Metal–Metal Cooperative Bond Activation by Heterobimetallic Alkyl, Aryl, and Acetylide Ptii/Cui Cite This: Chem

Total Page:16

File Type:pdf, Size:1020Kb

Metal–Metal Cooperative Bond Activation by Heterobimetallic Alkyl, Aryl, and Acetylide Ptii/Cui Cite This: Chem Chemical Science EDGE ARTICLE View Article Online View Journal | View Issue Metal–metal cooperative bond activation by heterobimetallic alkyl, aryl, and acetylide PtII/CuI Cite this: Chem. Sci., 2020, 11, 5494 complexes† All publication charges for this article have been paid for by the Royal Society a a a of Chemistry Shubham Deolka, Orestes Rivada-Wheelaghan, ‡* Sandra L. Aristizabal,´ Robert R. Fayzullin, b Shrinwantu Pal, c Kyoko Nozaki, c Eugene Khaskin a and Julia R. Khusnutdinova *a We report the selective formation of heterobimetallic PtII/CuI complexes that demonstrate how facile bond activation processes can be achieved by altering the reactivity of common organoplatinum compounds through their interaction with another metal center. The interaction of the Cu center with the Pt center and with a Pt-bound alkyl group increases the stability of PtMe2 towards undesired rollover Received 3rd February 2020 cyclometalation. The presence of the CuI center also enables facile transmetalation from an electron- Accepted 29th April 2020 F À deficient tetraarylborate [B(Ar )4] anion and mild C–H bond cleavage of a terminal alkyne, which was DOI: 10.1039/d0sc00646g Creative Commons Attribution-NonCommercial 3.0 Unported Licence. not observed in the absence of an electrophilic Cu center. The DFT study indicates that the Cu center rsc.li/chemical-science acts as a binding site for the alkyne substrate, while activating its terminal C–H bond. Introduction transmetalation step in the Sonogashira coupling.4 The accel- erating effect of metal additives (e.g. Cu salts) in Pd-catalyzed Metal–metal cooperation plays a crucial role in small molecule C–C coupling reactions such as Stille and Suzuki coupling is activation in enzymes and synthetic systems, including homo- commonly referred to as “the copper effect”.5 geneous and heterogeneous catalysts.1 Many classical catalytic However, a precise understanding of how the reactivity at the This article is licensed under a systems rely on the thorough optimization of the ligand envi- single metal center can be affected by communication with ronment to induce the desired reactivity at a single metal a second metal is oen lacking due to the synthetic challenges center. However, there is currently a growing realization that in selective synthesis of such reactive heterobimetallic ’ complexes with a well-dened structure. Open Access Article. Published on 02 May 2020. Downloaded 10/17/2020 7:05:15 AM. catalysts reactivities can be signi cantly altered through close communication with another metal center, either by design or While multiple symmetrical ligand platforms have been via unexpected bimetallic processes, thus enabling new developed for the construction of homobimetallic complexes,6 approaches to bond activation.2 examples of ligand scaffolds that could selectively support The second metal may facilitate substrate binding and pre- metal–metal interactions between two different metals and at activation or even stabilize the bond activation product the same time contain available reactive sites, are exceedingly (Scheme 1). The adoption of the bimetallic approach has led to rare.7 This is especially the case when the combination of a 1st many recent advances in stoichiometric and catalytic bond row and a late 2nd or 3rd row transition metal is targeted. Among activation processes.2,3 Bimetallic cooperation is oen proposed known heterobimetallic complexes, rigid ligand design oen in many C–C coupling processes, e.g. the Cu-to-Pd blocks access to coordination sites suitable for cooperative aCoordination Chemistry and Catalysis Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, 904-0495, Okinawa, Japan. E-mail: [email protected]; [email protected] bArbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientic Center, Russian Academy of Sciences, 8 Arbuzov Street, Kazan, 420088, Russian Federation cDepartment of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan † Electronic supplementary information (ESI) available. CCDC 1975187–1975194. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/d0sc00646g ‡ Current address: Orestes Rivada-Wheelaghan: Universit´e de Paris, Laboratoire d'Electrochimie Mol´eculaire, UMR 7591 CNRS, 15 rue Jean-Antoine de Ba¨ıf, Scheme 1 Schematic representation of the altering reactivity of F-75205 Paris Cedex 13, France. a single metal center through heterobimetallic complex formation. 5494 | Chem. Sci.,2020,11,5494–5502 This journal is © The Royal Society of Chemistry 2020 View Article Online Edge Article Chemical Science substrate binding.8 Although several other classes of binu- immediate migration of the Pt center from the so to the hard cleating bridging ligands have been developed, many of these site is observed, presenting an alternative pathway for the ligands do not allow for close metal–metal interactions in formation of 2. The mono-metallic reactivity thus conrms homo- or heteropolymetallic systems.9 a proof-of-concept for using this ligand platform further in In this work, we report a new bifunctional so/hard designing heterobimetallic systems selectively via the so/hard unsymmetrical ligand scaffold, which selectively incorporates Lewis acid concept. both PtII and CuI centers. The close proximity between the two Next we targeted the formation of heterobimetallic metals allows for coordination of alkyl, aryl, or acetylide ligands complexes using PtII and CuI precursors as this combination is to both metal centers, and for the dialkyl complexes, enables known to show metallophilic closed-shell d8–d10 interactions.13 metal–metal interaction. These heterobimetallic complexes First, treatment of complex 1 with 2 equiv. of CuICl led to the ff II I I allow us to directly observe the e ect of the second metal center formation of the heterobimetallic Pt Me2/Cu complex 3[Cu Cl2] on the reactivity of Pt, which is interesting given that Pt (Scheme 3). By comparison, the reaction with 1 equiv. of CuICl complexes with d10 metal additives are widely used in C–H bond gave a mixture of products with the major species characterized 10 1 I activation and studied as models for Pd-catalyzed cross- by an H NMR spectrum similar to that of complex 3[Cu Cl2] coupling.11 Our ndings demonstrate that even subtle interac- indicative of the formation of a similar CuI/PtII core; however, tions between two different metals alter the solution reactivity the reaction was generally less clean and did not proceed with of common organometallic species, particularly in the C–H high yield. To avoid the presence of a potentially non-innocent I ¼ F F ¼ bond activation and boron-to-metal transmetalation reactions, counter anion, [Cu (MeCN)4][X] (X BF4 or B(Ar )4; B(Ar )4 and ligand architecture that induces proximity signicantly tetrakis[3,5-bis(triuoromethyl)phenyl]borate) was used ff F a ects reactivity. leading to complexes 3[BF4] and 3[B(Ar )4], respectively. All complexes were isolated in 65–71% yields, characterized by X-ray diffraction (XRD) (vide infra), NMR, IR, and UV-vis Creative Commons Attribution-NonCommercial 3.0 Unported Licence. Results and discussion spectroscopies, ESI-MS, and elemental analysis. Ligand design and synthesis of monometallic and Noting that the ligand platform also contains an acidic heterobimetallic complexes benzylic CH2 position and the previously reported ability of the mononucleating PNN pincer ligands to undergo an N-bound We have previously reported the reversible stepwise formation 14 CH2-arm deprotonation coupled with dearomatization, we of homomultimetallic CuI linear chain complexes using an attempted the dearomatization of our binucleating P,N-donor unsymmetrical napthyridinone-based ligand L (Scheme 2).12 0 ligand L using a strong base. Simple functionalization of the O-atom of this ligand by reac- t Gratifyingly, treatment of 3[CuCl2] with KO Bu resulted in tion with chlorobis(tert-butyl)phosphine leads to