Permentan 25 Tahun 2020

Total Page:16

File Type:pdf, Size:1020Kb

Permentan 25 Tahun 2020 - 700 - B. JENIS OPTK KATEGORI A2 1. SERANGGA (INSECTS) No. NAMA GOLONGAN INANG/HOST MEDIA DAERAH SEBAR ILMIAH/SINONIM/KLASIFIKASI/ /GROUP PEMBAWA /GEOGRAPHICAL NAMA UMUM /PATHWAY DISTRIBUTION (SCIENTIFIC NAME/SYNONIM/TAXON/ COMMON NAME) 1. Acanthoscelides obtectus Say.; II Cajanus cajan (kacang gude, biji (true seeds Indonesia: Jawa, Sulawesi (Syn. Acanthoscelides irresectus pigeon pea), Cicer arietinum (inc. grain)) Africa: Angola, Burundi, Fåhraeus, Acanthoscelides tetricus (kacang arab, chickpea), DR Congo, Egypt, Kenya, Gyllenhal, Bruchidius obsoletus, Glycine max (kedelai, Lesotho, Malawi, Bruchidius obtectus Say, Bruchus soyabean), Lathyrus sativus Mauritius, Morocco, fabae Riley, Bruchus irresectus, (grasspea), Phaseolus Nigeria, Reunion, Rwanda, Bruchus obsoletus (Say), Bruchus acutifolius (tepary bean), Saint Helena, Senegal, obtectus Say, Bruchus tetricus Phaseolus coccineus (runner Seychelles, South Africa, Gyllenhal, Laria obtectus Say, Larra bean), Phaseolus (beans), Spain, Swaziland, irresectus, Mylabris obtectus Say); Phaseolus lunatus (lima bean), Tanzania, Uganda, (Coleoptera: Bruchidae); Phaseolus vulgaris (buncis, Zambia, Zimbabwe bean bruchid, American seed beetle, common bean), Pisum sativum America: Argentina, bean beetle, bean weevil, common (pea), Vicia faba (faba bean), Belize, Bolivia, Brazil, bean weevil, dried bean beetle, dried Vigna unguiculata (kacang Canada, Chile, Colombia, bean weevil panjang, cowpea), Zea mays Costa Rica, Cuba, (jagung, corn, maize) Dominican Republic, Ecuador, El Salvador, Guadeloupe, Guatemala, - 701 - Guyana, Honduras, Mexico, Nicaragua, Panama, Paraguay, Peru, USA, Venezuela Asia: India, Iraq, Israel, Japan, Kazakhstan, Malaysia, Myanmar, Georgia, Kazakhstan, Malaysia, Myanmar, Tajikistan, Thailand, Turkey, Vietnam Europe: Albania, Armenia, Austria, Belgium, Bosnia and Herzegovina, Bulgaria, Croatia, Czech Republic, Finland, France, Germany, Greece, Hungary, Italy, Kosovo, Moldova, Montenegro, North Macedonia, Netherlands, Poland, Portugal, Romania, Russian Federation, Serbia, Slovakia, Slovenia, Spain, Switzerland Oceania: Australia, New Zealand, Papua New Guinea 2. Altha alastor Tams.; II Cocos nucifera (kelapa, batang (stems, Indonesia: Sulawesi (Lepidoptera: Limacodidae); coconut) dan Palmae lainnya, trunks, - 702 - ulat siput/slug caterpillar, the moth of Bombax (Malvaceae) shoots, borneo branches), daun (leaves), bunga (flowers, inflorescences, cones, calyx), buah (fruits) 3. Amblypelta theobromae Brown; II Cocos nucifera (kelapa, batang (stems, Indonesia: Papua (Hemiptera: Coreidae); coconut), Theobroma cacao trunks, Oceania: Papua New coconut bug (kakao, cocoa) shoots, Guinea branches, daun (leaves), buah (fruits) 4. Atherigona soccata Rondani, 1871; II Brachiaria reptans (sprawling batang (stems) Indonesia: Maluku (Syn. Atherigona indica Malloch, 1923, panicum), Brachiaria Africa: Burkina Faso, DR Atherigona indica ssp. infuscata brizantha, Cymbopogon citratus Congo, Egypt, Ghana, Emden, 1941, Atherigona varia var. (serai wangi, citronella grass), Kenya, Madagascar, soccata (Rondani) Hennig, 1961); Cymbopogon ceasius, Cynodon Malawi, Mauritius, (Diptera: Muscidae); dactylon (rumput bermuda, Morocco, Nigeria, sorghum shoot (stem) fly, great fly, bermuda grass), Desmostachya Réunion, South Africa, millet stem fly, millet stem maggot bipinnata (halfa grass), Sudan, Tanzania, Uganda, Digitaria sanguinalis (large Zimbabwe crabgrass), Echinochloa colona Asia: