The Circadian Visual System, 2005

Total Page:16

File Type:pdf, Size:1020Kb

The Circadian Visual System, 2005 BRAIN RESEARCH REVIEWS 51 (2006) 1– 60 available at www.sciencedirect.com www.elsevier.com/locate/brainresrev Review The circadian visual system, 2005 L.P. Morina,⁎, C.N. Allenb aDepartment of Psychiatry and Graduate Program in Neuroscience, Stony Brook University, Stony Brook, NY 11794, USA bDepartment of Physiology and Pharmacology and Centre for Research on Occupational and Environmental Toxicology, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA ARTICLE INFO ABSTRACT Article history: The primary mammalian circadian clock resides in the suprachiasmatic nucleus (SCN), a Accepted 9 August 2005 recipient of dense retinohypothalamic innervation. In its most basic form, the circadian Available online 5 December 2005 rhythm system is part of the greater visual system. A secondary component of the circadian visual system is the retinorecipient intergeniculate leaflet (IGL) which has connections to Keywords: many parts of the brain, including efferents converging on targets of the SCN. The IGL also Circadian provides a major input to the SCN, with a third major SCN afferent projection arriving from Suprachiasmatic the median raphe nucleus. The last decade has seen a blossoming of research into the SCN anatomy and function of the visual, geniculohypothalamic and midbrain serotonergic Intergeniculate leaflet systems modulating circadian rhythmicity in a variety of species. There has also been a IGL substantial and simultaneous elaboration of knowledge about the intrinsic structure of the SCN. Many of the developments have been driven by molecular biological investigation of the circadian clock and the molecular tools are enabling novel understanding of regional function within the SCN. The present discussion is an extension of the material covered by the 1994 review, “The Circadian Visual System.” © 2005 Elsevier B.V. All rights reserved. ⁎ Corresponding author. Fax: +1 631 444 7534. E-mail address: [email protected] (L.P. Morin). 0165-0173/$ – see front matter © 2005 Elsevier B.V. All rights reserved. doi:10.1016/j.brainresrev.2005.08.003 2 BRAIN RESEARCH REVIEWS 51 (2006) 1– 60 Abbreviations: 5-HT, serotonin CALB, calbindin CALR, calretinin CCK, cholecystokinin ENK, enkephalin GABA, gamma amino butyric acid GRP, gastrin releasing hormone IGL, intergeniculate leaflet NPY, neuropeptide Y NT, neurotensin PACAP, pituitary adenylate cyclase-activating polypeptide SCN, suprachiasmatic nucleus SP, substance P SS, somatostatin VIP, vasoactive intestinal polypeptide VP, vasopressin Contents 1. Introduction and caveats .................................................... 3 2. Psychophysicsofthecircadianrhythmsystem......................................... 4 3. Organization of the suprachiasmatic nucleus ......................................... 5 3.1. Nomenclature ...................................................... 5 3.2. Distribution of cell phenotypes ............................................. 5 3.3. Intra-SCN connections .................................................. 8 4. Retinal photoreceptors and projections ............................................ 8 4.1. Melanopsin ganglion cell characteristics ........................................ 8 4.2. Retinal ganglion cell projections and bifurcation ................................... 9 4.3. Classical and ganglion cell photoreceptor contribution to regulation of circadian rhythms, masking, the pupillary light reflex and melatonin suppression ....................................... 11 4.3.1. Circadian rhythms .............................................. 11 4.3.2. Masking, pupillary light reflex and melatonin suppression.......................... 11 5. Neuromodulators of the retinohypothalamic tract ..................................... 12 5.1. Glutamate ....................................................... 12 5.2. N-Acetylaspartyl glutamate .............................................. 12 5.3. Glutamate receptors .................................................. 13 5.4. Nitric oxide and RHT signal transduction ...................................... 13 5.5. PACAP.......................................................... 14 5.6. Substance P....................................................... 15 6. SCN structure–function relationships ............................................ 17 6.1. Function of cellular neuromodulators in the SCN .................................. 18 6.1.1. GABA...................................................... 18 6.1.2. VIP and VIP/PACAP receptors. ........................................ 18 6.1.3. Calbindin and the central subnucleus of the hamster SCN ........................ 19 6.1.4. Bombesin and gastrin releasing peptide................................... 21 6.1.5. Neuromedin U and neuromedin S ...................................... 21 6.1.6. Vasopressin .................................................. 21 6.1.7. Diurnality–nocturnality ............................................ 22 6.2. Acetylcholine ...................................................... 22 6.3. Neurophysiology of the SCN action potential rhythm................................ 23 6.4. Inter-SCN differences in gene expression ...................................... 25 6.5. Regional expression of Fos .............................................. 25 6.5.1. Hamster .................................................... 25 6.5.2. Rat ....................................................... 25 6.6. Regional clock gene expression ............................................ 26 BRAIN RESEARCH REVIEWS 51 (2006) 1– 60 3 6.6.1. Mouse...................................................... 