a new ligand a deep red solution, from which 4 could be isolated cleanly. This article is licensed under a L, in which two well-de ned coordination sites are created: Complex 4 features a dearomatized naphthyridine ring owing to a hard-donor site containing a picolylamine arm and a so- the deprotonation of its CH2 arm and thus is the rst example of donor site containing a phosphinite arm. We rst tested if a dearomatized heterobimetallic complex, resembling dear- ligand L shows differentiation between so and hard Lewis Open Access Article. Published on 02 May 2020. Downloaded 10/17/2020 7:05:15 AM. omatization in pincer-based mononucleating ligands utilized acids using (NBD)PtIIMe (NBD ¼ norbornadiene) and 2 for metal–ligand cooperation catalysis.15 Dearomatization of the [PtIVMe I] precursors, respectively. As expected, the specic 3 4 naphthyridine-based binucleating PNNP (“expanded pincer”) binding of the PtII center to the so phosphinite site only is IV ligand has also been recently reported by Broere and co-workers observed, giving complex 1. The Pt center, on the other hand, 6f in a homobimetallic Cu2 complex. specically binds to the hard N-donor site (complex 2). Inter- estingly, upon reacting complex 1 with methyl iodide, Scheme 2 (a) Synthesis of ligand L; (b) selective binding to PtII and PtIV Scheme 3 Formation of cationic heterobimetallic complexes 3[X] and centers via hard and soft sites. a dearomatized heterobimetallic complex 4. This journal is © The Royal Society of Chemistry 2020 Chem. Sci.,2020,11,5494–5502 | 5495 View Article Online Chemical Science Edge Article Characterization of heterobimetallic complexes in the solid Table 1 Selected interatomic and bond distances in complexes 3[X] s state and solution and analysis of metal–metal interactions determined by XRD and 4 values for the Pt center a ˚ F The structures of complexes 3[X] and 4 were con rmed by Bond distance (A) 3[CuCl2] 3[BF4] 3[B(Ar )4] single crystal XRD studies (Fig.
Recommended publications
  • Transmetalation
    Organic Chemistry IV Organometallic Chemistry for Organic Synthesis Prof. Paul Knochel LMU 2015 1 OCIV Prüfung: Freitag 17. Juli 2015 9-11 Uhr Wieland HS Wiederholungsklausur: Donnerstag 17. September 2015 12-14 Uhr Baeyer HS 2 Recommended Literature 1. F. A. Carey, R. J. Sundberg, Advanced Organic Chemistry, Fifth Edition Part A and Part B, Springer, 2008, ISBN-13: 978-0-387-68346-1 2. R. Brückner, Organic Mechanisms, Springer, 2010, ISBN: 978-3-642- 03650-7 3. L. Kürti, B. Czako, Strategic applications of named reactions in organic synthesis, Elsevier, 2005, ISBN-13: 978-0-12-429785-2 4. N. Krause, Metallorganische Chemie, Spektrum der Wissenschaft, 1996, ISBN: 3-86025-146-5 5. R. H. Crabtree, The organometallic chemistry of transition metals, Wiley- Interscience, 2005, ISBN: 0-471-66256-9 6. M. Schlosser, Organometallics in Synthesis – A manual, 2nd edition, Wiley, 2002, ISBN: 0-471-98416-7 7. K. C. Nicolaou, T. Montagnon, Molecules that changed the world, Wiley- VCH, 2008, ISBN: 978-527-30983-2 8. J. Hartwig, Organotransition Metal Chemistry: From Bonding to Catalysis, Palgrave Macmillan, 2009, ISBN-13: 978-1891389535 9. P. Knochel, Handbook of Functionalized Organometallics, Volume 1 und 2, Wiley-VCH, 2005, ISBN-13: 978-3-527-31131-6 3 Importance of organometallics 4 Industrial production Industrial annual production of various organometallics Organometallic production [T / year] Si 700 000 Pb 600 000 Al 50 000 Sn 35 000 Li 900 5 Organometallic reagents and catalysts for the organic synthesis 6 Historic point of view 1757 - Louis Cadet de Gassicourt (parisian apothecary) E. Frankland (1848), University of Marburg, initial goal: synthesis of an ethyl radical Universität Marburg (1848) 7 Organometallic chemistry of the XIX century 8 Organometallic chemistry of the XIX century 9 Reactivity of the Grignard reagents 10 Historic point of view Victor Grignard (1900) Karl Ziegler (1919) 11 Historic point of view first transition metal organometallics: Hein (1919) 12 Historic point of view 1951 : synthesis of ferrocene Pauson (Scotland) 7.
