Utah Oil Shale Database

Total Page:16

File Type:pdf, Size:1020Kb

Utah Oil Shale Database UTAH OIL SHALE DATABASE by Michael D. Vanden Berg1, John R. Dyni2, and David E. Tabet1 1Utah Geological Survey, Salt Lake City, Utah 2U.S. Geological Survey, Denver, Colorado OPEN-FILE REPORT 469 UTAH GEOLOGICAL SURVEY a division of Utah Department of Natural Resources 2006 STATE OF UTAH Jon Huntsman, Jr., Governor DEPARTMENT OF NATURAL RESOURCES Michael Styler, Executive Director UTAH GEOLOGICAL SURVEY Richard G. Allis, Director PUBLICATIONS contact Natural Resources Map/Bookstore 1594 W. North Temple telephone: 801-537-3320 toll-free: 1-888-UTAH MAP website: http://mapstore.utah.gov email: [email protected] THE UTAH GEOLOGICAL SURVEY contact 1594 W. North Temple, Suite 3110 Salt Lake City, UT 84116 telephone: 801-537-3300 fax: 801-537-3400 web: http://geology.utah.gov Federal Disclaimer This report was prepared as an account of work in cooperation with an agency of the United States Government. Neither the United States Gov- ernment nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibil- ity for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. This open-file report makes information available to the public that may not conform to UGS technical, editorial, or policy standards. Therefore it may be premature for an individual or group to take actions based on its contents. Although this product represents the work of professional scientists, the Utah Department of Natural Resources, Utah Geological Survey, makes no warranty, expressed or implied, regarding its suitability for any particular use. The Utah Department of Natural Resources, Utah Geological Sur- vey, shall not be liable under any circumstances for any direct, indirect, special, incidental, or consequential damages with respect to claims by users of this product. The Utah Department of Natural Resources receives federal aid and prohibits discrimination on the basis of race, color, sex, age, national origin, or disability. For information or complaints regarding discrimination, contact Executive Director, Utah Department of Natural Resources, 1594 West North Temple #3710, Box 145610, Salt Lake City, UT 84116-5610 or Equal Employment Opportunity Commission, 1801 L. Street, NW, Wash- ington DC 20507. Table of Contents Abstract . .1 Introduction . .1 Geologic Setting and Resource Overview . .1 Folders and Files Included with Report . .3 Utah Oil Shale Well Information . .3 Oil Shale Map of Utah . .4 Fischer Assays . .4 Geophysical Logs . .5 Lithologic Logs . .5 Miscellaneous PDF Files . .5 Tops Picked by USGS . .5 Quintana - Tops and Shale Oil Yields . .5 Depths Picked by Johnson and Roberts (2003) . .6 Utah Oil Shale Bibliography . .6 References . .7 UTAH OIL SHALE DATABASE by Michael D. Vanden Berg1, John R. Dyni2, and David E. Tabet1 Abstract which should be an invaluable and useful resource as new oil shale research projects are developed. The Utah oil shale database contains a large assortment of information on boreholes that were drilled in the Eocene Geologic Setting and Resource Overview Green River Formation oil shale deposits in the Uinta Basin of eastern Utah. Available files include: Fischer assays made The largest known oil shale deposits in the world are in from drill cores and cuttings, scanned geophysical logs, the Eocene Green River Formation, which covers portions of detailed location information, lithologic descriptions, forma- Utah, Colorado, and Wyoming (figure 1). Lacustrine sedi- tion top information, and overview resource map. This data- ments of the Green River Formation were deposited in two base was constructed to preserve historical oil shale data and large lakes that occupied 25,000 square miles in several sed- present it in a useable electronic fashion for the business and imentary basins including the Piceance, Uinta, Green River, scientific communities. Fischer assay data for 581 unique and Washakie. Fluctuations in the amount of stream inflow boreholes are available in separate and combined MS caused large expansions and contractions of the lakes, as evi- Excel™ and Text file spreadsheets for easy reference and denced by widespread intertonguing of marly lacustrine stra- data manipulation. Scanned