Bangladesh, China, (junglerice), Echinochloa crus- India, Iraq, Israel, galli (barnyard grass), Eleusine Myanmar, Nepal, coracana (jaba, finger’s millet), Pakistan, Philippines, Eleusine indica (goose grass), Saudi Arabia, Sri Lanka, Eragrostis japonica (delicate Thailand, Turkey, Vietnam lovegrass), Eriochloa procera Europe: Italy - 703 - (tropical cupgrass), Megathyrsus maximus (Guinea grass), Oryza sativa (padi, paddy, rice), Panicum antidotale (elbow grass), Panicum miliaceum (millet), Panicum repens (torpedo grass), Paspalum scrobiculatum (ricegrass paspalum), Pennisetum glaucum (bajra, pearl millet), Pennisetum (feather grass), Rottboellia cochinchinensis (itch grass), Setaria intermedia, Setaria pumila (yellow foxtail), Setaria verticillata (bristly foxtai), Sorghum arundinaceum, Sorghum bicolor (sorgum, sorghum), Sorghum halepense (Johnson grass), Sorghum propinquum, Sorghum purpureosericeum, Triticum aestivum (gandum, wheat), Urochloa brizantha (palisade grass), Urochloa distachya, Zea mays (jagung, corn, maize) 5. Bactrocera bryoniae (Tryon); II Bryonopsis affinis, Capsicum buah (fruits Indonesia: Bali, (Syn. Chaetodacus bryoniae); frutescens (cabai rawit, chilies), (inc. pods)), Kalimantan, Maluku (Diptera: Tephritidae); Musa spp. (pisang, banana), media tanam Utara, Papua fruit fly Mangifera indica (mangga, (growing Oceania: Australia, - 704 - mango), Passiflora media French Polynesia, New quadrangularis (markisa, associated Caledonia granadilla, passion-fruit) with plants), tanah (soil) 6. Bactrocera musae (Tryon, 1972).; II Carica papaya (pepaya, buah (fruit Indonesia: Jawa (Jawa (Syn. Bactrocera (Bactrocera) musae papaya), Musa spp. (pisang, (inc. pods), Barat), Kalimantan, Tryon, 1927, Chaetodacus dorsopicta banana), Musa acuminata (wild media tanam Maluku, Nusa Tenggara Tryon, 1927, Chaetodacus dorso-picta banana), Musa banksii (wild (growing Barat (Lombok), Sulawesi, Tryon, 1927, Chaetodacus musae banana), Musa x paradisiaca media Papua Tryon, 1927, Chaetodacus tryoni var. (plaintain), Psidium guajava accompanying Asia: Philippines musae Tryon, 1927, Dacus musae (jambu biji, guava), Ximenia plants), tanah Oceania: Australia, Papua Hardy, 1951, Dacus nigrofasciatus americana (hog plum) (soil) New Guinea Tryon, 1927, Dacus ornatissimus Froggatt, 1909, Strumeta musae May, 1953); (Diptera: Tephritidae); banana fruit fly 7. Bactrocera occipitalis (Bezzi); II Achras (=Manilkara) zapota buah (fruit Indonesia: Kalimantan (Syn. Chaetodacus ferrugineus var. (sawo, sapodilla), Averrhoa (inc. pods), Asia: Brunei Darussalam, occipitalis Bezzi, Chaetodacus carambola (belimbing, media tanam Malaysia, Philippines occipitalis Bezzi, 1919, Dacus dorsalis carambola, star fruit), Citrus (growing var. occipitalis (Bezzi), Dacus occipitalis reticulata (jeruk mandarin, media (Bezzi), Strumeta pedestris var. mandarin, tangerine, mandarin associated occipitalis (Bezzi)); orange), Mangifera indica with plants), (Diptera: Tephritidae) (mangga, mango), Psidium tanah (soil) guajava (jambu biji, guava), Spondias purpurea (hog plum, red mombin) 8. Chaetanaphothrips orchidii (Moulton); II Acer palmatum, Adiantum batang (stems, Indonesia: Jawa (Syn. Anaphothrips orchidii, Euthrips (japanese maple), Adiantum shoots, Africa: Mauritius, Sao - 705 - orchidii, Physothrips orchidii, (maidenhair ferns), Allium branches), Tome and Principe Taeniothrips orchidii); (onions, garlic, leek, etc), daun (leaves), America: Argentina, (Thysanoptera: Thripidae); Amaranthus (grain amaranth), bunga Brazil, Costa Rica, Cuba, anthurium thrips, orchid