Geologic Map of the Hellas Region of Mars

Total Page:16

File Type:pdf, Size:1020Kb

Geologic Map of the Hellas Region of Mars U.S. DEPARTMENT OF THE INTERIOR TO ACCOMPANY MAP I–2694 U.S. GEOLOGICAL SURVEY GEOLOGIC MAP OF THE HELLAS REGION OF MARS By Gregory J. Leonard and Kenneth L. Tanaka INTRODUCTION Available Viking images of the Hellas region vary This geologic map of the Hellas region focuses greatly in several aspects, which has complicated the on the stratigraphic, structural, and erosional histories task of producing a consistent photogeologic map. Best associated with the largest well-preserved impact basin available image resolution ranges from about 30 to 300 on Mars. Along with the uplifted rim and huge, partly m/pixel from place to place. Many images contain haze infilled inner basin (Hellas Planitia) of the Hellas basin caused by dust clouds, and contrast and shading vary impact structure, the map region includes areas of ancient among images because of dramatic seasonal changes in highland terrain, broad volcanic edifices and deposits, surface albedo, opposing sun azimuths, and solar incli- and extensive channels. Geologic activity recorded in the nation. Enhancement of selected images on a computer- region spans all major epochs of martian chronology, display system has greatly improved our ability to observe from the early formation of the impact basin to ongoing key geologic relations in several areas. resurfacing caused by eolian activity. Determination of the geologic history of the region The Hellas region, whose name refers to the clas- includes reconstruction of the origin and sequence of for- sical term for Greece, has been known from telescopic mation, deformation, and modification of geologic units observations as a prominent bright feature on the sur- constituting (1) the impact-basin rim and surrounding face of Mars for more than a century (see Blunck, 1982). highlands, (2) volcanic and channel assemblages on the More recently, spacecraft imaging has greatly improved northeast and south sides of the basin, (3) interior basin our visual perception of Mars and made possible its geo- deposits, and (4) slope and surficial materials throughout logic interpretation. Here, our mapping at 1:5,000,000 the map area. Various surface modifications are attrib- scale is based on images obtained by the Viking Orbiters, uted to volcanic, fluvial, eolian, mass-wasting, and pos- which produced higher quality images than their prede- sibly glacial and periglacial processes. Structures include cessor, Mariner 9. Previous geologic maps of the region basin faults (mostly inferred), wrinkle ridges occurring include those of the 1:5,000,000-scale global series based mainly in volcanic terrains and interior plains, volcanic on Mariner 9 images (Potter, 1976; Peterson, 1977; King, collapse craters, and impact craters. Our interpretations 1978); the 1:15,000,000-scale global series based on in some cases rely on previous work, but in many signifi- Viking images (Greeley and Guest, 1987; Tanaka and cant cases we have offered new interpretations that we Scott, 1987); and detailed 1:500,000-scale maps of Tyr- believe are more consistent with the observations docu- rhena Patera (Gregg and others, 1998), Dao, Harmakhis, mented by our mapping. Our primary intent for this map- and Reull Valles (Price, 1998; Mest and Crown, in press), ping has been to elucidate the history of emplacement Hadriaca Patera (D.A. Crown and R. Greeley, map in and modification of Hellas Planitia materials, which form preparation), and western Hellas Planitia (J.M. Moore the basis for analysis of their relevance to the global cli- and D.E. Wilhelms, map in preparation). mate history of Mars (for example, Tanaka and Leonard, We incorporated some of the previous work, but our 1995). map differs markedly in the identification and organiza- tion of map units. For example, we divide the Hellas HISTORICAL OBSERVATIONS assemblage of Greeley and Guest (1987) into the Hellas The immense size of the sharp albedo changes Planitia and Hellas rim assemblages and change the way observed for Hellas have mystified observers for well units within these groupings are identified and mapped over a hundred years (Blunck, 1982). Nineteenth-century (table 1). The new classification scheme includes broad, and earlier observers believed this region (designated geographically related categories and local, geologically on older maps as “Lockyer Land”) to be a raised land- and geomorphically related subgroups. Because of our mass or an island adjacent to the “Hourglass Sea” (Syrtis mapping at larger scale, many of our map units were Major). Giovanni Schiaparelli mapped two large canals, incorporated within larger units of the global-scale map- Peneus and Alpheus, in the form of an “X” pattern ping (see table 1). within Hellas Planitia (Schiaparelli, 1877), yet today we 1 find no features that correlate with this observation. Per- and