Bilan Quadriennal 2006 - 2010

Total Page:16

File Type:pdf, Size:1020Kb

Bilan Quadriennal 2006 - 2010 LPG Nantes Laboratoire de Planétologie et Géodynamique de Nantes UMR 6112 et Laboratoire des Bio-Indicateurs Actuels et Fossiles d'Angers UPRES EA 2644 Bilan Quadriennal 2006 - 2010 Bilan de l’activité Scientifique AVERTISSEMENT Dans ce document nous présentons le bilan de l'activité du Laboratoire de Planétologie et Géodynamique de Nantes LPGNantes UMR 6112 suivi du bilan du laboratoire des Bio- Indicateurs Actuels et Fossiles BIAF UPRES EA 2644 de l'université d'Angers en vue de la fusion de cette équipe dans l'UMR 6112 pour un projet scientifique commun sur la période 2012-2015. Bilan de l’activité Scientifique et Résultats 2 Bilan de l’activité Scientifique et Résultats Résumé AERES: Laboratoire de Planétologie et Géodynamique de Nantes. LPGN Code unité: UMR 6112. Faculté des Sciences et Techniques de l'Université de Nantes. Directeur: Eric Humler, Directeur-Adjoint: Olivier Grasset. Bilan 2006-2010 Le Laboratoire de Planétologie et Géodynamique de Nantes LPGN (UMR 6112) a pour établissements porteurs le CNRS et l'Université de Nantes. Il dispose de 1846 m2 (SHON) de locaux de recherche, localisés sur trois sites différents de la faculté des sciences. En 2010, le laboratoire comprend 30 Enseignants-Chercheurs titulaires (9 professeurs, 3 Maîtres de conférences HDR, 17 Maîtres de conférences et un maître de conférences Honoraire), 5 chercheurs CNRS (5 CR dont 2 CR HDR). Le personnel technique et administratif du laboratoire est composé de 6 ITA (3 ingénieurs et 3 techniciens) et 3 BIATOS (2,5 techniciens ETP). Actuellement, 16 doctorants sont en cours de thèse. Il a pu bénéficier durant la période 2006-2010 du recrutement de 12 Enseignants-Chercheurs (7 recrutements et 5 rattachements de l'université du Maine et Loire en 2008), de 3 CR CNRS (dont 1 mutation et 2 créations) et du recrutement de 5 ITA-IATOS (1 IATOS et 4 ITA). Le nombre de contractuels pendant cette période a été de 34 personnes (11 Postdoc, 23 ATER) pour une durée moyenne de 18 mois. Au cours du dernier quadriennal, les activités du laboratoire se sont concentrées sur quatre thématiques de recherche: • Domaines océaniques. • Satellites de glace. • Dynamique et évolution des surfaces planétaires. • Structure et évolution comparée des Planètes. La thématique "Domaines océaniques" recouvre 3 axes principaux de recherche: Géodynamique des domaines océaniques, Mer et Littoral et la Caractérisation physique et chimique des matériaux naturels et industriels. La thématique "Satellites de Glace" s'articule autour de 3 axes de recherche: Observation et interprétation de la surface des satellites, Recherche expérimentale sur la stabilité et les signatures spectrales des matériaux glacés, Modélisation de la dynamique interne et des processus de transfert avec les enveloppes externes. La thématique "Dynamique et évolution des surfaces planétaires" est structurée autour de 2 axes majeurs: Processus de déformation des surfaces planétaires et Processus d'érosion des surfaces planétaires. La thématique "Structure et Evolution Comparée des Planètes" intègre 2 principaux axes de recherche: la modélisation du champ magnétique des planètes telluriques et la modélisation de la structure interne de la Terre et des autres planètes. De 2006 à 2009, le laboratoire a produit 194 publications (185 ACL) dont 11 articles dans Nature et Sciences ce qui correspond à une moyenne de 2,9 articles par ETP et par an, 31 conférences invitées (dont 26 internationales), 18 séminaires invités (dont 4 internationaux), 270 communications avec actes (dont 192 internationales), 14 chapitres d'ouvrages scientifiques et 3 directions d'ouvrages. 