    [Show full text]
  • Theoretical Insight Into the Transmetalation of MOF-5 Lattices
    Article pubs.acs.org/cm When the Solvent Locks the Cage: Theoretical Insight into the Transmetalation of MOF‑5 Lattices and Its Kinetic Limitations ,† ‡ †,§ ‡ † Luca Bellarosa,* Carl K. Brozek, Max García-Melchor, Mircea Dinca,̆and Nuriá Lopeź † Institute of Chemical Research of Catalonia, ICIQ, Av. Països Catalans 16, 43007 Tarragona, Spain ‡ Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States § SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States *S Supporting Information ABSTRACT: Transmetalation is an innovative postsynthetic strategy for tailoring the properties of metal−organic frameworks (MOFs), allowing stable unprecedented metal coordination environments. Although the experimental synthetic protocol is well- established, the underlying mechanism for transmetalation is still unknown. In this work, we propose two different solvent-mediated reaction paths for the Ni transmetalation in Zn- MOF-5 lattices through density functional theory simulations. In both mechanisms, the bond strength between the exchanged metal and the solvent is the key descriptor that controls the degree of transmetalation. We also show that the role of the solvent in this process is twofold: it initially promotes Zn exchange, but if the metal−solvent bond is too strong, it blocks the second transmetalation cycle by restricting the lattice flexibility. The competition between these two effects leads the degree of incorporation of metal into MOF-5 to display a volcano-type dependence with respect to the metal−solvent bond strength for different transition metal ions. ■ INTRODUCTION PSIM.26 Nevertheless, the dependence on the ligand field was The easiness with which metal−organic frameworks (MOFs)1 found to be opposite for Ni inserting into MOF-5 and Co into MFU-4l.
    [Show full text]
  • Oxidation of Organocopper Compounds
    Oxidation of Organocopper Compounds Sarah J. Aves and Dr. David R. Spring Department of Chemistry University of Cambridge Lensfield Road Cambridge CB2 1EW United Kingdom Tel.: +44 (0) 1223 336498 Fax: +44 (0) 1223 336362 E-mail: [email protected] [email protected] Oxidation of Organocopper Compounds Contents I. Introduction.................................................................................................................3 II. Formation of C-C Bonds............................................................................................. 4 A. Initial Studies.......................................................................................................... 4 B. Cross-coupling ........................................................................................................ 5 C. Biaryl Formation................................................................................................... 11 D. Intramolecular Bond Formation............................................................................ 14 E. Dimerisations of Heteroaromatics, Alkenyl and Alkyl Groups and Macrocycle Formation...................................................................................................................... 18 III. Formation of C-N Bonds ...................................................................................... 21 A. Initial Studies........................................................................................................ 21 B. Further Developments..........................................................................................