broadest enclosed depression on the planet (about 9 cival Lowell also mapped numerous canals in the region km of relief; 2,000 km across) in the southern cratered (Lowell, 1895). During some oppositions the region terrain. Heavily cratered terrain ranges from –1 km eleva- appeared brilliantly white when viewed near the edge of tion within the west rim of the basin to as much as 5 the martian disc, fooling some into believing it was some km in highland areas surrounding the basin. Individual kind of polar cap. We now know this effect to be caused massifs of the basin rim stand as high as 5 km above by high albedo CO2 fog that seasonally condenses into surrounding terrain and are more common and extensive lower Hellas Planitia. on the southeast side of the basin (Leonard and Tanaka, Sending spacecraft to the red planet significantly 1993). The west side of Hellas basin is ringed by Helles- increased our understanding of Mars and the Hellas pontus Montes, a system of mountains marked by high region. The Mariner 4, 6, and 7 flybys combined to image scarps circumferential to the basin. about 20 percent of the planetʼs surface, including the The basin floor, Hellas Planitia, can be divided into Hellas region at fairly low resolutions (Moore, 1977; two parts: (1) an annular ring about 1,500 km in diam- Snyder and Moroz, 1992). However, surface features of eter and 200–500 km wide made up of plains marked by the Hellas region were concealed by thick dust and haze. ridges (including Zea Dorsa) at elevations of –5 to –1 Thus, throughout the early years of the spacecraft era, the km, and (2) an inner, rugged zone about 1,000 km across Hellas region continued to be a mystery of the martian consisting of mesas, ridges, scarps, depressions, and hills surface. Researchers speculated about large deserts and (including Coronae Scopulus and Alpheus Colles); ele- vigorous, perhaps ongoing, resurfacing, a view that is not vation of this zone is mostly –5 to –4 km, but parts lie as entirely untrue. In fact, the Hellas region became one of low as –5 km. three type areas (featureless plains) first differentiated by Paterae interpreted to be volcanic shields and circu- the Mariner data (Snyder and Moroz, 1992). The Mariner lar calderas form local topographic highs (having 1 to 2 7 spacecraft encounter in 1969 finally determined Hellas km of relief) on the basin rim. On the northeast rim are to be a large basin and not a raised plateau as previously Hadriaca and Tyrrhena Paterae, and on the south rim are believed. Amphitrites and Peneus Paterae. Narrow and broad chan- The Mariner 9 orbiter in 1971 imaged the region in nels dissect the flanks of these features. In turn, the pat- somewhat greater detail than previous spacecraft. How- erae are surrounded by high plains (Hesperia and Malea ever, dust and haze continued to obscure the basin floor Plana) that also are locally marked by channels oriented several months after the great global dust storm of 1971 downslope. These channels include Axius Valles, which had subsided, and only a few frames from the Mariner 9 dissect the entire south rim of Hellas basin. Extensive extended mission show part of the floor in some detail. wrinkle ridges also cross the paterae and surrounding The two Viking Orbiters, which visited just a few years plains along varying trends. later, showed that Hellas was not a featureless plain as The large Niger and Dao Valles originate as 1- to previously thought; rather it is a broad, deep basin having 2-km-deep broad depressions along the southeast flank a rugged, complex floor—now called Hellas Planitia— of Hadriaca Patera. Apparently related to these valles and large, ancient volcanoes and channels along the rim. are isolated depressions, Ausonia and Peraea Cavi, just The Viking Orbiter images finally allowed detailed geo- northeast of Hadriaca (lat 30° S., long 264.5° W.). The logic studies of the region to come to fruition. large valles appear to head from these depressions. South- One final distinction held by the Hellas region is east of Niger and Dao Valles is another similar channel that it is the site of the first manmade object to reach the system—Reull and Harmakhis Valles. Reull Vallis origi- surface of Mars. In late November 1971, the Soviet space- nates in southern Hesperia Planum (northeast of the map craft Mars 2 jettisoned a small capsule that hit the red area) and traverses rugged Promethei Terra; Harmakhis planet at about lat 44.2° S., long 313.2° W. (Moore, 1977), begins at a 1.5-km-deep depression near the termination which is along the western rim of the basin near Helles- of Reull Vallis amid the peaks of Centauri Montes. Lower pontus Montes. Apparently the capsule was intended to parts of Niger, Dao, and Harmakhis Valles form braided be a hard lander and carried only a pennant depicting the channel systems incised less than 1 km into the Hellas coat of arms of the Soviet Union; no scientific data were basin rim.