14 thèses de doctorat (durée moyenne 3 ans et 5 mois) et une HDR ont été soutenues depuis 2006. Le LPGN a organisé 9 congrès nationaux (3) et internationaux (6) qui ont rassemblé entre 50 et 150 chercheurs français et/ou étrangers provenant du monde académique et/ou industriel. Depuis 2006, 54 projets scientifiques ont été financés dont 31 d'entre eux ont été portés par des chercheurs et enseignants chercheurs de l'unité en tant que responsables de projet pour une somme globale de 3,8 M euros. Environ 90% de ces financements proviennent de l'Europe+ERC (38%), du CPER+FUI+Région (32%) et de l'ANR (19%). Les membres du laboratoire sont très impliqués dans les diverses manifestations grand public en participant aux manifestations scientifiques locales (fête de la science, portes ouvertes du laboratoire, conférences dans des écoles et lycées, milieu carcéral, milieu hospitalier..etc). Le personnel Enseignants-Chercheurs est impliqué dans la formation des étudiants de Licence et Master ainsi que dans la co- direction de notre Ecole Doctorale SPIGA (Sciences pour l'Ingénieur, Géoscienses et Architecture). Le manque d'enseignants est à présent de 2,5 personnes pour les effectifs Nantais (il était de 7 lors du dernier quadriennal). Le nombre de décharges pour les EC a doublé par rapport à 2006-2007 (de 4 à 8 aujourd'hui). Le service moyen de nos EC est aujourd'hui de 217 heures ETD. 3 Bilan de l’activité Scientifique et Résultats Résumé AERES: Laboratoire des Bio-Indicateurs Actuels et Fossiles BIAF d’Angers Code unité: UPRES EA 2644 Faculté des Sciences de l'Université d'Angers. Directeur: Frans Jorissen. Le Laboratoire des Bio-Indicateurs Actuels et Fossiles d'Angers BIAF (UPRES EA 2644) a pour établissement porteur l'Université d'Angers. Il dispose de 270 m2 (SHON) de locaux de recherche. En 2010, le laboratoire comprend 7 Enseignants-Chercheurs titulaires (2 professeurs, 2 Maîtres de conférences HDR, 3 Maîtres de conférences). Le personnel technique et administratif du laboratoire est composé de 4 IATOS (4 techniciens) et un AI affecté à la station marine de l'île d'Yeu. Actuellement, 5 doctorants sont en cours de thèse. Il a pu bénéficier durant la période 2006-2010 du recrutement de 3 Enseignants-Chercheurs et du recrutement d'un IATOS (à mi-temps). Le nombre de contractuels pendant cette période a été de 11 personnes (5 Post-doc, 3 ATER, 2 IR, une chaire d'excellence Région des Pays de la Loire) pour une durée moyenne de 12 mois. Au cours du dernier quadriennal, les activités du laboratoire se sont concentrées sur trois thématiques de recherche: • Fonctionnement des écosystèmes marins actuels et passés • Développement des proxies paléo-océanographiques • Bio-monitoring en milieu anthropisé La thématique " Fonctionnement des écosystèmes marins actuels et passés" relie la distribution des faunes de foraminifères aux paramètres physico-chimiques du milieu. La thématique " Développement des proxies paléo-océanographiques" est basée sur des expérimentations in vitro qui ont permis d’affiner la calibration des proxies, notamment δ18O et Mg/Ca. La thématique " Bio-monitoring en milieu anthropisé" a beaucoup avancé sur la mise au point d’un indice de la qualité du milieu marin. Pendant la période 2006-2009, les 7 membres du BIAF ont publié 69 publications (65 ACL) dont un article dans Nature et un dans le PNAS. Ceci constitue une moyenne de 4,6 publications rang A par ETP. 12 conférences invitées internationales, 101 communications avec actes (dont 88 internationales), 2 chapitres d'ouvrages scientifiques, 6 rapports pour des partenaires industriels. 