid Namib Desert M Gerber orcid.org 0000-0002-5118-4087 Dissertation submitted in fulfilment of the requirements for the degree Master of Science in Environmental Sciences at the North-West University Supervisor: Prof SJ Piketh Co-supervisor: Dr JM Berner Assistant Supervisor: Dr GL Maggs-Kölling Graduation May 2018 23387998 i ACKNOWLEDGEMENTS I would like to thank the following institutions and people for their contribution to my dissertation: • My sponsor and supervisor Prof. Stuart Piketh for the financial support; • North-West University for the financial support; • My supervisors Dr. Jacques Berner and Dr. Gillian Maggs-Kölling for their guidance and support; • Gobabeb Research and Training Centre (GTRC) for accommodating me for the last two years and for all the experience I gained working with them; • Dr. Eugene Marais, Dr. Mary Seely and Prof. Scott Turner for their advice and motivation; • Gobabeb Research and Training Staff members for their assistance and support; • Paulina Smidt for the translation and assisting me with fieldwork; • André Steyn and Elizabeth Shilunga for assisting me with fieldwork; • Oliver Halsey for the amazing pictures and assisting with the time-lapse investigation; • Esmé Harris for proofreading my dissertation; • My family and friends for their constant support. ii DECLARATION iii ABSTRACT The enigmatic melon species Acanthosicyos horridus Welw. ex Hook. f., locally known as !nara, is endemic to the hyper-arid Namib Desert where it occurs in sandy dune areas and dry river banks. The Namib Desert is a result of the cold Benguela current off the coast of Namibia.
    [Show full text]
  • Foraging Ecology and Conservation Biology of African Elephants: Ecological and Evolutionary Perspectives on Elephant-Woody Plant Interactions in African Landscapes
    Foraging ecology and conservation biology of African elephants: Ecological and evolutionary perspectives on elephant-woody plant interactions in African landscapes Item Type Thesis Authors Dudley, Joseph Paine Download date 27/09/2021 15:01:40 Link to Item http://hdl.handle.net/11122/9523 INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter free, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand comer and continuing from left to right in equal sections with small overlaps. Each original is also photographed in one exposure and is included in reduced form at the back o f the book. Photographs included in the original manuscript have been reproduced xerographically in this copy. Higher quality 6” x 9” black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order. UMI A Bell & Howell Information Company 300 North Zed) Road, Ann Arbor MI 48106-1346 USA 313/761-4700 800/521-0600 Reproduced with permission of the copyright owner.
    [Show full text]
  • Cucurbitaceae”
    1 UF/IFAS EXTENSION SARASOTA COUNTY • A partnership between Sarasota County, the University of Florida, and the USDA. • Our Mission is to translate research into community initiatives, classes, and volunteer opportunities related to five core areas: • Agriculture; • Lawn and Garden; • Natural Resources and Sustainability; • Nutrition and Healthy Living; and • Youth Development -- 4-H What is Sarasota Extension? Meet The Plant “Cucurbitaceae” (Natural & Cultural History of Cucurbits or Gourd Family) Robert Kluson, Ph.D. Ag/NR Ext. Agent, UF/IFAS Extension Sarasota Co. 4 OUTLINE Overview of “Meet The Plant” Series Introduction to Cucubitaceae Family • What’s In A Name? Natural History • Center of origin • Botany • Phytochemistry Cultural History • Food and other uses 5 Approach of Talks on “Meet The Plant” Today my talk at this workshop is part of a series of presentations intended to expand the awareness and familiarity of the general public with different worldwide and Florida crops. It’s not focused on crop production. Provide background information from the sciences of the natural and cultural history of crops from different plant families. • 6 “Meet The Plant” Series Titles (2018) Brassicaceae Jan 16th Cannabaceae Jan 23rd Leguminaceae Feb 26th Solanaceae Mar 26th Cucurbitaceae May 3rd 7 What’s In A Name? Cucurbitaceae the Cucurbitaceae family is also known as the cucurbit or gourd family. a moderately size plant family consisting of about 965 species in around 95 genera - the most important for crops of which are: • Cucurbita – squash, pumpkin, zucchini, some gourds • Lagenaria – calabash, and others that are inedible • Citrullus – watermelon (C. lanatus, C. colocynthis) and others • Cucumis – cucumber (C.