    [Show full text]
  • Carbometallation Chemistry
    Carbometallation chemistry Edited by Ilan Marek Generated on 01 October 2021, 10:03 Imprint Beilstein Journal of Organic Chemistry www.bjoc.org ISSN 1860-5397 Email: [email protected] The Beilstein Journal of Organic Chemistry is published by the Beilstein-Institut zur Förderung der Chemischen Wissenschaften. This thematic issue, published in the Beilstein Beilstein-Institut zur Förderung der Journal of Organic Chemistry, is copyright the Chemischen Wissenschaften Beilstein-Institut zur Förderung der Chemischen Trakehner Straße 7–9 Wissenschaften. The copyright of the individual 60487 Frankfurt am Main articles in this document is the property of their Germany respective authors, subject to a Creative www.beilstein-institut.de Commons Attribution (CC-BY) license. Carbometallation chemistry Ilan Marek Editorial Open Access Address: Beilstein J. Org. Chem. 2013, 9, 234–235. Schulich Faculty of Chemistry, Technion-Israel Institute of doi:10.3762/bjoc.9.27 Technology, Haifa 32000, Israel Received: 24 January 2013 Email: Accepted: 29 January 2013 Ilan Marek - [email protected] Published: 04 February 2013 This article is part of the Thematic Series "Carbometallation chemistry". Keywords: carbometallation Guest Editor: I. Marek © 2013 Marek; licensee Beilstein-Institut. License and terms: see end of document. Following the pioneering Ziegler addition of nucleophiles to in the 1,2-bisalkylation of nonactivated alkenes! In this nonactivated unsaturated carbon–carbon bonds, the controlled Thematic Series, you will find
    [Show full text]
  • Nickel-Catalyzed Stille Cross Coupling of C–O Electrophiles
    Research Article Cite This: ACS Catal. 2019, 9, 3304−3310 pubs.acs.org/acscatalysis Nickel-Catalyzed Stille Cross Coupling of C−O Electrophiles John E. A. Russell, Emily D. Entz, Ian M. Joyce, and Sharon R. Neufeldt* Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717, United States *S Supporting Information ABSTRACT: Aryl sulfamates, tosylates, and mesylates under- go efficient Ni-catalyzed cross coupling with diverse organo- stannanes in the presence of relatively unhindered alkylphos- phine ligands and KF. The coupling is valuable for difficult bond constructions, such as arylheteroaryl, arylalkenyl, and arylalkynyl, using nontriflate phenol derivatives. A combination of experimental and computational studies implicates an unusual mechanism for transmetalation involving an 8-centered cyclic transition state. This reaction is inhibited by chloride sources due to slow transmetalation of organostannanes at a Ni(II)chloride intermediate. These studies help to explain why prior efforts to achieve Ni-catalyzed Stille coupling of phenol derivatives were unsuccessful. KEYWORDS: cross-coupling, DFT, nickel, phenol derivatives, transmetalation henol-derived electrophiles have numerous advantages often preferred because of tin’s toxicity, the Stille coupling P over aryl halides as cross-coupling partners including remains important due to the stability and high functional synthetic utility as directing groups as well as the low cost and group tolerance of organostannanes.7,8 Nevertheless, when high availability of phenols.1 Highly activated phenol using more inert phenol-derived electrophiles, the Pd-catalyzed derivatives like aryl triflates are difficult to carry through Stille reaction is limited to unhindered electron-deficient or 9 multiple synthetic steps because of their tendency toward -neutral aryl sulfonates and a small scope of organostannanes.
    [Show full text]
  • Patent Office Paiented May 2, 1963
    United States Patent Office Paiented May 2, 1963 2 In addition, these prior metalation processes are gen 3,999,859 erally deemed unsuitable for commercialization due to TANSFETALATON PRESCESS Water E. Foster, Batca Rouge, La., assiggor to Eainy the difficulties and high costs connected with their use. Corporation, New York, N.Y., a corporation of Further, the prior processes require many separate proc Virginia eSS Steps as well as long periods for appreciable reaction No Draving. Fied Feb. 24, 1959, Ser. No. 794,817 which at best converts only half of the reactants, e.g., A2 Cains. (C. 262-665) toluene and sodium, to the desired product and com pletely degrades the chlorine values to sodium chloride. This invention relates to a method of preparing organic The above objectionable features of the prior art mate compounds and more particularly to the preparation of O rialiy increase the overall costs of the desired end prod aliphatic polyolefin hydrocarbons and organo alkali metal uct, and nake its manufacture by these processes com compounds. mercially unattractive. Aliphatic polyolefin hydrocarbons are extremely inter it is accordingly an object of the present invention to esting chemical compounds which are readily converted provide a process for the manufacture of aliphatic poly into valuable industrial materials by processes well known 5 olefin hydrocarbons. Another object is to provide a proc to those skilled in the art. Of particular interest are eSS of the above type which is suitable for manufacturing those long chain aliphatic polyolefin compounds where a very wide variety of aliphatic polyolefin hydrocarbons, in the unsaturation is located near the terminal carbons including many which were heretofore unknown or not of the molecular chain.