thrips Anthurium andreanum, (flowers, Dominica, Dominican Alternanthera (joyweed), inflorescences, Republic, Ecuador, Bougainvillea, Begonia, cones, calyx), Grenada, Guadeloupe, Chrysanthemum (daisy), Citrus tanah (soil) Honduras, Jamaica, reticulata x paradisi (tangelo), Mexico, Puerto Rico, Saint Citrus sinensis (navel orange), Lucia, Suriname, Trinidad Citrus x paradisi (jeruk bali, and Tobago, USA, Hawaii pommel, grapefruit), Citrus Asia: China, India, spp. (jeruk, orange), Coix Malaysia, Nepal, Sri lacryma-jobi (jail, Job’s tears), Lanka, Japan, Taiwan Cryptotaenia canadensis, Europe: Italy, Poland Euphorbia (spurges), Oceania: Australia, Tonga Epiphyllum, Ipomoea batatas (ubi jalar, sweetpotato), Iresine (blood-leaf), Litchi sinensis (leci, lychee), Lycopersicon, Musa spp. (pisang, banana), Passiflora (passion flower), Paspalum conjugatum (sour paspalum), Piper (pepper), Pisonia, Petroselinum crispum (peterseli, parsley), Orchid, ornamental plants, Zea mays (jagung, corn, maize) 9. Chrysomphalus aonidum (Linnaeus, II Asparagus officinalis batang (stems, Indonesia: Jawa, 1758); (asparaga, asparagus), Carica shoots, Sulawesi, Sumatera. (Syn. Aonidiella ficorum Ashmead, papaya (pepaya, papaya), branches), Africa: Algeria, Burundi, - 706 - Aspidiotus (Chrysomphalus) aonidum Camelia sinensis (teh, tea), daun (leaves), Comoros, Egypt, Ethiopia, (Linnaeus) Hempel, 1900, Aspidiotus Cinnamomum verum buah (fruits Guinea, Kenya, (Chrysomphalus) ficus (Ashmead) (cinnamon), Citrus spp. (jeruk, (inc. pods)) Madagascar, Malawi, Berlese, 1896, Aspidiotus aonidum orange), Citrus aurantiifolia Mauritius, Morocco, (Linnaeus) Cockerell, 1905, Aspidiotus (lime), Citrus limon (lemon), Mozambique, Nigeria, ficorum Ashmead, Aspidiotus ficus Citrus maxima (pummelo), Réunion, Senegal, (Ashmead) Comstock, 1881, Citrus sinensis (navel orange), Seychelles, South Africa, Chrysomphalus ficus Ashmead, 1880, Citrus x paradisi (grapefruit), Spain, Sudan, Tanzania, Coccus aonidum Linnaeus, 1758); Cocos nucifera (kelapa, Tunisia, Uganda, Zambia, (Hemiptera: Diaspididae); coconut), Dracaena, Dracaena Zimbabwe red scale, Sircular black scale reflexa, Gossypium hirsutum America: Argentina, (kapas, cotton), Lauraceae, Barbados, Bermuda, Palmaceae, Malus domestica Brazil, Cayman Islands, (apel, apple), Mangifera indica Chile, Colombia, Costa (mangga, mango), Musa spp. Rica, Cuba, Dominica, (pisang, banana), Musa x Dominican Republic, El paradisiaca (plantain), Phoenix Salvador, French Guiana, dactylifera (kurma, date-palm), Guadeloupe,
Recommended publications
  • ISSN NO: 2639-3166 Phenacoccus Solenopsis A. Arizonensis P
    Freely Available Online JOURNAL OF AGRONOMY RESEARCH ISSN NO: 2639-3166 Research Article DOI: 10.14302/issn.2639-3166.jar-19-2858 Effectiveness of Endoparsitoid Wasp Aenasius Arizonensis (Girault) as a Successful Bio-Control of Cotton Mealy Bug, Phenacoccus Solenopsis Tinsley, in Khartoum State, Sudan. Nawal Ahmed Mohamed1, Awad KhalafAlla Taha2 , Abubaker Haroun Mohamed Adam3,* 1Ministry of Agriculture, Animal Wealth and Irrigation, Khartoum State, Sudan 2Department of Plant Protection, College of Agricultural Studies - Shambat, Sudan University of Science and Technology, Sudan 3Department of Crop Science, College of Agriculture, University of Bahri, AlKadaru, Sudan. Abstract The objective of this study was to evaluate the effectiveness of endophagous Encyrtid parasitic wasp Aenasius arizonensis (Girault) (Hymenoptera, Chalcidoidea), as a natural enemy for controlling the Mealybug, Phenacoccus solenopsis Tinsley (Hemiptera: Pseudococcidae). Where a Randomized Complete Block Design (RCBD) was adopted. Both, field survey and Laboratory experiments were conducted to study some biological characteristics of the parasitoid A. arizonensis. The results of field study revealed that, the parasitioid was available most of the year, and was highly effective on adults and last larval instar of the mealy bug, P. Solenopsis, with a total percentage of parasitism of 31.26%. While the laboratory results showed that, the duration from oviposition to adult emergence were similar for both male and female. Longevity of male was 23± 2.33 days and female 23.37±1.89 days. Mean daily fecundity in terms of number of Parasitized hosts / female / day ranged from 20 to 24. The sex ratio was 1:1.6 for the male and female in the progeny.
    [Show full text]
  • The Library of the University of California
    fi - w AG R I C U LT U RAL PES T S OF I N DI A , ‘ AN D OF E I AS T ER N AN D S OU T HER N AS A. O O AN D G I BB M RRIS N , ' P E r' o H ER J Y S T AT I ON ER Y OF F C E RINT RS MA EST S I . AGRICULTURAL PESTS OF A INDI , AN D OF EAS T ER N AN D S OU T HER N A IA S , VEG ET ABLE AN D AN I MAL , I N JUR I OUS T O MAN AN D HI S PR OD U C T S . R EON EN ER AL ED WAR D BALF OU R S U G G , C O E PO D G B OF T H E I MPER I AL -R OY AL G OL OG C L I N S T I T U T E V E RR S N IN MEM ER E I A , I NNA ; FELLOW OF T H E M AD R AS U NIVERSIT Y ; AU T H OR OF “ ’ m mC YC L OPE D OF I N D I A AN D O F EAS T ER N AN D OU HE A S I A IA S T RN , “ ’ rm: B T EES OF I N D I A AN D OF AN D OU H S ma TIM ER ! EASTERN S T ERN A IA , ; F OU N D ER OF T H E G OVER N MEN T C EN T R AL U U MAD R A S M SE M, ; OF T H E MYS OR E U U B G LO ET C .
    [Show full text]
  • Helopeltis Spp.) on Cashew (Anacardium Occidentale Linn.
    Journal of Cell and Animal Biology Vol. 6(14), pp. 200-206, September 2012 Available online at http://www.academicjournals.org/JCAB DOI: 10.5897/JCAB11.094 ISSN 1996-0867 ©2012 Academic Journals Full Length Research Paper Field survey and comparative biology of tea mosquito bug (Helopeltis spp.) on cashew (Anacardium occidentale Linn.) Srikumar K. K.1* and P. Shivarama Bhat2 Department of Entomology, Directorate of Cashew Research, Puttur, Karnataka 574 202, India. Accepted 8 August, 2012 Cashew (Anacardium occidentale Linn.) has become a very important tree crop in India. Several insect pests, however, have been recorded on cashew and prominent among which is the tea mosquito bug (TMB), Helopeltis spp. (Hemiptera: Miridae). Field survey from November 2009 to November 2011 suggests that Helopeltis antonii was dominant, which accounted for 82% of all Helopeltis spp. collected; whereas, Helopeltis bradyi and Helopeltis theivora accounted for 12 and 6%, respectively. No significant differences in egg hatchability percentage among the three species were observed. The study showed that there is significant variation in developmental rate of 2nd, 3rd and 4th instar nymphs of Helopeltis spp. The total developmental time for H. antonii, H. bradyi and H. theivora were 224.19, 211.38 and 214.59 hours, respectively. Survival rates of the nymphal instars of H. antonii were significantly high compared to H. bradyi and H. theivora. The sex ratio of H. antonii was highly female biased. The adults of H. bradyi and H.theivora survived longer and produced significantly higher number of eggs than H. antonii. The outcome of this study is very important in planning control as insect monitoring and biological studies are important components of Integrated Pest Management (IPM).