7 thèses de doctorat (durée moyenne 3 ans et 4 mois) et 1 HDR ont été soutenues depuis 2006. Le BIAF a organisé à Angers 1 congrès international qui a rassemblé 75 chercheurs français et étrangers provenant du monde académique. Les membres du BIAF ont participé à l’organisation de 7 congrès internationaux et 1 national en tant que responsables de sessions ou membre du comité d’organisation. Depuis 2006, 11 projets scientifiques ont été financés dont 2 d'entre eux ont été portés par des enseignants chercheurs de l'unité en tant que responsable de projet pour une somme globale de 250KEuros. L’essentiel de ces financements provient de l’ANR (80%), de l’European Science Foundation (12%) et de l’INSU-CNRS (8%). Le soutien financier récurrent de nos partenaires industriels (Total, Véolia, Agence de l'Eau) est de l'ordre de 250Keuros sur 4 ans. Les membres du laboratoire sont très impliqués dans les diverses manifestations grand public en participant aux manifestations scientifiques locales (fête de la science, faites de la sciences, nuit des chercheurs, portes ouvertes du laboratoire, conférences dans les lycées et les associations communales, ..etc). Le personnel Enseignants-Chercheurs est impliqué dans la formation des étudiants de Licence et Master. Chaque année, 1 EC obtient un CRCT de 6 mois. Aucun EC n’a de décharge d’enseignement. Le service moyen de nos EC est aujourd'hui de 210 heures ETD. 4 Bilan de l’activité Scientifique et Résultats SOMMAIRE Bilan Général du LPGNantes UMR 6112 1. Présentation de l'unité 9 2. Gestion et direction du laboratoire 12 3. Principaux objectifs du projet et situation du LPGNantes en 2006. 13 4. Actions entreprises et évolution du laboratoire 2006-2010. 14 5. Bilan scientifique et productivité du laboratoire 16 6. Enseignement et formation par la recherche 17 7. Administration de la recherche et responsabilités 18 8. Diffusion de l'information et de la culture scientifique 19 9. Formation des personnels 19 10. Hygiène et sécurité 19 11. Analyse des crédits obtenus et politique vis-à-vis des financements 21 Bilan Scientifique Détaillé 23 - Domaines Océaniques 25 - Satellites de Glace 33 - Dynamique et Evolution des Surfaces Continentales 39 - Structure et Evolution Comparée des Planètes 45 Annexes Annexe 1: Publications du LPGNantes 2006-2010 51 Annexe 2: Analyse bibliométrique des chercheurs et enseignants-chercheurs du LPGNantes 99 Annexe 3: Formation permanente 105 Annexe 4 : Coopérations Européennes et Internationales 111 Bilan Général du BIAF D’Angers UPRES EA 2644 1. Introduction 117 2. Evolution de l'équipe 117 3. Production scientifique 119 4. Enseignement et formation par la recherche 120 5. Activités de valorisation 120 5 Bilan de l’activité Scientifique et Résultats 6.
Recommended publications
  • Martian Crater Morphology
    ANALYSIS OF THE DEPTH-DIAMETER RELATIONSHIP OF MARTIAN CRATERS A Capstone Experience Thesis Presented by Jared Howenstine Completion Date: May 2006 Approved By: Professor M. Darby Dyar, Astronomy Professor Christopher Condit, Geology Professor Judith Young, Astronomy Abstract Title: Analysis of the Depth-Diameter Relationship of Martian Craters Author: Jared Howenstine, Astronomy Approved By: Judith Young, Astronomy Approved By: M. Darby Dyar, Astronomy Approved By: Christopher Condit, Geology CE Type: Departmental Honors Project Using a gridded version of maritan topography with the computer program Gridview, this project studied the depth-diameter relationship of martian impact craters. The work encompasses 361 profiles of impacts with diameters larger than 15 kilometers and is a continuation of work that was started at the Lunar and Planetary Institute in Houston, Texas under the guidance of Dr. Walter S. Keifer. Using the most ‘pristine,’ or deepest craters in the data a depth-diameter relationship was determined: d = 0.610D 0.327 , where d is the depth of the crater and D is the diameter of the crater, both in kilometers. This relationship can then be used to estimate the theoretical depth of any impact radius, and therefore can be used to estimate the pristine shape of the crater. With a depth-diameter ratio for a particular crater, the measured depth can then be compared to this theoretical value and an estimate of the amount of material within the crater, or fill, can then be calculated. The data includes 140 named impact craters, 3 basins, and 218 other impacts. The named data encompasses all named impact structures of greater than 100 kilometers in diameter.