Recommended publications
  • Planetary Geologic Mappers Annual Meeting
    Program Lunar and Planetary Institute 3600 Bay Area Boulevard Houston TX 77058-1113 Planetary Geologic Mappers Annual Meeting June 12–14, 2018 • Knoxville, Tennessee Institutional Support Lunar and Planetary Institute Universities Space Research Association Convener Devon Burr Earth and Planetary Sciences Department, University of Tennessee Knoxville Science Organizing Committee David Williams, Chair Arizona State University Devon Burr Earth and Planetary Sciences Department, University of Tennessee Knoxville Robert Jacobsen Earth and Planetary Sciences Department, University of Tennessee Knoxville Bradley Thomson Earth and Planetary Sciences Department, University of Tennessee Knoxville Abstracts for this meeting are available via the meeting website at https://www.hou.usra.edu/meetings/pgm2018/ Abstracts can be cited as Author A. B. and Author C. D. (2018) Title of abstract. In Planetary Geologic Mappers Annual Meeting, Abstract #XXXX. LPI Contribution No. 2066, Lunar and Planetary Institute, Houston. Guide to Sessions Tuesday, June 12, 2018 9:00 a.m. Strong Hall Meeting Room Introduction and Mercury and Venus Maps 1:00 p.m. Strong Hall Meeting Room Mars Maps 5:30 p.m. Strong Hall Poster Area Poster Session: 2018 Planetary Geologic Mappers Meeting Wednesday, June 13, 2018 8:30 a.m. Strong Hall Meeting Room GIS and Planetary Mapping Techniques and Lunar Maps 1:15 p.m. Strong Hall Meeting Room Asteroid, Dwarf Planet, and Outer Planet Satellite Maps Thursday, June 14, 2018 8:30 a.m. Strong Hall Optional Field Trip to Appalachian Mountains Program Tuesday, June 12, 2018 INTRODUCTION AND MERCURY AND VENUS MAPS 9:00 a.m. Strong Hall Meeting Room Chairs: David Williams Devon Burr 9:00 a.m.
    [Show full text]
  • PDF (Chapter5 Doubleside.Pdf)
    202 Chapter 5 FUTURE WORK There is more work is planned for these projects. Some of the proposed future work fell out of the questions and problems that arise while first attempting to solve a problem. Some of it was originally intended to be encompassed in the thesis work, but work at an earlier stage grew to dominate the project as a result of the sheer volume of data available. Many questions were left unanswered in the work described in Chapter 4. It is not clear why the MM5 does not predict the secondary winds that clearly must exist in the current wind regime. These winds do not appear in GFDL GCM model runs, and they may not exist in any current atmospheric model. It is possible that they are produced by rare storms (i.e., storms that occur once a decade or century), and I would like to look into the possibility of observing or predicting these storms. The MM5 also does not predict winds strong enough to lift basaltic grains into saltation. This may simply be a problem of model resolution, and it is not a difficult prospect to run the model at a higher resolution and/or to output the strongest hourly winds at each grid point rather than the winds at the top of each hour. There is also the problem that the MM5 is meant to hold subgrids that are no more than three times smaller than their parent grids – and yet our model runs at a scale of 10 km were more than an order of magnitude higher resolution than the parent grid.