geophysical logs are included ta with beds of land-derived sandstone and siltstone. During for 173 different boreholes, along with an inventory of paper arid times, the lakes contracted in size and the lake waters logs for an additional 290 wells available in the Utah Geo- became increasingly saline and alkaline (Dyni, 2003). The logical Survey's library. Spotty to complete formation top warm alkaline waters provided excellent conditions for the information for key beds in the Green River Formation is abundant growth of cyanobacteria (blue-green algae), which included for over 1000 different wells, while detailed litho- is thought to be the major precursor of the organic matter in logic descriptions are available for 168 wells. Also included the oil shale (Dyni, 2003). The organic matter preserved in with this database is an extensive oil shale bibliography for the shale is called kerogen, which when heated can produce resources in the state of Utah, as well as information on who crude oil and natural gas. Figure 2 shows a generalized retains oil shale core and cutting samples. stratigraphic section of the Parachute Creek Member of the Upper Green River Formation in the Uinta Basin, Utah. The section with the richest oil shale is the Mahogany Zone, Introduction which can exceed 40 gallons of oil per ton of shale and is often over 100 feet thick. Other oil shale rich zones include In 1967, the U.S. Department of Interior started an the Big Three, the Stillwater, the Four Senators, the R-6, R- aggressive program to investigate the commercialization of 5, R-4, R-3, and the R-2. Green River Formation oil shale deposits. The dramatic Estimates of the in-ground oil resource within the Green increase in petroleum prices resulting from the Organization River Formation range from 1.5 trillion (Smith, 1980; Dyni, of the Petroleum Exporting Countries (OPEC) oil embargo 2003) to 1.8 trillion barrels (Culburtson and Pitman, 1973; of 1973 triggered a second resurgence of oil shale research Federal Energy Administration, 1974). The Utah portion of during the 1970s and early 1980s. When oil prices plummet- this resource varies from 165 billion (Smith, 1980) to 321 ed in the mid-1980s, so did research associated with oil billion barrels (Cashion, 1964). Colorado and Wyoming are shale. With crude oil prices again rising to new heights, and thought to contain 1.0 trillion and 300 billion barrels, respec- as conventional crude oil supplies continue to diminish, there tively (Smith, 1980; Pitman and others, 1989; Culbertson and has once again been renewed interest in unconventional fuel others, 1980; Trudell and others, 1973). These in-place sources such as oil shale. resource estimates are based on oil shale present at a grade of This information database was put together to archive greater than 15 gallons per ton. As a comparison, the total and preserve data from exploration and research conducted U.S. conventional crude oil proved reserves are estimated at within the state of Utah. Since personal computers were not 21.4 billion barrels, Saudi Arabia's reserves at 266.8 billion widely available until the mid-1980s, older data was mainly barrels, and the world's proved reserves at 1.3 trillion barrels archived on paper or mainframe computer tapes. With the (Energy Information Administration, 2006). Estimated cooperation of the U.S. Geological Survey (USGS) and the recoverable reserves of crude oil from oil shale deposits in U.S. Bureau of Land Management (BLM), the Utah Geolog- Utah are presumably much less, but specific numbers are un- ical Survey (UGS) has gathered and organized hundreds of known as proven commercial shale oil recovery technology important oil shale-related documents, reports, and logs, is currently not available. 1 Utah Geological Survey, Salt Lake City, Utah 2 U.S. Geological Survey, Denver, Colorado Figure 1. Oil shale resource areas of Utah, Colorado, and Wyoming. Adapted from Bartis and others, 2005 and Bunger and others, 2004. Folders and Files Included with Report • Utah Oil Shale Well Information This file lists 691 different boreholes that are associated with oil shale deposits in Utah. Each UINTA borehole is designated with a 3-digit number preced- FORMATION ed by “U” for Utah; this numbering scheme was developed by the USGS in earlier work on oil shale and is carried forward in this database. This file contains detailed well location information, year well was drilled, total depth of well, surface eleva- tion, interval and location of available cores and cut- Porcupine Tuff tings, available Fischer assays, interval of available lithologic logs, and interval and type of available geophysical logs. Text in red indicates unverified data. R-8 Big Three This file is organized as follows: Stillwater Four Senators Column A