    [Show full text]
  • Seasonal Melting and the Formation of Sedimentary Rocks on Mars, with Predictions for the Gale Crater Mound
    Seasonal melting and the formation of sedimentary rocks on Mars, with predictions for the Gale Crater mound Edwin S. Kite a, Itay Halevy b, Melinda A. Kahre c, Michael J. Wolff d, and Michael Manga e;f aDivision of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California 91125, USA bCenter for Planetary Sciences, Weizmann Institute of Science, P.O. Box 26, Rehovot 76100, Israel cNASA Ames Research Center, Mountain View, California 94035, USA dSpace Science Institute, 4750 Walnut Street, Suite 205, Boulder, Colorado, USA eDepartment of Earth and Planetary Science, University of California Berkeley, Berkeley, California 94720, USA f Center for Integrative Planetary Science, University of California Berkeley, Berkeley, California 94720, USA arXiv:1205.6226v1 [astro-ph.EP] 28 May 2012 1 Number of pages: 60 2 Number of tables: 1 3 Number of figures: 19 Preprint submitted to Icarus 20 September 2018 4 Proposed Running Head: 5 Seasonal melting and sedimentary rocks on Mars 6 Please send Editorial Correspondence to: 7 8 Edwin S. Kite 9 Caltech, MC 150-21 10 Geological and Planetary Sciences 11 1200 E California Boulevard 12 Pasadena, CA 91125, USA. 13 14 Email: [email protected] 15 Phone: (510) 717-5205 16 2 17 ABSTRACT 18 A model for the formation and distribution of sedimentary rocks on Mars 19 is proposed. The rate{limiting step is supply of liquid water from seasonal 2 20 melting of snow or ice. The model is run for a O(10 ) mbar pure CO2 atmo- 21 sphere, dusty snow, and solar luminosity reduced by 23%.
    [Show full text]
  • Distribution and Evolution of Lacustrine and Fluvial Features in Hellas Planitia, Mars, Based on Preliminary Results of Grid-Mapping
    DISTRIBUTION AND EVOLUTION OF LACUSTRINE AND FLUVIAL FEATURES IN HELLAS PLANITIA, MARS, BASED ON PRELIMINARY RESULTS OF GRID-MAPPING. M. Voelker, E. Hauber, R. Jaumann, German Aerospace Center, Institute of Planetary Research, Rutherfordstr. 2, 12489 Berlin, Germany ([email protected]). Introduction: Hellas Planitia, the second-largest almost 1,000 km in length. CRISM analyses have impact basin on Mars (2.300 km), is located in the shown that these deposits mainly consist of Mg/Fe Martian mid-latitudes at the ultra-low elevation points phyllosilicates, fitting to the results of Terby [1, 2]. of the planet. Several authors have proclaimed that the Shorelines are hard to distinguish. By now, we could basin was once filled by an extended body of water [e. not identify any extensive and long shorelines. They g. 1, 2, 3]. This work will support this hypothesis by are either located in small depressions on the basins creating a geospatial inventory of both large and small- floor or at very scattered places along the rim where scale landforms of fluvial and lacustrine origin, based also LTD’s occur. on high-resolution observation. Moreover, the results Discussion: Our analyses determined that LTD’s, will implicate further information about the history of as described by [1, 2] in Terby crater, extend far more water and climate in Hellas Planitia, and hence, about than expected along an arcuate bank at the NE Hellas possible habitable environments. rim. We cannot exclude an even wider extent as we Methods: We have applied the newly developed just can observe open outcrops of these layers.