    [Show full text]
  • New Information on the Origins of Bottle Gourd (Lagenaria Siceraria)
    New Information on the Origins of Bottle Gourd (Lagenaria siceraria) Item Type Article Authors Ellert, Mary Wilkins Publisher University of Arizona (Tucson, AZ) Journal Desert Plants Rights Copyright © Arizona Board of Regents. The University of Arizona. Download date 27/09/2021 04:31:57 Link to Item http://hdl.handle.net/10150/555919 8 Desert Plants of use by humans. Studies-both archeological and genetic, New Information on the Origins of seed and fruit-rind fragments indicate it had reached East of Bottle Gourd Asia 8,000 to 9,000 years before present (B.P.), that it was present as a domesticated plant in the New World by 10,000 (Lagenaria siceraria) B. P. and that it had a wide distribution in the Americas by 8,000 B.P. (Smith, 2000 and Erickson et. al, 2005) In the Southwestern US, bottle gourd most likely entered from Mary Wilkins Ellert Mexico as a domesticated plant at about the same time as 4433 W. Pyracantha Drive com (Zea mays) and squash (Cucurbita pepo)-by 3,500 to Tucson, Arizona 85741 4000 B.P.-and was widely grown as a container crop (Smith, [email protected] 2005). It is still grown today in the Sonoran Desert by the O'odam people, and seeds of the various traditional con­ tainer crop varieties are readily available through the Na­ " ........ always something new out of Africa" tive Seeds SEARCH group in Tucson, Arizona. History/Prehistory of Lagenaria In spite of its pan-tropical, pre-Columbian distribution, no Spanning continents, climates and cultures, the bottle gourd, evidence of the bottle gourd occurring in the wild on any Lagenaria siceraria (Mol.) Standley, Cucurbitaceae, has continent, as an indigenous part of the flora, rather than an served humans for thousands of years.
    [Show full text]
  • An Indigenous Melon Species of South-West Coast of Africa
    274 Journal of Pharmacy and Nutrition Sciences, 2020, 10, 274-279 Review of Chemical Properties and Ethnomedicinal uses of Acanthosicyos horridus Welw. ex Hook. f.: An Indigenous Melon Species of South-West Coast of Africa Alfred Maroyi* Department of Botany, University of Fort Hare, Private Bag X1314, Alice 5700, South Africa Abstract: Acanthosicyos horridus Welw. ex Hook. f. is a perennial shrub collected from the wild for its edible fruits and is also used as a traditional medicine. This study is aimed at evaluating the chemical properties and ethnomedicinal uses of A. horridus. Results of the current study are based on data derived from several online databases such as Scopus, Google Scholar, PubMed and Science Direct, and pre-electronic sources such as scientific publications, books, dissertations, book chapters and journal articles. This study revealed that the fruit and root infusions and/or decoctions of A. horridus are used as traditional medicine for arteriosclerosis, chest pains, gastro-intestinal disorders, kidney problems, nausea and sexually transmitted infections. Phytochemical compounds identified from the species include cucurbitacins, fatty acids and sterols. Some of the compounds identified from the species have applications in food industry and health promoting products. Keywords: Acanthosicyos horridus, Cucurbitaceae, indigenous pharmacopeia, traditional medicine. INTRODUCTION “thorn” and a Latin term “sicyoideus” meaning “gourd- shaped”, that is, swollen below with narrow neck Acanthosicyos horridus Welw. ex Hook. f. is a above, in reference to the spines on the fruit [18]. The perennial shrub belonging to the Cucurbitaceae family, specific name “horridus” is from a Latin verb “horrere” often called cucurbits or the gourd family.