Recommended publications
  • Threatened, Endangered, Candidate & Proposed Plant Species of Utah
    TECHNICAL NOTE USDA - Natural Resources Conservation Service Boise, Idaho and Salt Lake City, Utah TN PLANT MATERIALS NO. 52 MARCH 2011 THREATENED, ENDANGERED, CANDIDATE & PROPOSED PLANT SPECIES OF UTAH Derek Tilley, Agronomist, NRCS, Aberdeen, Idaho Loren St. John, PMC Team Leader, NRCS, Aberdeen, Idaho Dan Ogle, Plant Materials Specialist, NRCS, Boise, Idaho Casey Burns, State Biologist, NRCS, Salt Lake City, Utah Last Chance Townsendia (Townsendia aprica). Photo by Megan Robinson. This technical note identifies the current threatened, endangered, candidate and proposed plant species listed by the U.S.D.I. Fish and Wildlife Service (USDI FWS) in Utah. Review your county list of threatened and endangered species and the Utah Division of Wildlife Resources Conservation Data Center (CDC) GIS T&E database to see if any of these species have been identified in your area of work. Additional information on these listed species can be found on the USDI FWS web site under “endangered species”. Consideration of these species during the planning process and determination of potential impacts related to scheduled work will help in the conservation of these rare plants. Contact your Plant Material Specialist, Plant Materials Center, State Biologist and Area Biologist for additional guidance on identification of these plants and NRCS responsibilities related to the Endangered Species Act. 2 Table of Contents Map of Utah Threatened, Endangered and Candidate Plant Species 4 Threatened & Endangered Species Profiles Arctomecon humilis Dwarf Bear-poppy ARHU3 6 Asclepias welshii Welsh’s Milkweed ASWE3 8 Astragalus ampullarioides Shivwits Milkvetch ASAM14 10 Astragalus desereticus Deseret Milkvetch ASDE2 12 Astragalus holmgreniorum Holmgren Milkvetch ASHO5 14 Astragalus limnocharis var.
    [Show full text]
  • Newell C. Remington
    A HISTORY OF THE GILSONITE INDUSTRY by NEWELL C. REMINGTON m A HISTORY OF THE GILSONITE INDUSTRY by Newell C. Remington This paper was submitted by the author in unpublished form in April, 1959, to the Department of History, University of Utah, in partial fulfillment of the re­ quirements for a Master of Science Degree. Typed by Pauline Love and Lithographed by Robert L. Jensen Salt Lake City, Utah Digital Im age©2006, Newell C. Remington. All rights reserved. Copyright Newell C. Remington 1959 Manufactured in the United States of America Digital Im age©2006, Newell C. Remington. All rights reserved. DEDICATION --To the Indomitable miners who, with crude imple­ ments and disregard for hazards and physical discomfort, helped to develop a prosperous, modern gilsonite industry. Digital Im age©2006, Newell C. Remington. All rights reserved. PREFACE In 1957 the American Gilsonite Company opened a revolu­ tionary refinery near Grand Junction, Colorado, which had cost them $16,000,000 to build, and began reducing the gilsonite--a solid hydrocarbon--to high-grade gasoline and pure carbon-coke at the rate of about 700 tons per day. Just as incredible is the fact that gilsonite was and is conveyed from Bonanza, Utah, across the precipitous Book Cliffs to the refinery through a pipeline. The opening of this magnificent plant was eighty-eight years removed from the year 1869 when the blacksmith of the Whiterocks Indian Agency attempted to b u m gilsonite as coal in his forge with rather dreadful results. During the interval so many human events occurred in relation to gilsonite--a rare bitumen closely related to grahamite and glance pitch--that it was felt to be an adequate and deserving topic for thorough historical treatment.