    [Show full text]
  • The Geologic History of Terby Crater: Evidence for Lacustrine Depsoition and Dissection by Ice
    THE GEOLOGIC HISTORY OF TERBY CRATER: EVIDENCE FOR LACUSTRINE DEPSOITION AND DISSECTION BY ICE. S. A. Wilson1, A. D. Howard2 and J. M. Moore3, 1Center for Earth and Planetary Studies, National Air and Space Museum, Smithsonian Institution, MRC 315, 6th St. and Independence Ave. SW, Washington DC 20013-7012, [email protected], 2Dept. of Environmental Sciences, University of Virginia, Charlottesville, VA 22904, 3NASA Ames Research Center, MS 245-3 Moffett Field, CA 94035-1000. Introduction: The geology of Terby Crater (28S, 1.5º to the south and are regularly interbedded with 287W), located on the northern rim of Hellas impact somewhat massive, alternating light- and intermediate- basin on Mars, is documented through geomorphic and toned layers. These units are separated by a light- stratigraphic analyses using all currently released toned, massive or poorly bedded unit that exhibits visible and thermal infrared image data and possible deformation structures. The physical and topographic information. This large (D=164km), geological characteristics of the sedimentary layers and Noachian-aged [1] crater has a suite of geomorphic their original depositional geometry are indicative of a units [2] and landforms including massive troughs and lacustrine origin with the sediment source from the ridges that trend north/northwest, sedimentary layered northwest. The layered sequence appears to have been sequences, mantled ramps that extend across layered emplaced as an areally continuous deposit that was sequences, avalanche deposits as well as bowl-like subsequently selectively dissected by ice and water. depressions, sinuous channels, scoured-looking Regional Setting: Topographic, morphologic and caprock, viscous flow features, fans, esker-like ridges, stratigraphic evidence in Hellas suggests that the arcuate scarps and prominent linear ridges that may be interior fill was deposited in water [4], and that Hellas indicative of past and present ice flow (Figure 1).
    [Show full text]
  • Appendix I Lunar and Martian Nomenclature
    APPENDIX I LUNAR AND MARTIAN NOMENCLATURE LUNAR AND MARTIAN NOMENCLATURE A large number of names of craters and other features on the Moon and Mars, were accepted by the IAU General Assemblies X (Moscow, 1958), XI (Berkeley, 1961), XII (Hamburg, 1964), XIV (Brighton, 1970), and XV (Sydney, 1973). The names were suggested by the appropriate IAU Commissions (16 and 17). In particular the Lunar names accepted at the XIVth and XVth General Assemblies were recommended by the 'Working Group on Lunar Nomenclature' under the Chairmanship of Dr D. H. Menzel. The Martian names were suggested by the 'Working Group on Martian Nomenclature' under the Chairmanship of Dr G. de Vaucouleurs. At the XVth General Assembly a new 'Working Group on Planetary System Nomenclature' was formed (Chairman: Dr P. M. Millman) comprising various Task Groups, one for each particular subject. For further references see: [AU Trans. X, 259-263, 1960; XIB, 236-238, 1962; Xlffi, 203-204, 1966; xnffi, 99-105, 1968; XIVB, 63, 129, 139, 1971; Space Sci. Rev. 12, 136-186, 1971. Because at the recent General Assemblies some small changes, or corrections, were made, the complete list of Lunar and Martian Topographic Features is published here. Table 1 Lunar Craters Abbe 58S,174E Balboa 19N,83W Abbot 6N,55E Baldet 54S, 151W Abel 34S,85E Balmer 20S,70E Abul Wafa 2N,ll7E Banachiewicz 5N,80E Adams 32S,69E Banting 26N,16E Aitken 17S,173E Barbier 248, 158E AI-Biruni 18N,93E Barnard 30S,86E Alden 24S, lllE Barringer 29S,151W Aldrin I.4N,22.1E Bartels 24N,90W Alekhin 68S,131W Becquerei
    [Show full text]
  • Lick Observatory Records: Photographs UA.036.Ser.07
    http://oac.cdlib.org/findaid/ark:/13030/c81z4932 Online items available Lick Observatory Records: Photographs UA.036.Ser.07 Kate Dundon, Alix Norton, Maureen Carey, Christine Turk, Alex Moore University of California, Santa Cruz 2016 1156 High Street Santa Cruz 95064 [email protected] URL: http://guides.library.ucsc.edu/speccoll Lick Observatory Records: UA.036.Ser.07 1 Photographs UA.036.Ser.07 Contributing Institution: University of California, Santa Cruz Title: Lick Observatory Records: Photographs Creator: Lick Observatory Identifier/Call Number: UA.036.Ser.07 Physical Description: 101.62 Linear Feet127 boxes Date (inclusive): circa 1870-2002 Language of Material: English . https://n2t.net/ark:/38305/f19c6wg4 Conditions Governing Access Collection is open for research. Conditions Governing Use Property rights for this collection reside with the University of California. Literary rights, including copyright, are retained by the creators and their heirs. The publication or use of any work protected by copyright beyond that allowed by fair use for research or educational purposes requires written permission from the copyright owner. Responsibility for obtaining permissions, and for any use rests exclusively with the user. Preferred Citation Lick Observatory Records: Photographs. UA36 Ser.7. Special Collections and Archives, University Library, University of California, Santa Cruz. Alternative Format Available Images from this collection are available through UCSC Library Digital Collections. Historical note These photographs were produced or collected by Lick observatory staff and faculty, as well as UCSC Library personnel. Many of the early photographs of the major instruments and Observatory buildings were taken by Henry E. Matthews, who served as secretary to the Lick Trust during the planning and construction of the Observatory.