26 6.6.2. Rat ....................................................... 27 6.6.3. Hamster .................................................... 27 6.7. Stimulus induction of gene expression ........................................ 28 6.7.1. Photic stimuli ................................................. 28 6.7.2. Nonphotic stimuli ............................................... 28 6.7.3. Inconsistencies between phase response and gene expression ...................... 29 6.8. Polysialic acid and SCN function ........................................... 30 7. SCN connectivity ........................................................ 31 7.1. Humoral factors..................................................... 31 7.2. Efferent anatomy .................................................... 31 7.3. Afferent anatomy .................................................... 32 8. Intergeniculate leaflet ..................................................... 34 8.1. Nomenclature ...................................................... 34 8.2. Development ...................................................... 34 8.3. Anatomy......................................................... 34 8.3.1. Geniculohypothalamic tract.......................................... 34 8.3.2. Connectivity and relationship to sleep, visuomotor and vestibular systems ............... 34 8.4. Function ......................................................... 35 8.4.1. Neurophysiology ................................................ 35 8.4.2. Nonphotic regulation of rhythmicity ..................................... 36 8.4.3. Photic regulation of rhythmicity ....................................... 37 9. Serotonin and midbrain raphe contribution to circadian rhythm regulation ....................... 38 9.1. Effects of serotonin-specific neurotoxins ....................................... 38 9.2. Serotonin receptor function .............................................. 38 9.3. Regulation and consequences of serotonin release ................................. 39 9.4. Serotonergic potentiation of light-induced phase shifts ............................... 40 10. Failure to re-entrain ...................................................... 41 11. Masking............................................................. 42 12. The future ........................................................... 43 Acknowledgments .......................................................... 43 References............................................................... 43 1. Introduction and caveats The purpose of the current review is to continue the theme of the original, but to do so with minimal redundan- There have been a large number of new developments with cy. The focus of the current presentation will be on respect to knowledge about the anatomy and physiology of necessary modifications to the perspective presented 10 circadian rhythm regulation since publication of our 1994 years ago, and to the substantial additions to the general review, “The Circadian Visual System” (Morin, 1994). As is body of knowledge relating to the circadian visual system. nearly always the case with such projects, many of the The title of the 1994 review, “The Circadian Visual System,” developments were well underway, and in some instances remains of some import. We believe it is worth emphasizing completed, prior to the actual publication of that review. Most that, taken as a whole, the research topic under consider- notably, much of the presentation in the 1994 review ation is “circadian,” is “visual” and certainly is a “system.” concerning the serotonergic system was incomplete or That is an aspect of the research topic of importance that wrong and understanding of the issues changed substantially should not be underestimated. soon after publication of the review. Other issues emerged as We do not intend to cover all facets of circadian rhythm
Recommended publications
  • Neuromedin U Directly Stimulates Growth of Cultured Rat Calvarial Osteoblast-Like Cells Acting Via the NMU Receptor 2 Isoform
    363-368 1/8/08 15:53 Page 363 INTERNATIONAL JOURNAL OF MOLECULAR MEDICINE 22: 363-368, 2008 363 Neuromedin U directly stimulates growth of cultured rat calvarial osteoblast-like cells acting via the NMU receptor 2 isoform MARCIN RUCINSKI, AGNIESZKA ZIOLKOWSKA, MARIANNA TYCZEWSKA, MARTA SZYSZKA and LUDWIK K. MALENDOWICZ Department of Histology and Embryology, Poznan University of Medical Sciences, 6 Swiecicki St., 60-781 Poznan, Poland Received April 4, 2008; Accepted June 2, 2008 DOI: 10.3892/ijmm_00000031 Abstract. The neuromedin U (NMU) system is composed of nervous system. Among others, peptides involved in regulation NMU, neuromedin S (NMS) and their receptors NMUR1 and of energy homeostasis belong to this group of compounds NMUR2. This system is involved in the regulation of energy (1-3), and the best recognised is leptin, an adipocyte-derived homeostasis, neuroendocrine functions, immune response, anorexigenic hormone, which plays a role in regulating bone circadian rhythm and spermatogenesis. The present study formation. Acting directly this pleiotropic cytokine exerts a aimed to investigate the possible role of the NMU system in stimulatory effect on bone formation. While acting through regulating functions of cultured rat calvarial osteoblast-like the central nervous system (CNS) leptin suppresses bone (ROB) cells. By using QPCR, high expression of NMU formation (4-10). Moreover, OB-Rb mRNA is expressed in mRNA was found in freshly isolated ROB cells while after 7, osteoblasts, and in vitro leptin enhances their proliferation 14, and 21 days of culture, expression of the studied gene and has no effect on osteocalcin and osteopontin production by was very low.