    [Show full text]
  • Transmetalation from Magnesium–Nhcs—Convenient Synthesis of Chelating -Acidic NHC Complexes
    inorganics Article Transmetalation from Magnesium–NHCs—Convenient Synthesis of Chelating π-Acidic NHC Complexes Julian Messelberger 1, Annette Grünwald 1, Philipp Stegner 2, Laura Senft 3, Frank W. Heinemann 1 and Dominik Munz 1,* 1 Lehrstuhl für Anorganische und Allgemeine Chemie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 1, 91058 Erlangen, Germany; [email protected] (J.M.); [email protected] (A.G.); [email protected] (F.W.H.) 2 Lehrstuhl für Anorganische und Metallorganische Chemie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 1, 91058 Erlangen, Germany; [email protected] 3 Lehrstuhl für Bioanorganische Chemie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 1, 91058 Erlangen, Germany; [email protected] * Correspondence: [email protected]; Tel.: +49-9131-85-27464 Received: 6 May 2019; Accepted: 19 May 2019; Published: 22 May 2019 Abstract: The synthesis of chelating N-heterocyclic carbene (NHC) complexes with considerable π-acceptor properties can be a challenging task. This is due to the dimerization of free carbene ligands, the moisture sensitivity of reaction intermediates or reagents, and challenges associated with the workup procedure. Herein, we report a general route using transmetalation from magnesium–NHCs. Notably, this route gives access to transition-metal complexes in quantitative conversion without the formation of byproducts. It therefore produces transition-metal complexes outperforming the conventional routes based on free or lithium-coordinated carbene, silver complexes, or in situ metalation in dimethyl sulfoxide (DMSO). We therefore propose transmetalation from magnesium–NHCs as a convenient and general route to obtain NHC complexes. Keywords: NHC; transmetalation; magnesium; palladium; carbene 1. Introduction N-heterocyclic carbene (NHC) ligands have become the powerhouse of modern transition metal chemistry [1–13].
    [Show full text]
  • Recent Advances in Transition-Metal-Catalyzed Inter- Molecular Carbomagnesiation and Carbozincation
    Recent advances in transition-metal-catalyzed inter- molecular carbomagnesiation and carbozincation Kei Murakami1 and Hideki Yorimitsu*1,2 Review Open Access Address: Beilstein J. Org. Chem. 2013, 9, 278–302. 1Department of Chemistry, Graduate School of Science, Kyoto doi:10.3762/bjoc.9.34 University, Sakyo-ku, Kyoto 606-8502, Japan and 2Japan Science and Technology Agency, Department of Research Projects (ACT-C), Received: 26 October 2012 Tokyo 102-0076, Japan Accepted: 09 January 2013 Published: 11 February 2013 Email: Hideki Yorimitsu* - [email protected] This article is part of the Thematic Series "Carbometallation chemistry". * Corresponding author Guest Editor: I. Marek Keywords: © 2013 Murakami and Yorimitsu; licensee Beilstein-Institut. alkene; alkyne; carbomagnesiation; carbometalation; carbozincation; License and terms: see end of document. transition metal Abstract Carbomagnesiation and carbozincation reactions are efficient and direct routes to prepare complex and stereodefined organomagne- sium and organozinc reagents. However, carbon–carbon unsaturated bonds are generally unreactive toward organomagnesium and organozinc reagents. Thus, transition metals were employed to accomplish the carbometalation involving wide varieties of substrates and reagents. Recent advances of transition-metal-catalyzed carbomagnesiation and carbozincation reactions are reviewed in this article. The contents are separated into five sections: carbomagnesiation and carbozincation of (1) alkynes bearing an electron-withdrawing group; (2) alkynes bearing a directing group; (3) strained cyclopropenes; (4) unactivated alkynes or alkenes; and (5) substrates that have two carbon–carbon unsaturated bonds (allenes, dienes, enynes, or diynes). Introduction Whereas direct transformations of unreactive carbon–hydrogen method [1], starting from magnesium or zinc metal and organic or carbon–carbon bonds have been attracting increasing atten- halides [2-7].