    [Show full text]
  • Large Impact Crater Histories of Mars: the Effect of Different Model Crater Age Techniques ⇑ Stuart J
    Icarus 225 (2013) 173–184 Contents lists available at SciVerse ScienceDirect Icarus journal homepage: www.elsevier.com/locate/icarus Large impact crater histories of Mars: The effect of different model crater age techniques ⇑ Stuart J. Robbins a, , Brian M. Hynek a,b, Robert J. Lillis c, William F. Bottke d a Laboratory for Atmospheric and Space Physics, 3665 Discovery Drive, University of Colorado, Boulder, CO 80309, United States b Department of Geological Sciences, 3665 Discovery Drive, University of Colorado, Boulder, CO 80309, United States c UC Berkeley Space Sciences Laboratory, 7 Gauss Way, Berkeley, CA 94720, United States d Southwest Research Institute and NASA Lunar Science Institute, 1050 Walnut Street, Suite 300, Boulder, CO 80302, United States article info abstract Article history: Impact events that produce large craters primarily occurred early in the Solar System’s history because Received 25 June 2012 the largest bolides were remnants from planet ary formation .Determi ning when large impacts occurred Revised 6 February 2013 on a planetary surface such as Mars can yield clues to the flux of material in the early inner Solar System Accepted 25 March 2013 which, in turn, can constrain other planet ary processes such as the timing and magnitude of resur facing Available online 3 April 2013 and the history of the martian core dynamo. We have used a large, global planetary databas ein conjunc- tion with geomorpholog icmapping to identify craters superposed on the rims of 78 larger craters with Keywords: diameters D P 150 km on Mars, 78% of which have not been previously dated in this manner.
    [Show full text]
  • Mineralogy of Layered Deposits in Terby Crater, N
    41st Lunar and Planetary Science Conference (2010) 1866.pdf MINERALOGY OF LAYERED DEPOSITS IN TERBY CRATER, N. HELLAS PLANITIA. J. Carter1, F. Poulet1, J.-P. Bibring1, S. Murchie2, V. Ansan3, N. Mangold3 1IAS, CNRS/Université Paris XI, 91405 Orsay, France. [email protected]. 2APL, Laurel, MD, Brown University, Providence, RI 02912, USA. 3LPGN, CNRS/Université de Nantes, 44322 Nantes, France. Introduction: The recent detection of hydrated minerals on the surface of Mars has bestowed new insights into its aqueous past. Hundreds of hydrous silicates-bearing sites have been identified and ana- lyzed, showing great diversity of geological setting and mineral composition (e.g. [1-7]). A great number of these sites are found over the northern Hellas basin and further north in Terra Tyrrhena [4, 10]. This study focuses on a subset of sites located within the 165 km Terby crater, on the northern edge of the Hel- las impact basin. We report the identification of two distinct hydrous mineral-bearing exposures using OMEGA and CRISM spectral imaging data. These deposits are for the most part found in layered strata within terraced mesas. Overview: Terby is a large, 165 km crater south of Terra Tyrrhena bordering the Hellas basin (Fig. 1). Figure 1. Regional THEMIS/MOLA mosaic centered on Its morphology is most uncommon as it is broadly Terby crater (74°E, 28°N). The red rectangle indicates the flat, to the exception of the northern rim area. Wher- main region of interest. Other minor sites not discussed ever exposed by erosion, the underlying material are herwith the presence Fe/Mg phyllosilicates are indicated by heavily terraced mesas, which are hypothesized to be red stars.