    [Show full text]
  • Phylogenetic Relationships in the Order Cucurbitales and a New Classification of the Gourd Family (Cucurbitaceae)
    Schaefer & Renner • Phylogenetic relationships in Cucurbitales TAXON 60 (1) • February 2011: 122–138 TAXONOMY Phylogenetic relationships in the order Cucurbitales and a new classification of the gourd family (Cucurbitaceae) Hanno Schaefer1 & Susanne S. Renner2 1 Harvard University, Department of Organismic and Evolutionary Biology, 22 Divinity Avenue, Cambridge, Massachusetts 02138, U.S.A. 2 University of Munich (LMU), Systematic Botany and Mycology, Menzinger Str. 67, 80638 Munich, Germany Author for correspondence: Hanno Schaefer, [email protected] Abstract We analysed phylogenetic relationships in the order Cucurbitales using 14 DNA regions from the three plant genomes: the mitochondrial nad1 b/c intron and matR gene, the nuclear ribosomal 18S, ITS1-5.8S-ITS2, and 28S genes, and the plastid rbcL, matK, ndhF, atpB, trnL, trnL-trnF, rpl20-rps12, trnS-trnG and trnH-psbA genes, spacers, and introns. The dataset includes 664 ingroup species, representating all but two genera and over 25% of the ca. 2600 species in the order. Maximum likelihood analyses yielded mostly congruent topologies for the datasets from the three genomes. Relationships among the eight families of Cucurbitales were: (Apodanthaceae, Anisophylleaceae, (Cucurbitaceae, ((Coriariaceae, Corynocarpaceae), (Tetramelaceae, (Datiscaceae, Begoniaceae))))). Based on these molecular data and morphological data from the literature, we recircumscribe tribes and genera within Cucurbitaceae and present a more natural classification for this family. Our new system comprises 95 genera in 15 tribes, five of them new: Actinostemmateae, Indofevilleeae, Thladiantheae, Momordiceae, and Siraitieae. Formal naming requires 44 new combinations and two new names in Cucurbitaceae. Keywords Cucurbitoideae; Fevilleoideae; nomenclature; nuclear ribosomal ITS; systematics; tribal classification Supplementary Material Figures S1–S5 are available in the free Electronic Supplement to the online version of this article (http://www.ingentaconnect.com/content/iapt/tax).
    [Show full text]
  • Watermelon Origin Solved with Molecular Phylogenetics Including Linnaean Material: Another Example of Museomics
    Research Rapid report Watermelon origin solved with molecular phylogenetics including Linnaean material: another example of museomics Authors for correspondence: Guillaume Chomicki and Susanne S. Renner Guillaume Chomicki Department of Biology, University of Munich (LMU), Menzinger Straße 67, Munich 80628, Germany Tel: +49 89 17861 285 Email: [email protected] Susanne S. Renner Tel: +49 89 17861 257 Email: [email protected] Received: 28 July 2014 Accepted: 23 September 2014 Summary New Phytologist (2015) 205: 526–532 Type specimens are permanently preserved biological specimens that fix the usage of species doi: 10.1111/nph.13163 names. This method became widespread from 1935 onwards and is now obligatory. We used DNA sequencing of types and more recent collections of wild and cultivated melons Key words: Citrullus, crop origin, domestica- to reconstruct the evolutionary history of the genus Citrullus and the correct names for its tion, phylogenetics, taxonomy, watermelon. species. We discovered that the type specimen of the name Citrullus lanatus, prepared by a Linnaean collector in South Africa in 1773, is not the species now thought of as watermelon. Instead, it is a representative of another species that is sister to C. ecirrhosus, a tendril-less South African endemic. The closest relative of the watermelon instead is a West African species. Our nuclear and plastid data furthermore reveal that there are seven species of Citrullus, not four as assumed. Our study implies that sweet watermelon originates from West, not southern Africa as previously believed, and that the South African citron melon has been independently domesticated. These findings affect and explain numerous studies on the origin of these two crops that led to contradictory results because of the erroneous merging of several distinct species.
    [Show full text]
  • Seed Coat Diversity in Some Tribes of Cucurbitaceae: Implications for Taxonomy and Species Identification
    Acta Botanica Brasilica 29(1): 129-142. 2015. doi: 10.1590/0102-33062014abb3705 Seed coat diversity in some tribes of Cucurbitaceae: implications for taxonomy and species identification Samia Heneidak1 and Kadry Abdel Khalik2,3,* Received: August 2, 2014. Accepted: October 8, 2014 Abstract: To evaluate their diagnostic value in systematic studies, seed coat morphology for 16 taxa from 11 genera of Cucurbitaceae were examined using stereomicroscopy and scanning electron microscopy. The taxa included representatives of the tribes Benincaseae, Bryonieae, Coniandreae, and Luffeae in order to evaluate their diagnostic value in systematic studies. Macro- and micromorphological characters of their seeds are presented, including shape, color, size, surface, epidermal cell shape, anticlinal boundaries, and periclinal cell wall. The taxonomic and phylo- genetic implications of seed coat micromorphology were compared with those of the available gross morphological and molecular data. Seed character analysis offered useful data for evaluating the taxonomy of Cucurbitaceae on both intrageneric and tribal levels. Monophyly of the tribes Bryonieae, Coniandreae, and Luffeae was supported. Moreover, these analyses supported previous biochemical and phylogenetic data, indicating that distinct lineages are present within the tribe Benincaseae, that this tribe is not monophyletic, and that the subtribe Benincasinae is highly polyphyletic. A key is provided for identifying the investigated taxa based on seed characters. Keywords: Cluster analysis, PCO, scanning electron microscopy, seed coat, tribal classification, UPGMA Introduction 1990), Cucurbitaceae is subdivided into two well-defined subfamilies, Zanonioideae and Cucurbitoideae, and eight Cucurbitaceae is a widespread family of 118–122 genera tribes represent various degrees of circumscriptive co- and 900 species (Simpson 2010) of monoecious or dioecious hesiveness.