    [Show full text]
  • Petroleum Exploration Plays and Resource Estimates, 1989, Onshore United States-­ Region 3, Colorado Plateau and Basin and Range
    U.S. DEPARTMENT OF THE INTERIOR U.S. GEOLOGICAL SURVEY Petroleum Exploration Plays and Resource Estimates, 1989, Onshore United States-­ Region 3, Colorado Plateau and Basin and Range By Richard B. Powers, Editor1 Open-File Report 93-248 This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards or with the North American Stratigraphic Code. Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Denver, Colorado 1993 CONTENTS Introduction Richard B. Powers................................................................................................ 1 Commodities assessed.................................................................................................. 2 Areas of study.............................................................................................................. 2 Play discussion format................................................................................................. 5 Assessment procedures and methods........................................................................... 5 References cited........................................................................................................... 7 Glossary....................................................................................................................... 8 Region 3, Colorado Plateau and Basin and Range................................................................... 9 Geologic Framework
    [Show full text]
  • Non-Proprietary Resume -- 1993
    PROFESSIONAL VITAE REX D. COLE, Ph.D., P.G. Professor of Geology Colorado Mesa University February, 2014 EDUCATION Ph.D. in Geology (1975) University of Utah, Salt Lake City, UT Advisors: Dr. M.D. Picard and Dr. M.L. Jensen B.S. in Geology (1970) Colorado State University, Fort Collins, CO A.S. in Geology (1968) Mesa College, Grand Junction, CO High School Diploma (1966) Delta High School, Delta, CO PROFESSIONAL REGISTRATION Registered Professional Geologist (Wyoming) since 1992; Number PG-463 PROFESSIONAL EXPERIENCE 2011- Professor of Geology; Department of Physical and Environmental Sciences, Colorado Mesa University, Grand Junction, CO; also Geology Program Coordinator from 2009-2013. 1999-11 Professor of Geology; Department of Physical and Environmental Sciences, Mesa State College, Grand Junction, CO; also Geology Program Coordinator. 1995-99 Associate Professor of Geology; Department of Physical and Environmental Sciences, Mesa State College, Grand Junction, CO. 1983-95 Sr. Advising Geologist; Unocal Corp., Production and Development Technology Group, Brea, CA. 1982- Consulting Geologist; R.D. Cole and Associates, Grand Junction, CO. 1980-82 Manager of Geotechnical Operations; Multi Mineral Corp., Grand Junction, CO. 1978-80 Staff Geoscientist IV; Bendix Field Engineering Corporation, Grand Junction, CO. 1975-77 Assistant Professor of Geology; Department of Geology, Southern Illinois University, Carbondale, IL. 1973-75 Exploration Geologist; American Smelting and Refining Company, Salt Lake City, UT (part time). 1970-73 Teaching Fellow and Research Assistant; Department of Geology and Geophysics, University of Utah, Salt Lake City, UT (academic months). 1971 Exploration Geologist; Inspiration Development Company, Spokane, WA (summer). 1970 Exploration Geologist; Duval Corporation, Salt Lake City, UT (summer).
    [Show full text]
  • UINTA-PICEANCE BASIN PROVINCE (020) by Charles W
    UINTA-PICEANCE BASIN PROVINCE (020) By Charles W. Spencer INTRODUCTION This province trends west-east, extending from the thrust belt in north-central Utah, on the west, to the southern Park Range and Sawatch Uplift in northwestern Colorado on the east. The northern boundary is defined roughly by the Uinta Mountain Uplift, and the southern boundary is located along a line north of the axis of the Uncompahgre Uplift. The province covers an area of about 40,000 sq mi and encompasses the Uinta, Piceance, and Eagle Basins. Sedimentary rocks in the basin range in age from Cambrian to Tertiary. Spencer and Wilson (1988) provided a summary of the stratigraphy and petroleum geology of the province. The Uinta and Piceance Basins were formed mainly in Tertiary time. The Eagle Basin is a structural feature east of the Piceance Basin and coincides in part with the Pennsylvanian-age Eagle Evaporite Basin, although the present-day Eagle Basin is much smaller than the paleodepositional basin. Numerous oil and gas fields have been discovered in the Uinta and Piceance basins; however, there have been no fields discovered in the Eagle structural basin. The lack of exploration success in the Eagle Basin is attributed to very thermal maturity levels in source rocks (Johnson and Nuccio, 1993) and the generally poor quality of reservoirs, and although gas might be present, the expected volume is small. The Uinta Basin of Utah is about 120 mi long and is bounded on the west by the thrust belt and on the east by the Douglas Creek Arch. It is nearly 100 mi wide and bounded on the north side by the Uinta Mountains Uplift.