    [Show full text]
  • Imaginative Geographies of Mars: the Science and Significance of the Red Planet, 1877 - 1910
    Copyright by Kristina Maria Doyle Lane 2006 The Dissertation Committee for Kristina Maria Doyle Lane Certifies that this is the approved version of the following dissertation: IMAGINATIVE GEOGRAPHIES OF MARS: THE SCIENCE AND SIGNIFICANCE OF THE RED PLANET, 1877 - 1910 Committee: Ian R. Manners, Supervisor Kelley A. Crews-Meyer Diana K. Davis Roger Hart Steven D. Hoelscher Imaginative Geographies of Mars: The Science and Significance of the Red Planet, 1877 - 1910 by Kristina Maria Doyle Lane, B.A.; M.S.C.R.P. Dissertation Presented to the Faculty of the Graduate School of The University of Texas at Austin in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy The University of Texas at Austin August 2006 Dedication This dissertation is dedicated to Magdalena Maria Kost, who probably never would have understood why it had to be written and certainly would not have wanted to read it, but who would have been very proud nonetheless. Acknowledgments This dissertation would have been impossible without the assistance of many extremely capable and accommodating professionals. For patiently guiding me in the early research phases and then responding to countless followup email messages, I would like to thank Antoinette Beiser and Marty Hecht of the Lowell Observatory Library and Archives at Flagstaff. For introducing me to the many treasures held deep underground in our nation’s capital, I would like to thank Pam VanEe and Ed Redmond of the Geography and Map Division of the Library of Congress in Washington, D.C. For welcoming me during two brief but productive visits to the most beautiful library I have seen, I thank Brenda Corbin and Gregory Shelton of the U.S.
    [Show full text]
  • Watershed Modeling in the Tyrrhena Terra Region of Mars Scott C
    JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 115, E09001, doi:10.1029/2009JE003429, 2010 Watershed modeling in the Tyrrhena Terra region of Mars Scott C. Mest,1,2 David A. Crown,1 and William Harbert3 Received 9 May 2009; revised 13 December 2009; accepted 29 January 2010; published 1 September 2010. [1] Watershed analyses from high‐resolution image (Viking, Mars Orbiter Camera, and Thermal Emission Imaging System) and topographic (Mars Orbiter Laser Altimeter [MOLA]) data are used to qualitatively and quantitatively characterize highland fluvial systems and analyze the role of water in the evolution of Tyrrhena Terra (13°S–30°S, 265°W–280°W), Mars. In this study, Geographical Information System software is used in conjunction with MOLA Digital Elevation Models to delineate drainage basin divides, extract valley networks, and derive basin and network morphometric parameters (e.g., drainage density, stream order, bifurcation ratio, and relief morphometry) useful in characterizing the geologic and climatic conditions of watershed formation, as well as for evaluating basin “maturity” and processes of watershed development. Model‐predicted valley networks and watershed boundaries, which are dependent on the degree to which pixel sinks are filled in the topographic data set and a channelization threshold, are evaluated against image and topographic data, slope maps, and detailed maps of valley segments from photogeologic analyses. Valley morphologies, crater/valley relationships, and impact crater distributions show that valleys in Tyrrhena Terra are ancient. Based on geologic properties of the incised materials, valley and network morphologies, morphometric parameters, and the presence of many gullies heading at or near‐crater rim crests, surface runoff, derived from rainfall or snowmelt, was the dominant erosional process; sapping may have only played a secondary role in valley formation in Tyrrhena Terra.
    [Show full text]
  • Autobiography of Sir George Biddell Airy by George Biddell Airy 1
    Autobiography of Sir George Biddell Airy by George Biddell Airy 1 CHAPTER I. CHAPTER II. CHAPTER III. CHAPTER IV. CHAPTER V. CHAPTER VI. CHAPTER VII. CHAPTER VIII. CHAPTER IX. CHAPTER X. CHAPTER I. CHAPTER II. CHAPTER III. CHAPTER IV. CHAPTER V. CHAPTER VI. CHAPTER VII. CHAPTER VIII. CHAPTER IX. CHAPTER X. Autobiography of Sir George Biddell Airy by George Biddell Airy The Project Gutenberg EBook of Autobiography of Sir George Biddell Airy by George Biddell Airy This eBook is for the use of anyone anywhere at no cost and with almost no restrictions whatsoever. You may copy it, give it away or re-use it under the terms of the Project Gutenberg Autobiography of Sir George Biddell Airy by George Biddell Airy 2 License included with this eBook or online at www.gutenberg.net Title: Autobiography of Sir George Biddell Airy Author: George Biddell Airy Release Date: January 9, 2004 [EBook #10655] Language: English Character set encoding: ISO-8859-1 *** START OF THIS PROJECT GUTENBERG EBOOK SIR GEORGE AIRY *** Produced by Joseph Myers and PG Distributed Proofreaders AUTOBIOGRAPHY OF SIR GEORGE BIDDELL AIRY, K.C.B., M.A., LL.D., D.C.L., F.R.S., F.R.A.S., HONORARY FELLOW OF TRINITY COLLEGE, CAMBRIDGE, ASTRONOMER ROYAL FROM 1836 TO 1881. EDITED BY WILFRID AIRY, B.A., M.Inst.C.E. 1896 PREFACE. The life of Airy was essentially that of a hard-working, business man, and differed from that of other hard-working people only in the quality and variety of his work. It was not an exciting life, but it was full of interest, and his work brought him into close relations with many scientific men, and with many men high in the State.