    [Show full text]
  • Stratigraphy, Mineralogy, and Origin of Layered Deposits Inside Terby Crater, Mars
    Icarus 211 (2011) 273–304 Contents lists available at ScienceDirect Icarus journal homepage: www.elsevier.com/locate/icarus Stratigraphy, mineralogy, and origin of layered deposits inside Terby crater, Mars a, b a a b b c a V. Ansan ⇑, D. Loizeau , N. Mangold , S. Le Mouélic , J. Carter , F. Poulet , G. Dromart , A. Lucas , J.-P. Bibring b, A. Gendrin b, B. Gondet b, Y. Langevin b, Ph. Masson d, S. Murchie e, J.F. Mustard f, G. Neukum g a Laboratoire de Planétologie et Géodynamique de Nantes, Université de Nantes/CNRS UMR6112, 2 rue de la Houssinière, BP 92208, 44322 Nantes, France b Institut Astrophysique Spatiale, Université Paris-Sud/CNRS, UMR 8617, 91405 Orsay cedex, France c Laboratoire de Sciences de la Terre, ENS Lyon/CNRS/Université Lyon 1, UMR 5570, 69622 Villeurbanne, France d Lab. IDES, CNRS UMR 8148, Université Paris-Sud/CNRS, 91420 Orsay cedex, France e Johns Hopkins Univ., Appl. Phys. Lab., Johns Hopkins Rd., Laurel, MD 20723, USA f Brown Univ., Dept. Geol. Sci., Providence, RI 02912, USA g Freie Universitaet Berlin, Fachbereich Geowissenschaften, Malteserstr. 74-A, 12249 Berlin, Germany article info abstract Article history: The 174 km diameter Terby impact crater (28.0°S–74.1°E) located on the northern rim of the Hellas basin Received 4 January 2010 displays anomalous inner morphology, including a flat floor and light-toned layered deposits. An analysis Revised 6 September 2010 of these deposits was performed using multiple datasets from Mars Global Surveyor, Mars Odyssey, Mars Accepted 10 September 2010 Express and Mars Reconnaissance Orbiter missions, with visible images for interpretation, near-infrared Available online 19 September 2010 data for mineralogical mapping, and topography for geometry.
    [Show full text]
  • Download Preprint
    This is a non-peer-reviewed preprint submitted to EarthArXiv Global inventories of inverted stream channels on Earth and Mars Abdallah S. Zakia*, Colin F. Painb, Kenneth S. Edgettc, Sébastien Castelltorta a Department of Earth Sciences, University of Geneva, Rue des Maraîchers 13, 1205 Geneva, Switzerland. b MED_Soil, Departamento de Cristlografía, Mineralogía y Quimica Agrícola, Universidad de Sevilla, Calle Profesor García González s/n, 41012 Sevilla, Spain. c Malin Space Science Systems, Inc., P.O. Box 910148, San Diego, CA 92191, USA Corresponding Author: a* Department of Earth Sciences, University of Geneva, Rue des Maraîchers 13, 1205 Geneva, Switzerland. ([email protected]) ABSTRACT Data from orbiting and landed spacecraft have provided vast amounts of information regarding fluvial and fluvial-related landforms and sediments on Mars. One variant of these landforms are sinuous ridges that have been interpreted to be remnant evidence for ancient fluvial activity, observed at hundreds of martian locales. In order to further understanding of these martian landforms, this paper inventories the 107 known and unknown inverted channel sites on Earth; these offer 114 different examples that consist of materials ranging in age from Upper Ordovician to late Holocene. These examples record several climatic events from the Upper Ordovician glaciation to late Quaternary climate oscillation. These Earth examples include inverted channels in deltaic and alluvial fan sediment, providing new analogs to their martian counterparts. This global