    [Show full text]
  • Tectonic Evolution of Western Colorado and Eastern Utah D
    New Mexico Geological Society Downloaded from: http://nmgs.nmt.edu/publications/guidebooks/32 Tectonic evolution of western Colorado and eastern Utah D. L. Baars and G. M. Stevenson, 1981, pp. 105-112 in: Western Slope (Western Colorado), Epis, R. C.; Callender, J. F.; [eds.], New Mexico Geological Society 32nd Annual Fall Field Conference Guidebook, 337 p. This is one of many related papers that were included in the 1981 NMGS Fall Field Conference Guidebook. Annual NMGS Fall Field Conference Guidebooks Every fall since 1950, the New Mexico Geological Society (NMGS) has held an annual Fall Field Conference that explores some region of New Mexico (or surrounding states). Always well attended, these conferences provide a guidebook to participants. Besides detailed road logs, the guidebooks contain many well written, edited, and peer-reviewed geoscience papers. These books have set the national standard for geologic guidebooks and are an essential geologic reference for anyone working in or around New Mexico. Free Downloads NMGS has decided to make peer-reviewed papers from our Fall Field Conference guidebooks available for free download. Non-members will have access to guidebook papers two years after publication. Members have access to all papers. This is in keeping with our mission of promoting interest, research, and cooperation regarding geology in New Mexico. However, guidebook sales represent a significant proportion of our operating budget. Therefore, only research papers are available for download. Road logs, mini-papers, maps, stratigraphic charts, and other selected content are available only in the printed guidebooks. Copyright Information Publications of the New Mexico Geological Society, printed and electronic, are protected by the copyright laws of the United States.
    [Show full text]
  • Birds of the Upper Colorado River Basin
    Brigham Young University Science Bulletin, Biological Series Volume 9 Number 2 Article 1 12-1967 Birds of the Upper Colorado River Basin C. Lynn Hayward Department of Zoology and Entomology, Brigham Young University, Provo, Utah Follow this and additional works at: https://scholarsarchive.byu.edu/byuscib Part of the Anatomy Commons, Botany Commons, Physiology Commons, and the Zoology Commons Recommended Citation Hayward, C. Lynn (1967) "Birds of the Upper Colorado River Basin," Brigham Young University Science Bulletin, Biological Series: Vol. 9 : No. 2 , Article 1. Available at: https://scholarsarchive.byu.edu/byuscib/vol9/iss2/1 This Article is brought to you for free and open access by the Western North American Naturalist Publications at BYU ScholarsArchive. It has been accepted for inclusion in Brigham Young University Science Bulletin, Biological Series by an authorized editor of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. $ NA-<p£< °1 Brigham Young University Science Bulletin BIRDS OF THE UPPER COLORADO RIVER BASIN US. COM P. ZOGL. LIBRARY MAR2 2«J*8 "Y HARV£ UNIVEh C. LYNN HAYWARD BIOLOGICAL SERIES — VOLUME IX, NUMBER 2 DECEMBER, 1967 BRSGHAM YOUNG UNIVERSITY SCIENCE BULLETIN BIOLOGICAL SERIES Editor: Dohald M. Allred, Department of Zoology and Entomology, Brigham Young University, Provo, Utah Si Associate Editor: Earl M. Chbistensen, Department of Botany, Brigham Young University, Provo, Utah Members of the Editorial Board: David L. Hanks, Botany J. V. Beck, Bacteriology Wilmer W. Tanner, Zoology, Chairman of the Board Stanley Welsh, Botany W. Derby Laws, Agronomy C. Lynn Hayward, Zoology Ex officio Members: Rudger H. Walker,1 Dean, College of Biological and Agricultural ScienceSciences Ernest L.