    [Show full text]
  • Martian Crater Morphology
    ANALYSIS OF THE DEPTH-DIAMETER RELATIONSHIP OF MARTIAN CRATERS A Capstone Experience Thesis Presented by Jared Howenstine Completion Date: May 2006 Approved By: Professor M. Darby Dyar, Astronomy Professor Christopher Condit, Geology Professor Judith Young, Astronomy Abstract Title: Analysis of the Depth-Diameter Relationship of Martian Craters Author: Jared Howenstine, Astronomy Approved By: Judith Young, Astronomy Approved By: M. Darby Dyar, Astronomy Approved By: Christopher Condit, Geology CE Type: Departmental Honors Project Using a gridded version of maritan topography with the computer program Gridview, this project studied the depth-diameter relationship of martian impact craters. The work encompasses 361 profiles of impacts with diameters larger than 15 kilometers and is a continuation of work that was started at the Lunar and Planetary Institute in Houston, Texas under the guidance of Dr. Walter S. Keifer. Using the most ‘pristine,’ or deepest craters in the data a depth-diameter relationship was determined: d = 0.610D 0.327 , where d is the depth of the crater and D is the diameter of the crater, both in kilometers. This relationship can then be used to estimate the theoretical depth of any impact radius, and therefore can be used to estimate the pristine shape of the crater. With a depth-diameter ratio for a particular crater, the measured depth can then be compared to this theoretical value and an estimate of the amount of material within the crater, or fill, can then be calculated. The data includes 140 named impact craters, 3 basins, and 218 other impacts. The named data encompasses all named impact structures of greater than 100 kilometers in diameter.
    [Show full text]
  • The Solar Wind Prevents Re-Accretion of Debris After Mercury's Giant Impact
    Draft version February 21, 2020 Preprint typeset using LATEX style emulateapj v. 12/16/11 THE SOLAR WIND PREVENTS RE-ACCRETION OF DEBRIS AFTER MERCURY'S GIANT IMPACT Christopher Spalding1 & Fred C. Adams2;3 1Department of Astronomy, Yale University, New Haven, CT 06511 2Department of Physics, University of Michigan, Ann Arbor, MI 48109 and 3Department of Astronomy, University of Michigan, Ann Arbor, MI 48109 Draft version February 21, 2020 ABSTRACT The planet Mercury possesses an anomalously large iron core, and a correspondingly high bulk density. Numerous hypotheses have been proposed in order to explain such a large iron content. A long-standing idea holds that Mercury once possessed a larger silicate mantle which was removed by a giant impact early in the the Solar system's history. A central problem with this idea has been that material ejected from Mercury is typically re-accreted onto the planet after a short ( Myr) timescale. Here, we show that the primordial Solar wind would have provided sufficient drag∼ upon ejected debris to remove them from Mercury-crossing trajectories before re-impacting the planet's surface. Specifically, the young Sun likely possessed a stronger wind, fast rotation and strong magnetic field. Depending upon the time of the giant impact, the ram pressure associated with this wind would push particles outward into the Solar system, or inward toward the Sun, on sub-Myr timescales, depending upon the size of ejected debris. Accordingly, the giant impact hypothesis remains a viable pathway toward the removal of planetary mantles, both on Mercury and extrasolar planets, particularly those close to young stars with strong winds.
