Overview of Photoproduction Physics at Jefferson Lab
Total Page:16
File Type:pdf, Size:1020Kb
Overview of Photoproduction Physics at Jefferson Lab Yordanka Ilieva University of South Carolina PHOTON2017, 22 - 26 May 2017, CERN, Geneva Research supported in part by the U.S. National Science Foundation Thomas Jefferson National Accelerator Facility QCD Machine: Electromagnetic Probes of Hadron Structure Recirculating Arcs 0.55-GeV Linac 45-MeV Injector 0.55-GeV Linac Experimental A B C Halls 6-GeV Era: 1995 - 2012 C.W. electron beam: 2-ns wide bunch JLab in Newport News, VA • period, 0.2-ps bunch length Superconducting RF electron linacs • • Polarized Source: Pe ~ 86% with up to 5 times recirculation • Beam energies up to E0 = 6 GeV • Up to 1.1 GeV energy gain per pass • Beam Current up to 200 µA Thomas Jefferson National Accelerator Facility QCD Machine: Electromagnetic Probes of Hadron Structure D 12-GeV Era: 2016 - ... 5.5- pass beam 1.1-GeV Linac 11 GeV 123-MeV Injector 1.1-GeV Linac 5-pass beam 11 GeV A B C • C.W. electron beam: 2-ns wide bunch period, 0.2-ps bunch length • Polarized Source: Pe ~ 85% • Beam energies up to E0 = 11 (12) GeV • Beam Current up to 85 µA Thomas Jefferson National Accelerator Facility Detector Systems CLAS12 Hall B Hall A high-resolution spectrometers specialized installations large acceptance L=1035 s-1cm-2 Hall C GlueX super-high-momentum spectrometer 9-GeV tagged γ beam L=1038 s-1cm-2 Hall D 4π hermetic detector JLab Photoproduction Scientific Program Probing Hadron Structure and Strong Interaction with Real and Virtual Photons • The Hadron Spectra as Probes of QCD (Halls B, D) – Baryon and Meson Spectroscopy • The Transverse Structure of Hadrons (Halls A, B, C, D) – Elastic Form Factors – Transition Form Factors • The Longitudinal Structure of Hadrons (Halls A, B, C) – Unpolarized and Polarized Parton Distribution Functions • The 3D Structure of Hadrons (Halls A, B, C) – Generalized Parton Distributions (GPDs) – Transverse Momentum Distributions (TMDs) • Hadrons and Cold Nuclear Matter (Halls A, B, C) – Nucleon Medium Modifications; Quark Hadronization – NN Correlations; Hypernuclear Spectroscopy; Few-Body Experiments – Near Threshold J/ψ Photoproduction • Heavy Photon Search Hadron Spectroscopy Baryon Spectroscopy RelevantRelevant Degrees degrees ofof Freedomfreedom andand Missingmissing Resonanceresonance Problemproblem N Resonance Spectrum — the low-energy signature of QCD 3000 2700 M ** B 2600 *** 2500 2250 2220 2200 **** **** 2090 ** 2190 2100 2080 * **** 2000 * ** 2000 1986 1990 S ** ** 1900 1897 1895 ** S S 1720 1710 1700 Mass [MeV] 1680 1675 **** 1650 *** **** *** **** **** 1535 1520 1500 **** **** 1440 **** Degrees of freedom 1000 3* or 4* 939 **** J 1/2+ 3/2+ 5/2+ 7/2+ 9/2+ 11/2+ 13/2+ 1/2- 3/2- 5/2- 7/2- 9/2- 11/2- 13/2- LP2T 2J P11 13 FF15 17 HH19 1 11 K1 13 SD11 D13 15 GI17 G19 1 11 I1 13 Quark Models! Constituent Quark Models predict many more of excited states than have been Quark •Models observed; some of the states may only couple weakly to πN.! • Constituent• Quark-Diquark Quark Models Models predict with a tightlymany more bound of diquark excited predict states fewer than states.have been! observed; some• ofQuark the statesand Flux-Tube may only Models couple predict weakly increased to πN. number of states. • Quark-DiquarkCQM: U. Löring, B.C.Models Metsch, andwith H.R. aPetry, tightly Eur. Phys. bound J. A10 395 diquark (2001) predict fewer states. 