    [Show full text]
  • Transmetalation Between Au(I) and Sn(IV) Complexes
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Archivio Ricerca Ca'Foscari Inorganica Chimica Acta 404 (2013) 105–112 Contents lists available at SciVerse ScienceDirect Inorganica Chimica Acta journal homepage: www.elsevier.com/locate/ica Transmetalation between Au(I) and Sn(IV) complexes. The reaction mechanism in non-coordinating and coordinating polar solvents ⇑ Luciano Canovese a, , Carlo Levi a, Fabiano Visentin a, Claudio Santo a, Valerio Bertolasi b a Dipartimento di Scienze Molecolari e Nanosistemi, University Ca’ Foscari, Venice, Italy b Dipartimento di Chimica and Centro di Strutturistica Diffratometrica, Univesrsity of Ferrara, Ferrara, Italy article info abstract Article history: Some novel gold(I) derivatives of the type [LAuCl] (L = DIC, PPh3, NHCs) have been synthesized and char- Received 4 March 2013 acterized. The products of the transmetalation reaction between these species and tributyl-phenylethy- Received in revised form 15 April 2013 nylstannane have been isolated and characterized. An exhaustive kinetic study on the transmetalation Accepted 17 April 2013 reaction has also been carried out in CHCl and CH CN. The experimental results were discussed in terms Available online 26 April 2013 3 3 of the electronic and steric characteristics of the ligands and an interpretation of the peculiar influence of different solvents on the reaction rates was proposed. Keywords: Ó 2013 Elsevier B.V. All rights reserved. Transmetalation reaction Gold(I) carbene complexes Kinetic study Tributyl-phenylethynylstannane 1. Introduction diazonium salts [7]. We have chosen the aforementioned gold(I) complexes since we already had some experience on such ligands Recently, the peculiar behavior of gold complexes as homoge- and complexes in insertion and oxidative addition reactions [8].
    [Show full text]
  • View a Complete List of Ph.D Degrees
    1913 1. CLARK, Clinton Willard. (Title not Available). 2. CLARK, Hugh. An Improved Method for the Manufacture of Hydrogen and Lamp Black. 3. CORLISS, Harry Percival. The Distribution of Colloidal Arsenic Trisulfide between the Phases in the System Ether, Water, and Alcohol. 4. PRATT, Lester Albert. Studies in the Field of Petroleum. 5. SHIVELY, Robert Rex. A Study of Magnesia Cements. 1914 6. UHLINGER, Roy H. The Formation of Utilizable Products from Natural Gas. 1915 7. DUNPHY, Raymond Augustine. Theory of Distillation and the Laws of Henry and Raoult. 8. LIEBOVITZ, Sidney. Study of Dynamics of Esterification. 9. MORTON, Harold Arthur. Study of the Specific Rotatory Power of Organic Substances in Solution. 10. WITT, Joshua Chitwood. Oxidation and Reduction Without the Addition of Acid. I. The Reaction between Ferrous Sulfate and Potassium Dichromate. II. The Reaction Between Stanous Chloride and Potassium Dichromate. (Neidle) 1917 11. COLEMAN, Arthur Bert. Tetraiodofluorescein, Tetraiodoeosin, Tetraiodoerythrosin and Some of Their Derivatives. (Pratt) 12. MILLER, Rolla Woods. On the Mechanism of the Potassium Chlorate-Manganese Dioxide Reaction. 13. PERKINS, Granville Akers. Phthalic Anhydride and Some of Its Derivatives. (Pratt) 14. SHUPP, Asher Franklin. Phenoltetraiodophthalein and Some of Its Derivatives. (Pratt) 1919 15. CURME, Henry R. Butadiine (Diacetylene). II. Analysis of Gas Mixtures by Distillation at Low Temperatures and Low Pressures. III. The Precise Analytical Determination of Acetylene, Ethylene, and Methyl Acetylene in Hydrocarbon Gas Mixtures. 16. DROGIN, Isaac. The Effect of Potassium Chloride on the Inversion of Cane Sugar by Formic Acid. 17. YOUNG, Charles Otis. Tetrabromophthalic Acid and Its Condensation with Some Primary Amines. 1 1920 18.