    [Show full text]
  • Seed Shape Quantification in the Order Cucurbitales
    ISSN 2226-3063 e-ISSN 2227-9555 Modern Phytomorphology 12: 1–13, 2018 https://doi.org/10.5281/zenodo.1174871 RESEARCH ARTICLE Seed shape quantification in the order Cucurbitales Emilio Cervantes 1, 2*, José Javier Martín Gómez 1 1 Instituto de Recursos Naturales y Agrobiología de Salamanca-Consejo Superior de Investigaciones Científicas (IRNASA–CSIC), Cordel de Merinas 40, 37008 Salamanca, Spain; * [email protected] 2 Grupo de Investigación Reconocido Bases Moleculares del Desarrollo, Universidad de Salamanca (GIR BMD-USAL), Edificio Departamental, Campus Miguel de Unamuno, 37007 Salamanca, Spain Received: 03.10.2017 | Accepted: 23.01.2018 | Published: 17.02.2018 Abstract Seed shape quantification in diverse species of the families belonging to the order Cucurbitales is done based on the comparison of seed images with geometric figures. Quantification of seed shape is a useful tool in plant description for phenotypic characterization and taxonomic analysis. J index gives the percent of similarity of the image of a seed with a geometric figure and it is useful in taxonomy for the study of relationships between plant groups. Geometric figures used as models in the Cucurbitales are the ovoid, two ellipses with different x/y ratios and the outline of the Fibonacci spiral. The images of seeds have been compared with these figures and values of J index obtained. The results obtained for 29 species in the family Cucurbitaceae support a relationship between seed shape and species ecology. Simple seed shape, with images resembling simple geometric figures like the ovoid, ellipse or the Fibonacci spiral, may be a feature in the basal clades of taxonomic groups.
    [Show full text]
  • Khmeriosicyos, a New Monotypic Genus of Cucurbitaceae from Cambodia
    BLUMEA 49: 441– 446 Published on 10 December 2004 doi: 10.3767/000651904X484360 KHMERIOSICYOS, A NEW MONOTYPIC GENUS OF CUCURBITACEAE FROM CAMBODIA W.J.J.O. DE WILDE1, B.E.E. DUYFJES & R.W.J.M. VAN DER HAM2 Nationaal Herbarium Nederland, Universiteit Leiden branch, P.O. Box 9514, 2300 RA Leiden, The Netherlands SUMMARY A new monotypic genus from Cambodia is described. The genus is defined by a unique combination of characters and has distinct pollen features. The only species is Khmeriosicyos harmandii W.J. de Wilde & Duyfjes. Key words: Cucurbitaceae, Khmeriosicyos, new genus, pollen, SE Asia. INTRODUCTION Two sheets of an unidentified collection referred to Cucurbitaceae in the Paris Herbarium appeared to represent an undescribed genus in the family. The material, Harmand in herbarium Pierre 4350, is rather inadequate, but contains at close inspection sufficient details on the habit of the plant, the male and female inflorescences, the male flowers, fruit and seeds, and pollen to reveal its identity. Khmeriosicyos W.J. de Wilde & Duyfjes, gen. nov. A generis monotypicis similibus e.g. Borneosicyo, Papuasicyo, Nothoalsomitra foliis et cirrhis simplicibus, probractea distincta, floribus monoeciis, floribus masculinis in racemo pedunculato, receptaculi tubo vadoso staminibus ad medium insertis, duabus antheribus bithecis una monotheca, thecis sigmoideis connectivo lato membranaceo differt. — Typus: Khmeriosicyos harmandii W.J. de Wilde & Duyfjes. Small climber, monoecious. Leaves simple, deeply lobed, scabrous. Tendrils simple. Probract obvious, glandular. Male inflorescences peduncled, racemose. Male flowers: receptacle-tube bowl-shaped, shallow; expanded corolla c. 15 mm in diameter; petals entire, imbricate, free; stamens 3, free, inserted about halfway in the receptacle-tube; filaments short, anthers two 2-thecous, one 1-thecous, thecae sigmoid, connective broad, membranous; disc absent.
    [Show full text]