3 • Quark and Flux-Tube Models predict increased number of states. CQM: U. Löring, B.C. Metsch, and H.R. Petry, Eur. Phys. J. A10 395 (2001) Polarization observablesBaryon Spectroscopy give access to reaction amplitudesExperimental Observables Polarization observables give access to reaction amplitudes !p "N: Four complex amplitudes enhancing sensitivity describe0 the reaction γ n → K Λ : Four complex amplitudes describe to weak resonance σ in the presence of … the reaction dσ 2 2 2 2 dσ ∝ S21 + S22 + N 2+ D 2 dΩ~| N | + | S1 | + | S2 | + | D | non-resonant! dΩ background Double polarization observable E! + Beam - Target polarizationK Eγ σ γ n strong !Λ ! resonance γ p dσ 2 2 2 2 Cz ~| S2 | − | S1 | − | N | + | D | dΩ 2 2 Eγ dσ 2 2 E ∝ − S1 + S2 + N − D ddσ * * P Ω ~ 2Im(S N − S D ) I.S. Barker, A. Donnachie, J.K. Storrow, Nucl. Phys. B 79, 431 (1974). 2 1 dΩ 5 I.S. Barker, A. Donnachie, J.K. Storrow, Nucl. Phys. B 79, 431 (1974). Baryon Spectroscopy Extracting Nucleon-Resonance Information from Experimental Data Database of Experimental Observables γ(*)N→ πN, ππN, ηN, η’N, KY, ρN,... πN→πN, ππN, ηN, η’N, KY, ρN,... Amplitude Dynamical Reaction Analysis Theory N* Properties Models LQCD QCD Baryon Spectroscopy Examples of New Data (CLAS) γ (n) → K 0Λ dσ 11 ~ [ b] Cz –Polarization Transfer from ~ to ⇤ Along z–axis CM µ 0 d cosθKDifferential Cross Section of γd→ K Λ(p) Cz K 0 K 0 K 0 1.6 θ θ θ 1.6 -0.70 < cos CM < -0.60 -0.60 < cos CM < -0.50 -0.50 < cos CM < -0.40 Eγ <1.0 1.0<Eγ <1.1 1.1<Eγ <1.2 1.2<Eγ <1.3 1.4 1.4 1 1 1 1 1.2 1.2 BG g13 1 PWA Fit 1 0 0 0 0 0.8 0.8 0 K Λ KAON-MAID 0.6 g10 0.6 w/o K* and K −1 −1 −1 −1 0.4 1 0.4 0.2 0.2 −0.5 0 0.5 −0.5 0 0.5 −0.5 0 0.5 −0.5 0 0.5 0 0 1.3<Eγ <1.4 1.4<Eγ <1.5 1.5<Eγ <1.6 1.6<Eγ <1.7 0 1.6 1.7 1.8 1.9 2 2.1K 2.20 2.3 2.4 2.5 1.6 1.7 1.8 1.9 2 2.1 2.2K 0 2.3 2.4 2.5 1.6 1.7 1.8 1.9 2 2.1 2.2K 0 2.3 2.4 2.5 1 1 1 1 γd K ⇤(p) 1.2 -0.40 < cos θ < -0.30 -0.30 < cos θ < -0.20 -0.20 < cos θ < -0.10 1.2 CM CM CM BonnGa! 1 1 1 0 0 0 0 0.8 0.8 BonnGa 2 0.6 Cz0.6 −1 −1 −1 −1 0.4 0.4 −0.5 0 0.5 −0.5 0 0.5 −0.5 0 0.5 −0.5 0 0.5 0.2 0.2 1.7<Eγ <1.8 1.8<Eγ <1.9 1.9<Eγ <2.0 2.0<Eγ <2.1 1 1 1 1 0 0 1 K 0 K 0 K 0 1 b] θ θ θ -0.10 < cos CM < 0.00 0.00 < cos CM < 0.10 0.10 < cos CM < 0.20 µ 0 0 0 0 0.8 0.8 ) [ 0 0.6 0.6 K CM −1 −1 −1 −1 θ 0.4 0.4 −0.52.1<E0 <2.2 0.5 −0.5 2.2<E0 <2.30.5 −0.5 0 0.5 −0.5 0 0.5 γ γ 2.3<Eγ<2.4 Eγ>2.4 0.2 0.2 1 1 1 1 /dcos( σ 0 0 d 0 0 0 0 0 0 0 0.20 < cos θK < 0.30 0.30 < cos θK < 0.40 0.40 < cos θK < 0.50 0.8 CM CM CM 0.8 −1 −1 −1 −1 0.6 0.6 −0.5 0 0.5 −0.5 0 0.5 −0.5 0 0.5 −0.5 0 0.5 0.4 0.4 PRELIMINARYCM 0.2 0.2 C.Gleason (USC), 2017 cos✓K 0 0 K 0 K 0 K 0 0.8 θ θ θ 0.8 0.50 < cos CM < 0.60 0.60 < cos CM < 0.70 0.70 < cos CM < 0.80 0.7 0.7 Cz data not fit yet PRELIMINARY 0.6 Colin Gleason (USC) March 29, 2017 15 / 30 0.6 0.5 0.5 0.4 0.4 0.3 0.3 0.2 0.2 0.1 0.1 0 0 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5 W [GeV] N.Compton et al. (CLAS Collaboration), submitted to PRC,2017 K0 FIG. 12. The g10 (circles) and g13 (squares) di↵erential cross sections as a function of W (GeV) for each cos ✓CM.TheKAON- MAID model (dashed line) is shown, assuming no contributions from the K⇤(892) and K1(1270), along with the di↵erences between the two Bonn-Gatchina K0⇤ fits (shaded curve). The inner error bars represent the statistical uncertainty. The outer error bars are the statistical and systematic uncertainties added in quadrature. these experiments were the magnitude and directionality nature of γd K0⇤(p) compared to γp K+⇤,where of the magnetic field). The KAON-MAID model is also one has a neutral! exchange in the t-channel! and the other shown, assuming no contributions from the K⇤(892) and a charged exchange, can help di↵erentiate between con- K1(1270). These parameters were chosen for the model tributions from various t-channel exchanges (and the in- as this provided the best agreement with data. From terference between s-channel and t-channel diagrams).