    [Show full text]
  • Encyclopediaof INORG ANIC CHEMISTRY
    Encyclopedia of INORG ANIC CHEMISTRY Second Edition Editor-in-Chief R. Bruce King University of Georgia, Athens, GA, USA Volume IX T-Z WILEY Contents VOLUME I Ammonolysis 236 Ammoxidation 236 Amphoterism 236 Ab Initio Calculations Analytical Chemistry of the Transition Elements 236 Acceptor Level Ancillary Ligand 248 Acetogen Anderson Localization 248 Acid Catalyzed Reaction Angular Overlap Model 248 7r-Acid Ligand Anion 249 Acidity Constants Antiaromatic Compound 249 Acidity: Pauling's Rules 2 Antibonding 250 Acids & Acidity 2 Antiferromagnetism 250 Actinides: Inorganic & Coordination Chemistry 2 Antigen 250 Actinides: Organometallic Chemistry 33 Antimony: Inorganic Chemistry 250 Activated Complex 59 Antimony: Organometallic Chemistry 258 Activation 59 Antioxidant 266 Activation Parameters 59 Antiport 266 Activation Volume 60 Antistructure 266 Active Site 60 Antitumor Activity 266 Adamson's Rules 60 Apoprotein 266 Addition Compound 60 Aqua 267 Agostic Bonding 60 Arachno Cluster 267 Alkali Metals: Inorganic Chemistry 61 Arbuzov Rearrangement 267 Alkali Metals: Organometallic Chemistry 84 Archaea 267 Alkalides 94 Arene Complexes 267 Alkaline Earth Metals: Inorganic Chemistry 94 Arsenic: Inorganic Chemistry 268 Alkaline Earth Metals: Organometallic Chemistry 116 Arsenic: Organoarsenic Chemistry 288 Alkane Carbon-Hydrogen Bond Activation 147 Arsine & As-donor Ligands 308 Alkene Complexes 153 Associative Substitution 309 Alkene Metathesis 154 Asymmetrie Synthesis 309 Alkene Polymerization 154 Asymmetrie Synthesis by Homogeneous Catalysis
    [Show full text]
  • Advances in Gold-Carbon Bond Formation: Mono-, Di-, and Triaurated Organometallics
    ADVANCES IN GOLD-CARBON BOND FORMATION: MONO-, DI-, AND TRIAURATED ORGANOMETALLICS By JAMES E. HECKLER Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy Thesis Advisor: Dr. Thomas G. Gray Department of Chemistry CASE WESTERN RESERVE UNIVERSITY January 2016 CASE WESTERN RESERVE UNIVERSITY SCHOOL OF GRADUATE STUDIES We hereby approve the thesis/dissertation of ____________________________________________________James E. Heckler candidate for the _____________________________Doctor of Philosophy degree*. Carlos E. Crespo-Hernandez (Signed) __________________________________ (chair of the committee) Anthony J. Pearson __________________________________ __________________________________Genevieve Sauve __________________________________Horst von Recum __________________________________Thomas G. Gray (date) ____________________27 July 2015 * We also certify that written approval has been obtained for any proprietary material contained therein. Dedication To my family and best friends i Table of Contents List of Tables …………………………………………………………………………………….iii List of Figures ……………..………………………………………………………………….......v List of Schemes and Charts..…………………………………………………………………..…..x Acknowledgements ……………………………………………………………………….……..xii List of Symbols and Abbreviations ……………………………………………………….....…xiii Abstract ……………………………………………………………………………………..…..xxi Chapter 1. General Introduction ………………….......................................................1 1.1 Fundamental gold chemistry………………………………………………1 1.1.1 Relativistic effects
    [Show full text]