    [Show full text]
  • Molecular Dissection of G-Protein Coupled Receptor Signaling and Oligomerization
    MOLECULAR DISSECTION OF G-PROTEIN COUPLED RECEPTOR SIGNALING AND OLIGOMERIZATION BY MICHAEL RIZZO A Dissertation Submitted to the Graduate Faculty of WAKE FOREST UNIVERSITY GRADUATE SCHOOL OF ARTS AND SCIENCES in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY Biology December, 2019 Winston-Salem, North Carolina Approved By: Erik C. Johnson, Ph.D. Advisor Wayne E. Pratt, Ph.D. Chair Pat C. Lord, Ph.D. Gloria K. Muday, Ph.D. Ke Zhang, Ph.D. ACKNOWLEDGEMENTS I would first like to thank my advisor, Dr. Erik Johnson, for his support, expertise, and leadership during my time in his lab. Without him, the work herein would not be possible. I would also like to thank the members of my committee, Dr. Gloria Muday, Dr. Ke Zhang, Dr. Wayne Pratt, and Dr. Pat Lord, for their guidance and advice that helped improve the quality of the research presented here. I would also like to thank members of the Johnson lab, both past and present, for being valuable colleagues and friends. I would especially like to thank Dr. Jason Braco, Dr. Jon Fisher, Dr. Jake Saunders, and Becky Perry, all of whom spent a great deal of time offering me advice, proofreading grants and manuscripts, and overall supporting me through the ups and downs of the research process. Finally, I would like to thank my family, both for instilling in me a passion for knowledge and education, and for their continued support. In particular, I would like to thank my wife Emerald – I am forever indebted to you for your support throughout this process, and I will never forget the sacrifices you made to help me get to where I am today.
    [Show full text]
  • Expression of Neuromedins S and U and Their Receptors in the Hypothalamus and Endocrine Glands of the Rat
    255-259 4/7/07 20:57 Page 255 INTERNATIONAL JOURNAL OF MOLECULAR MEDICINE 20: 255-259, 2007 255 Expression of neuromedins S and U and their receptors in the hypothalamus and endocrine glands of the rat MARCIN RUCINSKI1, AGNIESZKA ZIOLKOWSKA1, GIULIANO NERI2, MARCIN TREJTER1, TOMASZ ZEMLEDUCH1, MARIANNA TYCZEWSKA1, GASTONE G. NUSSDORFER2 and LUDWIK K. MALENDOWICZ1 1Department of Histology and Embryology, Poznan School of Medicine, Poznan PL-69781, Poland; 2Department of Human Anatomy and Physiology, University of Padua, I-35121 Padua, Italy Received March 14, 2007; Accepted April 20, 2007 Abstract. Neuromedin S (NMS) and neuromedin U (NMU) NMS because it is highly expressed in the hypothalamic are regulatory peptides that share the C-terminal amino-acid suprachiasmatic nucleus (7-9). sequence and act via common G protein-coupled receptors Available findings stress numerous differences between called NMUR1 and NMUR2. Semiquantitative real time-PCR NMS and NMU. NMS is a neuropeptide mainly involved in showed that in the rat hypothalamus and testis NMS gene the modulation of the immune response, regulation of circadian expression was markedly higher than that of the NMU gene, rhythms and spermatogenesis. Moreover, NMS has been also while the reverse occurred in the anterior pituitary and thyroid suggested to be a potent anorexigenic hormone that acts, gland. Low expression of both genes was detected in the among others, via CRH neurons (7-9). NMU is a brain-gut thymus, adrenal gland and ovary, whereas in the pancreatic peptide involved in the regulation of energy homeostasis and islets only the expression of NMU mRNA was detected. In neuroendocrine functions (4,5,10-18).