    [Show full text]
  • Data Recovery at Six Prehistoric Sites, Uinta Basin Replacement
    DATA RECOVERY AT SIX PREHISTORIC SITES, UINTA BASIN REPLACEMENT PROJECT BONNEVILLE UNIT, CENTRAL UTAH PROJECT, DUCHESNE COUNTY, UTAH By: Monique M. Pomerleau and Heather M. Weymouth Prepared for: TEC, Inc. 2496 Old Ivy Road, Suite 300 Charlottesville, Virginia 22903 On behalf of: Utah Reclamation Mitigation and Conservation Commission 102 West 500 South, #315 Salt Lake City, Utah 84101 Prepared by: Sagebrush Consultants, L.L.C. 3670 Quincy Avenue, Suite 203 Ogden, Utah 84403 SFS Special Use Permit DCN993904 Cultural Resource Report No. 1588 March 02, 2009 Freedom of Information Act Exception Notice This document has been modified from its original form. Information concerning the location of archaeological resources has been concealed or removed to satisfy requirements of the Archaeological Resources Protection Act of 1979 as amended (16 U.S.C 470hh(a); 43 CFR 7.18). Such information may not be made available to the public and is excepted under the Freedom of Information Act. This document, in its current form is available for release to the public without further restrictions. ABSTRACT In Fall 2006, the Utah Reclamation Mitigation and Conservation Commission (URMCC) requested that Sagebrush Consultants, L.L.C. (Sagebrush), as a partner company with TEC, Inc., of Charlottesville, Virginia, conduct data recovery at six prehistoric sites. This work is part of ongoing mitigation efforts associated with completion of the High Mountain Lakes Stabilization Project, an element of the Uinta Basin Replacement Project (UBRP) of the Central Utah Project (CUP), located in northwestern Duchesne County, Utah. This stabilization project is associated with the transfer of water storage rights from 13 high mountain lakes to a downstream reservoir that was enlarged as part of the UBRP.
    [Show full text]
  • UINT a M OUNTAINS Green River Basin Washakie Basin Uinta Basin
    112°W 111°W 110°W 109°W 108°W 107°W 15 Iona C Copper National Forest Ammon A Jackson Mountain R National Park System Idaho Falls IB O Doubletop Peak U Oil Shale Basin 89 26 R Pavillion Shoshoni A WIND RIVER RANGE Tar Sands Area N G E 189 Gannett Peak 20 Grays Etna SHOSHONE Fort Washakie 43°N 43°N Lake Riverton 89 BASIN Blackfoot Pinedale Milford Reservoir Hudson Daniel Garfield Peak Bancroft Afton Wind River Peak Fairview Smoot Wyoming Peak Atlantic Peak GRANITE MTN Lava Hot S Springs Meade Peak Big Piney Jeffrey City Downey Georgetown 91 Whiskey Peak E 30 ID WY G La Barge Bairoil N Saint Preston A Charles GREAT R Fontenelle Eden Franklin Reservoir DIVIDE 42°N ID R 42°N Bridger Peak Fossil Butte 287 y UT E National d Bear n BASIN Richmond V a I S Smithfield Lake Monument Big R Frontier Laketown Sinclair Kemmerer Superior 30 Garland R Green River Logan Diamondville A Monument Peak Randolph Reliance HoneyvilleHyrum E Basin 80 Wamsutter B Corinne Granger Brigham City Rock Springs Perry Green River Willard North Ogden Evanston Lyman Washakie Ogden Fort Bridger Mountain Flaming Bridger Peak South Ogden View Basin Roy 189 Aspen Gorge Layton Reservoir Henefer WY 41°N 41°N Morgan WY Manila Hiawatha CO Centerville Coalville UT Bountiful ELKHEAD CO 89 Kings Peak 191 UT MTNS 215 Park City T A I N S Kamas M O U N Salt Lake U I N T A City Midway Craig Hayden Riverton Maeser Dinosaur National Monument Neola Vernal D Lehi YAMPA A Pleasant Grove N American Roosevelt H F Orem PLATEAU I O Fork 40 L Oak Creek Utah Provo L R S T Lake Springville H Yampa
    [Show full text]
  • Structural Geologic Evolution of the Colorado Plateau
    Geological Society of America 3300 Penrose Place P.O. Box 9140 Boulder, CO 80301 (303) 357-1000 • fax 303-357-1073 www.geosociety.org This PDF file is subject to the following conditions and restrictions: Copyright © 2009, The Geological Society of America, Inc. (GSA). All rights reserved. Copyright not claimed on content prepared wholly by U.S. government employees within scope of their employment. Individual scientists are hereby granted permission, without fees or further requests to GSA, to use a single figure, a single table, and/or a brief paragraph of text in other subsequent works and to make unlimited copies for noncommercial use in classrooms to further education and science. For any other use, contact Copyright Permissions, GSA, P.O. Box 9140, Boulder, CO 80301-9140, USA, fax 303-357-1073, [email protected]. GSA provides this and other forums for the presentation of diverse opinions and positions by scientists worldwide, regardless of their race, citizenship, gender, religion, or political viewpoint. Opinions presented in this publication do not reflect official positions of the Society. This file may not be posted on the Internet. The Geological Society of America Memoir 204 2009 Structural geologic evolution of the Colorado Plateau George H. Davis Department of Geosciences, University of Arizona, Tucson, Arizona 85721, USA Alex P. Bump BP Exploration and Production Technology, Houston, Texas 77079, USA ABSTRACT The Colorado Plateau is composed of Neoproterozoic, Paleozoic, and Mesozoic sedimentary rocks overlying mechanically heterogeneous latest Paleoproterozoic and Mesoproterozoic crystalline basement containing shear zones. The structure of the plateau is dominated by ten major basement-cored uplifts and associated mono- clines, which were constructed during the Late Cretaceous through early Tertiary Laramide orogeny.