    [Show full text]
  • Observations of the Marker Bed at Gale Crater with Recommendations for Future Exploration by the Curiosity Rover
    52nd Lunar and Planetary Science Conference 2021 (LPI Contrib. No. 2548) 1484.pdf OBSERVATIONS OF THE MARKER BED AT GALE CRATER WITH RECOMMENDATIONS FOR FUTURE EXPLORATION BY THE CURIOSITY ROVER. C. M. Weitz1, J. L. Bishop2, B. J. Thomson3, K. D. Seelos4, K. Lewis5, I. Ettenborough3, and R. E. Arvidson6. 1Planetary Science Institute, 1700 East Fort Lowell, Tuc- son, AZ ([email protected]); 2SETI Institute, Carl Sagan Center, Mountain View, CA; 3Dept. of Earth and Planetary Sciences, Univ. Tennessee, Knoxville, TN; 4Planetary Exploration Group, JHU Applied Physics Laboratory, Laurel, MD; 5Dept Earth and Planetary Sciences, John Hopkins University, Baltimore, MD; 6Dept Earth and Planetary Sci- ences, Washington University, St. Louis, Missouri. Introduction: A dark-toned marker bed is ob- pearance across the mound. Most of the sulfates served within the sulfates at Gale crater [1,2]. This above/below the marker bed are stratified, heavily marker bed is characterized by a dark-toned, smooth fractured, and erode into boulder-size blocks, but there surface that appears more indurated and retains more are examples where the sulfates appear massive with craters relative to the sulfate-bearing layers above and limited fracturing and no boulders eroding from the below it. The bed has a distinct physical appearance unit (Fig. 3a). from the sulfates in which it occurs, suggesting a change in the environment or geochemistry for a brief period of time within the depositional sequence that formed the sulfates or post-deposition alteration. In this study, we utilized HiRISE and CTX images to identify and map the occurrence of the marker bed throughout Aeolis Mons.
    [Show full text]
  • Geology of Crater Millochau, Terra Tyrrhena Region of Mars
    Lunar and Planetary Science XXXIV (2003) 1942.pdf GEOLOGY OF CRATER MILLOCHAU, TERRA TYRRHENA REGION OF MARS. S.C. Mest1 and D.A. Crown1,2, 1Department of Geology and Planetary Science, University of Pittsburgh, Pittsburgh, PA 15260, [email protected]; 2Planetary Science Institute, 620 N. 6th Ave, Tucson, AZ 85705. Introduction: The martian highlands preserve a long and Millochau has no ejecta blanket, which has either been complex history of degradation by fluvial, eolian, and mass eroded and (or) mantled by the local plains unit and eolian wasting processes [1-8]. The effects of these processes are sediments that cover this part of the highlands. The rim of best observed on impact craters that characterize the ancient Millochau is quite discernible, however portions of it are highlands. Previous studies of highland terrains - Margari- more degraded than others. The northeastern and southwest- tifer Sinus [9,10], Ismenius Lacus [11,12], Arabia Terra [13], ern parts of the rim appear the most rugged, standing ~400- and Promethei Terra [14,15] - have shown that craters dis- 800 m above the surrounding terrain (~1500-2200 m above play pristine to highly degraded morphologies. Some craters the crater floor). The remainder of the rim appears degraded exhibit distinctive interior deposits, suggesting infilling by by impact cratering and other processes. The eastern rim of sedimentary and (or) volcanic deposits. Several studies [e.g., Millochau is shared with another large (~50 km diam.) crater 16-20] have suggested that large impact craters on Mars may and forms a gap ~600 m above Millochau's floor. A second have contained standing bodies of water that could have been gap occurs along the southern rim of Millochau and is less ideal environments for life to persist.