    [Show full text]
  • Neural Regulation of Interactions Between Group 2 Innate Lymphoid Cells and Pulmonary Immune Cells
    Prime Archives in Immunology: 2nd Edition Book Chapter Neural Regulation of Interactions between Group 2 Innate Lymphoid Cells and Pulmonary Immune Cells Weiwei Chen1,2, Qiang Shu2 and Jie Fan1,3,4* 1Department of Surgery, University of Pittsburgh School of Medicine, USA 2The Children‟s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, China 3Research and Development, Veterans Affairs Pittsburgh Healthcare System, USA 4McGowan Institute for Regenerative Medicine, University of Pittsburgh, USA *Corresponding Author: Jie Fan, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA Published January 18, 2021 This Book Chapter is a republication of an article published by Jie Fan, et al. at Frontiers in Immunology in October 2020. (Chen W, Shu Q and Fan J (2020) Neural Regulation of Interactions Between Group 2 Innate Lymphoid Cells and Pulmonary Immune Cells. Front. Immunol. 11:576929. doi: 10.3389/fimmu.2020.576929) How to cite this book chapter: Weiwei Chen, Qiang Shu, Jie Fan. Neural Regulation of Interactions between Group 2 Innate Lymphoid Cells and Pulmonary Immune Cells. In: Ajmal Khan, Ahmed Al-Harrasi, editors. Prime Archives in Immunology: 2nd Edition. Hyderabad, India: Vide Leaf. 2021. 1 www.videleaf.com Prime Archives in Immunology: 2nd Edition © The Author(s) 2021. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Author Contributions: WC collected the data and drafted the manuscript. WC, QS, and JF conceived and designed the study.
    [Show full text]
  • Neuropeptides Controlling Energy Balance: Orexins and Neuromedins
    Neuropeptides Controlling Energy Balance: Orexins and Neuromedins Joshua P. Nixon, Catherine M. Kotz, Colleen M. Novak, Charles J. Billington, and Jennifer A. Teske Contents 1 Brain Orexins and Energy Balance ....................................................... 79 1.1 Orexin............................................................................... 79 2 Orexin and Feeding ....................................................................... 80 3 Orexin and Arousal ....................................................................... 83 J.P. Nixon • J.A. Teske Veterans Affairs Medical Center, Research Service (151), Minneapolis, MN, USA Department of Food Science and Nutrition, University of Minnesota, 1334 Eckles Avenue, St. Paul, MN 55108, USA Minnesota Obesity Center, University of Minnesota, 1334 Eckles Avenue, St. Paul, MN 55108, USA C.M. Kotz (*) Veterans Affairs Medical Center, GRECC (11 G), Minneapolis, MN, USA Veterans Affairs Medical Center, Research Service (151), Minneapolis, MN, USA Department of Food Science and Nutrition, University of Minnesota, 1334 Eckles Avenue, St. Paul, MN 55108, USA Minnesota Obesity Center, University of Minnesota, 1334 Eckles Avenue, St. Paul, MN 55108, USA e-mail: [email protected] C.M. Novak Department of Biological Sciences, Kent State University, Kent, OH, USA C.J. Billington Veterans Affairs Medical Center, Research Service (151), Minneapolis, MN, USA Veterans Affairs Medical Center, Endocrine Unit (111 G), Minneapolis, MN, USA Department of Food Science and Nutrition, University of Minnesota, 1334 Eckles Avenue, St. Paul, MN 55108, USA Minnesota Obesity Center, University of Minnesota, 1334 Eckles Avenue, St. Paul, MN 55108, USA H.-G. Joost (ed.), Appetite Control, Handbook of Experimental Pharmacology 209, 77 DOI 10.1007/978-3-642-24716-3_4, # Springer-Verlag Berlin Heidelberg 2012 78 J.P. Nixon et al. 4 Orexin Actions on Endocrine and Autonomic Systems ................................. 84 5 Orexin, Physical Activity, and Energy Expenditure ....................................