    [Show full text]
  • Pathogenesis of Gall-Rust Disease on Falcataria Moluccana in Areas Affected by Mount Merapi Eruption in Indonesia
    BIODIVERSITAS ISSN: 1412-033X Volume 21, Number 4, April 2020 E-ISSN: 2085-4722 Pages: 1310-1315 DOI: 10.13057/biodiv/d210406 Pathogenesis of gall-rust disease on Falcataria moluccana in areas affected by Mount Merapi eruption in Indonesia SRI RAHAYU♥, WIDIYATNO, DWI TYANINGSIH ADRIYANTI Department of Silviculture, Faculty of Forestry, Universitas Gadjah Mada. Jl. Agro No. 1, Bulaksumur, Sleman 55281, Yogyakarta, Indonesia Tel./fax.: +62-274-550541, email: [email protected] Manuscript received: 14 December 2019. Revision accepted: 5 March 2020. Abstract. Rahayu S, Widiyatno, Adriyanti DT. 2020. Pathogenesis of gall-rust disease on Falcataria moluccana in areas affected by Mount Merapi eruption in Indonesia. Biodiversitas 21: 1310-1315. The gall rust pathogen Uromycladium falcatarium affects the fast- growing tree species Falcataria moluccana (Sengon) from seedling to mature stage producing galls on all its parts. Severe infestation causes tree mortality. There were two eruptions of the volcano at Mount Merapi, Java, Indonesia during October-November 2010 near to which Sengon is grown under community forests. This study, conducted in 2014, examined the implications of the volcanic eruptions on the incidence and severity of gall rust disease on Sengon trees growing in areas affected by the eruption. It revealed that the percentage infestation on seedlings caused by teliospores of U. falcatarium collected from areas close to Mount Merapi (3-7 km away- risky area) was significantly higher compared to those collected from trees 7.1-11 (are under alert) and 11.1-15 km (area under threat) away. The teilospores and galls collected from the ‘risky area’ also exhibited morphological variations.
    [Show full text]
  • 8 Galls, Witches Brooms and Fascinating Things
    Number 2 March 2019 GALLS, WITCHES BROOMS AND FASCINATING THINGS …Gail Slykhuis Plant modifications are many and varied and are often discussed during an ANGAIR nature ramble or track walk. A popular misconception is that insect activity is the sole cause of these oddities. Whilst insect-forming galls are common, there are other culprits out there that are the cause of some very interesting plant growth. This article will cover several plant modifications that you may have seen on your walks around Anglesea and Aireys Inlet. Rust Galls — Golden Wattle, Acacia pycnantha Rust galls are caused by a fungus whose spores invade plant leaves and stems; fungal chemicals then stimulate the plant into forming irregularly shaped woody galls that may grow to 150mm in diameter. The light brown gall will develop a powdery surface as it produces spores, the gall then darkens with age and will often become a home for small insects and spider mites, often mistaken for the cause of the gall. Golden Wattle, Acacia pycnantha, is one of many acacia species capable of being infected by the rust gall fungus, Uromycladium tepperianum. The host provides the fungus with nutrients and as a consequence, severely infected trees will be weakened due to the reduced leaf canopy and may die. You may also have seen these rust galls on wattles with bipinnate Rust galls on Golden Wattle foliage e.g. Silver Wattle, Acacia dealbata, and Black Wattle, Acacia mearnsii, the rust fungus involved with these species being Uromycladium notabile. Witches Brooms — Large-leaf Bush-pea, Pultenaea daphnoides These wonderfully named aberrations are not uncommon in the natural environment.