    [Show full text]
  • Seasonal Melting and the Formation of Sedimentary Rocks on Mars, with Predictions for the Gale Crater Mound
    Seasonal melting and the formation of sedimentary rocks on Mars, with predictions for the Gale Crater mound Edwin S. Kite a, Itay Halevy b, Melinda A. Kahre c, Michael J. Wolff d, and Michael Manga e;f aDivision of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California 91125, USA bCenter for Planetary Sciences, Weizmann Institute of Science, P.O. Box 26, Rehovot 76100, Israel cNASA Ames Research Center, Mountain View, California 94035, USA dSpace Science Institute, 4750 Walnut Street, Suite 205, Boulder, Colorado, USA eDepartment of Earth and Planetary Science, University of California Berkeley, Berkeley, California 94720, USA f Center for Integrative Planetary Science, University of California Berkeley, Berkeley, California 94720, USA arXiv:1205.6226v1 [astro-ph.EP] 28 May 2012 1 Number of pages: 60 2 Number of tables: 1 3 Number of figures: 19 Preprint submitted to Icarus 20 September 2018 4 Proposed Running Head: 5 Seasonal melting and sedimentary rocks on Mars 6 Please send Editorial Correspondence to: 7 8 Edwin S. Kite 9 Caltech, MC 150-21 10 Geological and Planetary Sciences 11 1200 E California Boulevard 12 Pasadena, CA 91125, USA. 13 14 Email: [email protected] 15 Phone: (510) 717-5205 16 2 17 ABSTRACT 18 A model for the formation and distribution of sedimentary rocks on Mars 19 is proposed. The rate{limiting step is supply of liquid water from seasonal 2 20 melting of snow or ice. The model is run for a O(10 ) mbar pure CO2 atmo- 21 sphere, dusty snow, and solar luminosity reduced by 23%.
    [Show full text]
  • Distribution and Evolution of Lacustrine and Fluvial Features in Hellas Planitia, Mars, Based on Preliminary Results of Grid-Mapping
    DISTRIBUTION AND EVOLUTION OF LACUSTRINE AND FLUVIAL FEATURES IN HELLAS PLANITIA, MARS, BASED ON PRELIMINARY RESULTS OF GRID-MAPPING. M. Voelker, E. Hauber, R. Jaumann, German Aerospace Center, Institute of Planetary Research, Rutherfordstr. 2, 12489 Berlin, Germany ([email protected]). Introduction: Hellas Planitia, the second-largest almost 1,000 km in length. CRISM analyses have impact basin on Mars (2.300 km), is located in the shown that these deposits mainly consist of Mg/Fe Martian mid-latitudes at the ultra-low elevation points phyllosilicates, fitting to the results of Terby [1, 2]. of the planet. Several authors have proclaimed that the Shorelines are hard to distinguish. By now, we could basin was once filled by an extended body of water [e. not identify any extensive and long shorelines. They g. 1, 2, 3]. This work will support this hypothesis by are either located in small depressions on the basins creating a geospatial inventory of both large and small- floor or at very scattered places along the rim where scale landforms of fluvial and lacustrine origin, based also LTD’s occur. on high-resolution observation. Moreover, the results Discussion: Our analyses determined that LTD’s, will implicate further information about the history of as described by [1, 2] in Terby crater, extend far more water and climate in Hellas Planitia, and hence, about than expected along an arcuate bank at the NE Hellas possible habitable environments. rim. We cannot exclude an even wider extent as we Methods: We have applied the newly developed just can observe open outcrops of these layers.
    [Show full text]
  • Water on the Moon, III. Volatiles & Activity
    Water on The Moon, III. Volatiles & Activity Arlin Crotts (Columbia University) For centuries some scientists have argued that there is activity on the Moon (or water, as recounted in Parts I & II), while others have thought the Moon is simply a dead, inactive world. [1] The question comes in several forms: is there a detectable atmosphere? Does the surface of the Moon change? What causes interior seismic activity? From a more modern viewpoint, we now know that as much carbon monoxide as water was excavated during the LCROSS impact, as detailed in Part I, and a comparable amount of other volatiles were found. At one time the Moon outgassed prodigious amounts of water and hydrogen in volcanic fire fountains, but released similar amounts of volatile sulfur (or SO2), and presumably large amounts of carbon dioxide or monoxide, if theory is to be believed. So water on the Moon is associated with other gases. Astronomers have agreed for centuries that there is no firm evidence for “weather” on the Moon visible from Earth, and little evidence of thick atmosphere. [2] How would one detect the Moon’s atmosphere from Earth? An obvious means is atmospheric refraction. As you watch the Sun set, its image is displaced by Earth’s atmospheric refraction at the horizon from the position it would have if there were no atmosphere, by roughly 0.6 degree (a bit more than the Sun’s angular diameter). On the Moon, any atmosphere would cause an analogous effect for a star passing behind the Moon during an occultation (multiplied by two since the light travels both into and out of the lunar atmosphere).
    [Show full text]