    [Show full text]
  • Neuromedin U: a Small Peptide in the Big World of Cancer
    cancers Review Neuromedin U: A Small Peptide in the Big World of Cancer Patrycja Przygodzka 1,* , Kamila Soboska 1,2, Ewelina Sochacka 1,2 and Joanna Boncela 1,* 1 Institute of Medical Biology, Polish Academy of Sciences, 106 Lodowa Str, 93-232 Lodz, Poland 2 Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska Str, 90-236 Lodz, Poland * Correspondence: [email protected] or [email protected] (P.P.); [email protected] (J.B.) Received: 29 July 2019; Accepted: 3 September 2019; Published: 5 September 2019 Abstract: Neuromedin U (NMU), a neuropeptide isolated from porcine spinal cord and named because of its activity as a rat uterus smooth muscle contraction inducer, is emerging as a new player in the tumorigenesis and/or metastasis of many types of cancers. Expressed in a variety of tissues, NMU has been shown to possess many important activities in the central nervous system as well as on the periphery. Along with the main structural and functional features of NMU and its currently known receptors, we summarized a growing number of recently published data from different tissues and cells that associate NMU activity with cancer development and progression. We ask if, based on current reports, NMU can be included as a marker of these processes and/or considered as a therapeutic target. Keywords: Neuromedin U; NMU; GPCR receptors; cancer 1. Neuromedin U Structure: Implications for Biological Activity Since it was identified in 1985, neuromedin U (NMU) expression has been found in many species in various isoforms. The longer forms NMU-17 (toad), NMU-21 (goldfish), NMU-23 (rat, tree frog), NMU-25 (human, pig, rabbit, dog, chicken, frog, goldfish), and the shorter forms NMU-8 (pig, dog) and NMU-9 (guinea pig, chicken) have been identified (reviewed in Reference [1]).
    [Show full text]
  • Neuromedins U and S Involvement in the Regulation of the Hypothalamo–Pituitary–Adrenal Axis
    REVIEW ARTICLE published: 05 December 2012 doi: 10.3389/fendo.2012.00156 Neuromedins U and S involvement in the regulation of the hypothalamo–pituitary–adrenal axis Ludwik K. Malendowicz*, Agnieszka Ziolkowska and Marcin Rucinski Department of Histology and Embryology, Poznan University of Medical Sciences, Poznan, Poland Edited by: We reviewed neuromedin U (NMU) and neuromedin S (NMS) involvement in the regulation Hubert Vaudry, University of Rouen, of the hypothalamo–pituitary–adrenal (HPA) axis function. NMU and NMS are structurally France related and highly conserved neuropeptides. They exert biological effects via two GPCR Reviewed by: receptors designated as NMUR1 and NMUR2 which show differential expression. NMUR1 James A. Carr, Texas Tech University, USA is expressed predominantly at the periphery, while NMUR2 in the central nervous system. Gábor B. Makara, Hungarian Elements of the NMU/NMS and their receptors network are also expressed in the HPA Academy of Sciences, Hungary axis and progress in molecular biology techniques provided new information on their *Correspondence: actions within this system. Several lines of evidence suggest that within the HPA axis Ludwik K. Malendowicz, NMU and NMS act at both hypothalamic and adrenal levels. Moreover, new data suggest Department of Histology and Embryology, Poznan University of that NMU and NMS are involved in central and peripheral control of the stress response. Medical Sciences, 6 Swie¸cickiSt., 60-781 Poznan, Poland. Keywords: neuromedin U, neuromedin S, hypothalamus, pituitary, adrenal e-mail: [email protected] INTRODUCTION Identification of specific NMU receptors (NMUR1 and In search for new biologically active peptides, the group of NMUR2) and its anorexigenic action have enhanced interest in Minamino, Kangawa, and Matsuo in the 1980s isolated numerous physiological role of NMU and NMS (Howard et al., 2000; Ida small neuropeptides from porcine spinal cord.