    [Show full text]
  • Uintah Basin Planning for the Future
    UINTAH BASIN PLANNING FOR THE FUTURE November 2016 By: Utah Division of Water Resources With input from other State of Utah water agencies (See inside-back cover for participating agencies) U T A H S T A T E W A T E R P L A N This document and other state water plans are available online at: www.water.utah.gov ii ACKNOWLEDGEMENTS The Board of Water Resources acknowledges the following staff members of the Utah Division of Water Resources for their dedication and valuable contribution to this document: Eric Millis - Director Todd Adams - Deputy Director Bill Leeflang - Assistant Director Todd Stonely - Section Chief, River Basin Planning (Project Manager) Mike Suflita - Senior Engineer, River Basin Planning (Primary Author) Ken Short - Senior Engineer, River Basin Planning Russ Barrus - Engineer, River Basin Planning Eric Klotz - Section Chief, Water Conservation, Education and Use Dave Cole - Section Chief, Hydrology and Computer Applications (Retired) John Holman - Section Chief, Technical Services Adam Clark - Senior GIS Analyst, Technical Services The board also extends its gratitude to individual reviewers from other state agencies (see inside back cover) and members of the Uintah Basin Planning Advisory Group, who helped review the document for accuracy, provided insight and data, or otherwise lent their support. Many of these people provided the division with valuable written and oral comments, all of which have been carefully considered and incorporated where possible. Without all these contributions, the product before you would be incomplete. James A. Lemmon, Chair Steve Farrell, Vice Chair N. Gawain Snow Norman L. Johnson David S. Humphreys Charles Holmgren H.
    [Show full text]
  • Climate Change Vulnerability and Adaptation
    Chapter 2: Biogeographic, Cultural, and Historical Setting Hanna K. Olson and Don W. Fallon Introduction businesses and development that affect socioeconomic and natural environments. Climate, biogeography, natural resource conditions, The Intermountain Adaptation Partnership (IAP) and management issues differ considerably from Idaho to encompasses unique landscapes within the Intermountain Nevada, and from western Wyoming to the southern border Region of the U.S. Forest Service (USFS), from rugged of Utah. To capture how these differences influence poten- mountains to deep canyons, from alpine snowfields to tial climate change effects and adaptation strategies, the wild and scenic rivers (fig. 1.1). The area defined by the IAP region was divided into six subregions that are detailed boundaries of the Intermountain Region contains both in this assessment: the Middle Rockies, Southern Greater private and Federally owned lands, including 12 national Yellowstone, Uintas and Wasatch Front, Plateaus Great forests and 22 national parks. Before Euro-Americans Basin and Semi Desert, and Intermountain Semi Desert sub- settled this area, Native American tribes occupied the land regions (fig. 1.1, table 2.1). The Intermountain Semi Desert for thousands of years. With Euro-American settlement contains no national forests, but is identified as a discrete came timber extraction, mining, grazing, water extraction, area that may be of interest to those outside the USFS. Each and increased recreation to the region. Urban growth has subregion is briefly characterized in the next section. increased significantly during recent decades, bringing new Table 2.1—Subregions within national forests and national forests within subregions of the Intermountain Adaptation Partnership region.
    [Show full text]