    [Show full text]
  • A Sedimentary Origin for Intercrater Plains North of the Hellas Basin
    A sedimentary origin for intercrater plains north of the Hellas basin: Implications for climate conditions and erosion rates on early Mars Francesco Salese, Veronique Ansan, Nicolas Mangold, John Carter, Anouck Ody, François Poulet, Gian Gabriele Ori To cite this version: Francesco Salese, Veronique Ansan, Nicolas Mangold, John Carter, Anouck Ody, et al.. A sedimentary origin for intercrater plains north of the Hellas basin: Implications for climate conditions and erosion rates on early Mars. Journal of Geophysical Research. Planets, Wiley-Blackwell, 2016, 121 (11), pp.2239-2267. 10.1002/2016JE005039. hal-02305998 HAL Id: hal-02305998 https://hal.archives-ouvertes.fr/hal-02305998 Submitted on 4 Oct 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. PUBLICATIONS Journal of Geophysical Research: Planets RESEARCH ARTICLE A sedimentary origin for intercrater plains north of the Hellas 10.1002/2016JE005039 basin: Implications for climate conditions Key Points: and erosion rates on early Mars • Intercrater plains on the northern rim of Hellas basin are
    [Show full text]
  • Ebook < Impact Craters on Mars # Download
    7QJ1F2HIVR # Impact craters on Mars « Doc Impact craters on Mars By - Reference Series Books LLC Mrz 2012, 2012. Taschenbuch. Book Condition: Neu. 254x192x10 mm. This item is printed on demand - Print on Demand Neuware - Source: Wikipedia. Pages: 50. Chapters: List of craters on Mars: A-L, List of craters on Mars: M-Z, Ross Crater, Hellas Planitia, Victoria, Endurance, Eberswalde, Eagle, Endeavour, Gusev, Mariner, Hale, Tooting, Zunil, Yuty, Miyamoto, Holden, Oudemans, Lyot, Becquerel, Aram Chaos, Nicholson, Columbus, Henry, Erebus, Schiaparelli, Jezero, Bonneville, Gale, Rampart crater, Ptolemaeus, Nereus, Zumba, Huygens, Moreux, Galle, Antoniadi, Vostok, Wislicenus, Penticton, Russell, Tikhonravov, Newton, Dinorwic, Airy-0, Mojave, Virrat, Vernal, Koga, Secchi, Pedestal crater, Beagle, List of catenae on Mars, Santa Maria, Denning, Caxias, Sripur, Llanesco, Tugaske, Heimdal, Nhill, Beer, Brashear Crater, Cassini, Mädler, Terby, Vishniac, Asimov, Emma Dean, Iazu, Lomonosov, Fram, Lowell, Ritchey, Dawes, Atlantis basin, Bouguer Crater, Hutton, Reuyl, Porter, Molesworth, Cerulli, Heinlein, Lockyer, Kepler, Kunowsky, Milankovic, Korolev, Canso, Herschel, Escalante, Proctor, Davies, Boeddicker, Flaugergues, Persbo, Crivitz, Saheki, Crommlin, Sibu, Bernard, Gold, Kinkora, Trouvelot, Orson Welles, Dromore, Philips, Tractus Catena, Lod, Bok, Stokes, Pickering, Eddie, Curie, Bonestell, Hartwig, Schaeberle, Bond, Pettit, Fesenkov, Púnsk, Dejnev, Maunder, Mohawk, Green, Tycho Brahe, Arandas, Pangboche, Arago, Semeykin, Pasteur, Rabe, Sagan, Thira, Gilbert, Arkhangelsky, Burroughs, Kaiser, Spallanzani, Galdakao, Baltisk, Bacolor, Timbuktu,... READ ONLINE [ 7.66 MB ] Reviews If you need to adding benefit, a must buy book. Better then never, though i am quite late in start reading this one. I discovered this publication from my i and dad advised this pdf to find out. -- Mrs. Glenda Rodriguez A brand new e-book with a new viewpoint.
    [Show full text]