    [Show full text]
  • The Cotton Mealybug Phenacoccus Solenopsis Tinsley (Hemiptera: Pseudococcidae) As a New Insect Pest on Tomato Plants in Egypt
    JOURNAL OF PLANT PROTECTION RESEARCH Vol. 55, No. 1 (2015) DOI: 10.1515/jppr-2015-0007 The cotton mealybug Phenacoccus solenopsis Tinsley (Hemiptera: Pseudococcidae) as a new insect pest on tomato plants in Egypt Samah Sayed Ibrahim1, Fatma Abdelhalim Moharum1, Nesreen Mohamed Abd El-Ghany2* 1 Plant Protection Research Institute, Agricultural Research Center, 7 Nadi El-Seid St., Dokki, Giza, Egypt 2 Pests and Plant Protection Department, National Research Centre, 33 El-Bohouth St., Dokki, Giza 12622, Egypt Received: September 10, 2014 Accepted: February 4, 2015 Abstract: Recently, the mealybug Phenacoccus solenopsis Tinsley (Hemiptera: Pseudococcidae) was recorded as a new pest on tomato plants (Lycopersicon esculentum Mill) growing in Egypt. The mealybugs specimens were collected from tomato plants in the Qalyoubia governorate during summer season of 2014. The mealybug was identified as P. solenopsis based on the morphological characters and taxonomic key of this species. This study represents the first record of P. solenopsis as a new insect pest attacking tomato plants in Egypt. Key words: Lycopersicon esculentum, mealybug, Phenacoccus solenopsis Introduction was originally described from the USA in 1898. Until In less than a century, tomato (Lycopersicon esculentum 1992, this insect was known only in the USA, where it Mill) (Family: Solanaceae) has become a major world was widespread (Ben-Dov 2004). Phenacoccus solenopsis food crop. Today, tomatoes are grown commercially in was reported in Central America, the Caribbean, and Ec- 159 countries. The major producers of tomatoes, in 2009 uador (Fuchs et al. 1991; Williams and Granara de Willink were China, the United States, India, Turkey, Egypt, Italy, 1992).
    [Show full text]
  • Uromycladium Acaciae, the Cause of a Sudden, Severe Disease Epidemic on Acacia Mearnsii in South Africa
    Uromycladium acaciae, the cause of a sudden, severe disease Acacia mearnsii epidemic on in South Africa 1 2,3 1 4 Alistair R. McTaggart & Chanintorn Doungsa-ard & Michael J. Wingfield & Jolanda Roux Abstract A severe rust disease has caused extensive damage in 1988, from minor symptoms on the leaflets caused by its to plantation grown Acacia mearnsii trees in the KwaZulu- uredinial stage on A. mearnsii in South Africa. It has now Natal Province of South Africa since 2013. The symptoms are become a threat to plantations of A. mearnsii, with an altered characterized by leaf spots, petiole and rachis deformation, life cycle and increased disease severity. defoliation, gummosis, stunting of affected trees and die- back of seedlings. The cause of this new disease was identified Keywords Botrycephaleae . Emerging disease . Microcyclic using a combined morphological and DNA sequence ap- rust .Plantationforestry .Pucciniales .Taxonomy .Uredinales proach. Based on morphology, the rust fungus was identified as a species of Uromycladium. It formed powdery, brown telia on petioles, stems, leaves, seedpods and trunks of affected Introduction trees. The teliospores were two per pedicel and either lacked or had a collapsed sterile vesicle. Sequence data and morphol- Australian species of Acacia s. str. (Fabaceae, subfamily ogy showed that the collections from South Africa were con- Mimosoideae; from here referred to as Acacia)inSouth specific, however telia were not produced in all provinces. Africa are either considered weeds, such as A. dealbata and Uromycladium acaciae is the most suitable name for this rust A. saligna, or grown commercially for the production of tim- fungus, based on morphology and phylogenetic analyses of ber for pulp, and bark for tannins, glues and other products the internal transcribed spacer and large subunit regions of (Midgley and Turnbull 2003; Dobson and Feely 2002).
    [Show full text]
  • Phragmites Australis
    Journal of Ecology 2017, 105, 1123–1162 doi: 10.1111/1365-2745.12797 BIOLOGICAL FLORA OF THE BRITISH ISLES* No. 283 List Vasc. PI. Br. Isles (1992) no. 153, 64,1 Biological Flora of the British Isles: Phragmites australis Jasmin G. Packer†,1,2,3, Laura A. Meyerson4, Hana Skalov a5, Petr Pysek 5,6,7 and Christoph Kueffer3,7 1Environment Institute, The University of Adelaide, Adelaide, SA 5005, Australia; 2School of Biological Sciences, The University of Adelaide, Adelaide, SA 5005, Australia; 3Institute of Integrative Biology, Department of Environmental Systems Science, Swiss Federal Institute of Technology (ETH) Zurich, CH-8092, Zurich,€ Switzerland; 4University of Rhode Island, Natural Resources Science, Kingston, RI 02881, USA; 5Institute of Botany, Department of Invasion Ecology, The Czech Academy of Sciences, CZ-25243, Pruhonice, Czech Republic; 6Department of Ecology, Faculty of Science, Charles University, CZ-12844, Prague 2, Czech Republic; and 7Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Matieland 7602, South Africa Summary 1. This account presents comprehensive information on the biology of Phragmites australis (Cav.) Trin. ex Steud. (P. communis Trin.; common reed) that is relevant to understanding its ecological char- acteristics and behaviour. The main topics are presented within the standard framework of the Biologi- cal Flora of the British Isles: distribution, habitat, communities, responses to biotic factors and to the abiotic environment, plant structure and physiology, phenology, floral and seed characters, herbivores and diseases, as well as history including invasive spread in other regions, and conservation. 2. Phragmites australis is a cosmopolitan species native to the British flora and widespread in lowland habitats throughout, from the Shetland archipelago to southern England.
    [Show full text]
  • Distribution of Carpenter-Moths (Lepidoptera, Cossidae) in the Palaearctic Deserts
    ISSN 0013-8738, Entomological Review, 2013, Vol. 93, No. 8, pp. 991–1004. © Pleiades Publishing, Inc., 2013. Original Russian Text © R.V. Yakovlev, V.V. Dubatolov, 2013, published in Zoologicheskii Zhurnal, 2013, Vol. 92, No. 6, pp. 682–694. Distribution of Carpenter-Moths (Lepidoptera, Cossidae) in the Palaearctic Deserts a b R. V. Yakovlev and V. V. Dubatolov aAltai State University, Barnaul, 656049 Russia e-mail: [email protected] bInstitute of Animal Systematics and Ecology, Siberian Branch, Russian Academy of Sciences, Novosibirsk, 630091 Russia e-mail: [email protected] Received September 6, 2012 Abstract—Specific features of the carpenter-moths (Cossidae) distribution in the Palaearctic deserts are consid- ered. The Palaearctic frontier was delimited to the Arabian Peninsula (the eastern and northern parts of Arabia are attributed to the Palaearctic Region; Yemen, southwestern Saudi Arabia, and southernmost Iran belong to the Afro- tropical Region). Cossidae are highly endemic to arid areas. Some Palaearctic carpenter-moth genera penetrate to Africa southward of the Sahara Desert (an important characteristic distinguishing them from most of the other Lepidoptera). The local faunas of the Palaearctic deserts are united into 4 groups: the Sahara–Arabian–Southern- Iranian, Central-Asian–Kazakhstanian, Western-Gobian, and Eastern-Gobian. In the Eastern Gobi Desert, the fauna is the most specific; it should be considered as a separate zoogeographical subregion. DOI: 10.1134/S0013873813080071 Cossidae (Lepidoptera) is a widely distributed fam- The following areas were considered as the sites: ily comprising 151 genera with 971 species (van Neu- (1) the western part of the Sahara Desert (Morocco, kerken et al., 2011), among which 267 species occur in northern Mauritania, the Western Sahara); the Palaearctic Region (Yakovlev, 2011c).
    [Show full text]
  • Tea Mosquito Bug (Helopeltis Anto- Nii Signoret) and Its Management in Guava
    Popular Article Journal Home: www.bioticainternational.com Article: RT0129 How to cite this article? Biotica Bose et al., 2020. Tea Mosquito Bug (Helopeltis antonii Signoret) and its Management in Guava. Research Today Research [2(5) Spl.: 333-334. [ Today 333 Abstract Vol 2:5 uava is a common tropical fruit cultivated in many tropical and 334 subtropical regions. Its production was severely affected by 2020 Spl. Gmany insect pests. The tea mosquito bug, Helopeltis antonii is one such pest causes economic damage to guava in the recent years causing significant reduction in yield and marketable fruits. This pest Tea Mosquito Bug can be well efficiently managed by following integrated management practices viz. cultural, biological and chemical methods. (Helopeltis anto- Introduction uava (Psidium guajava L.) is one of the most important nii Signoret) and commercial fruit crop in India. It is rich source of Gvitamin C, pectin and minerals. The production of its Management in guava was drastically affected by many insect pests. Among them, the tea mosquito bug causes severe damage to the Guava fruits. In India, there are three species of tea mosquito bug viz., 1* 2 Helopeltis antonii, H. bradyi and H. theivora were reported. A. Subash Chandra Bose , I. Rabeena Among them, H. antonii is the most dominant species. It has 3 and T. Sathyan a wide host range such as tea, cashew, moringa, guava, neem, 1S. Thangapazham Agriculture College, Vasudevanallur cocoa and other host plants. The yield loss can be minimized Tirunelveli (627 760), India by following proper management practices. The damage 2Agricultural College and Research Institute, TNAU, Madurai symptoms caused by them and their management measures (641 003), India are given below.
    [Show full text]
  • Azadirachta Indica Meliaceae A. Juss
    Azadirachta indica A. Juss. Meliaceae neem LOCAL NAMES Amharic (kinin); Arabic (nim,neem); Bengali (nimgach,nim); Burmese (bowtamaka,thinboro,tamarkha,tamar,tamaka,tamabin); Cantonese (nimba,kohomba,bevu); Chamorro (sdau); Creole (nim); English (Persian lilac,neem tree,bastard tree,Indian lilac,bead tree,margosa tree,cornucopia,Indian cedar); French (margousier,margosier,neem,nim,azadirac de l’Inde); Hindi (neem,balnimb,nim,veppam,nind,vempu); Indonesian (mind,intaran,membha,imba,mempheuh,mimba); Javanese (mimba,imba); Khmer (sdau); Lao (Sino-Tibetan) (ka dao,kadau); Malay Immature fruits (Schmutterer H.) (sadu,baypay,mambu,veppam); Nepali (neem); Sanskrit (nimba); Sinhala (kohomba); Swahili (mwarubaini,mwarubaini kamili,mkilifi); Tamil (vepa,veppu,veppam,vembu); Thai (sadao,kadao,sadao India,khwinin,saliam,cha-tang); Tigrigna (nim); Trade name (neem); Vietnamese (saafu daau,sàu-dàu,s[aaf]u d[aa]u) BOTANIC DESCRIPTION Azadirachta indica is a small to medium-sized tree, usually evergreen, up to 15 (30 max.) m tall, with a round, large crown up to 10 (20 max.) m in diameter; branches spreading; bole branchless for up to 7.5 m, up to 90 cm in diameter, sometimes fluted at base; bark moderately thick, with Trees in Mindinao, Philippines (Anthony small, scattered tubercles, deeply fissured and flaking in old trees, dark Simons) grey outside and reddish inside, with colourless, sticky foetid sap. Leaves alternate, crowded near the end of branches, simply pinnate, 20- 40 cm long, exstipulate, light green, with 2 pairs of glands at the base, otherwise glabrous; petiole 2-7 cm long, subglabrous; rachis channelled above; leaflets 8-19, very short petioluled, alternate proximally and more or less opposite distally, ovate to lanceolate, sometimes falcate (min.
    [Show full text]
  • Impact of Ecological Conditions on Biology of Cotton Mealy Bug, Phenacoccus Solenopsis (Hemiptera: Pseudococcidae) in Laboratory
    Pakistan J. Zool., vol. 44 (3), pp. 685-690, 2012. Impact of Ecological Conditions on Biology of Cotton Mealy Bug, Phenacoccus solenopsis (Hemiptera: Pseudococcidae) in Laboratory Asifa Hameed,1 Muhammad Asif Aziz2 * and Ghulam Mustafa Aheer3 1Cotton Research Station, Multan. 2Department of Entomology, PMAS-Arid Agriculture University, Murree Road, Rawalpindi 3 Entomological Research Institute, Faisalabad Abstract.- Effect of temperature and relative humidity on the life history of the cotton mealy bug Phenacoccus solenopsis Tinsley (Hemiptera: Pseudococcidae) was investigated in the laboratory. P. solenopsis was able to complete its life cycle at 20, 25, 30 and 35±1°C and 70, 65, 60 and 40±5% RH, respectively. Egg hatching period decreased from 32±0.22 to 0.57±0.15 hours from 20 to 40°C. But at 40°C, the male specimens were unable to pupate and the female specimens despite comparatively very short life span were unable to produce eggs. The highest fecundity was observed at 20°C with each female producing an average of 232.65±2.19 eggs. Development time from egg to adult was the longest for male at 20°C. Increasing temperature and decreasing relative humidity had profound effect on the longevity of the females whereas longevity of males was less affected. Ability of the P. solenopsis to develop and reproduce successfully at 20 to 35±1°C and 70 to 40±5% RH suggests that the pest can develop and build up its populations in different ecological zones within this temperature range. Key words: Development, relative humidity, Phenacoccus solenopsis, cotton mealy bug. INTRODUCTION encourages its development.
    [Show full text]