    [Show full text]
  • Oncogenic Features of Neuromedin U in Breast Cancer Are Associated with NMUR2 Expression Involving Crosstalk with Members of the WNT Signaling Pathway
    www.impactjournals.com/oncotarget/ Oncotarget, 2017, Vol. 8, (No. 22), pp: 36246-36265 Research Paper Oncogenic features of neuromedin U in breast cancer are associated with NMUR2 expression involving crosstalk with members of the WNT signaling pathway Stefan Garczyk1, Natalie Klotz1, Sabrina Szczepanski1, Bernd Denecke2, Wiebke Antonopoulos1, Saskia von Stillfried1, Ruth Knüchel1, Michael Rose1,* and Edgar Dahl1,* 1Molecular Oncology Group, Institute of Pathology, Medical Faculty of the RWTH Aachen University, D-52074 Aachen, Germany 2IZKF Aachen, Medical Faculty of the RWTH Aachen University, D-52074 Aachen, Germany *Equal co-senior authors Correspondence to: Stefan Garczyk, email: [email protected] Keywords: breast cancer, metastasis, neuromedin U, neuromedin U receptor 2, WNT signaling Received: December 20, 2016 Accepted: February 07, 2017 Published: March 11, 2017 Copyright: Garczyk et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC-BY), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. ABSTRACT Neuromedin U (NMU) has been shown driving the progression of various tumor entities, including breast cancer. However, the expression pattern of NMU and its receptors in breast cancer tissues as well as systematic insight into mechanisms and downstream targets of the NMU-driven signaling pathways are still elusive. Here, NMU expression was found up-regulated in all breast cancer subtypes when compared to healthy breast tissue. Using an in silico dataset comprising 1,195 samples, high NMU expression was identified as an indicator of poor outcome in breast tumors showing strong NMUR2 expression. Next, the biological impact of NMU on breast cancer cells in relation to NMUR2 expression was analyzed.
    [Show full text]
  • Basic Mechanisms of Circadian Rhythms and Their Relation to the Sleep/Wake Cycle
    http://www.springer.com/0-387-23641-4 Basic Mechanisms of Circadian Rhythms and their Relation to the Sleep/Wake Cycle MARTHA U. GILLETTE AND SABRA M. ABBOTT 1. The Temporal Spectrum of Life Organisms exhibit cyclic variations in a variety of essential functions, includ- ing the sleep-wake cycle, hormonal regulation, and reproduction. A primary environmental signal regulating these functions is the daily alternation of darkness and light exerted by the rotation of the earth. Superimposed upon the daily light-dark cycle is a seasonal influence that modifies the relative durations of day and night over the course of a year. These environmental changes make it necessary for organisms to be able to modify their behavior so that they are active during times when the opportunity to acquire nutri- tional resources exceeds the risk of predation, and resting during times when the need for vigilance is minimized. Be they day-active or night-active, all organisms need a means of keeping time in a 24-hour world and adjusting to changes in day length or transition times that may occur. As any observer of the natural world knows, an organism’s active behav- iors generally occur in bouts that recur at a predictable phase of the cycle of day and night. This cyclic organization of behavior is expressed in the pat- terning of wheel-running activity of rodent models (Figure 1). Figure 1A depicts the activity of an animal under conditions where the lights are on for 12 hours and off for 12 hours. This phenomenon is called entrainment,in which animals express activity with a fixed phase relationship to environ- mental conditions.
    [Show full text]
  • Phodopus Sungorus)
    EUROPEAN JOURNAL OF ECOLOGY EJE 2017, 3(1): 76-79, doi: 10.1515/eje-2017-0007 Social dominance and wheel running in females of Djungarian hamster (Phodopus sungorus) 1 Department of Zoology, Marcin T. Górecki1*, Bożena Błaszczyk1 Institute of Zoology, Poznań University of Life Science, Wojska Polskiego 71C, 60-625 ABSTRACT Poznań, Poland Wheel running is a behaviour that has a rewarding effect on animals. There are not numerous papers investigat- *Corresponding author, E-mail: marcing@ ing potential relationships between social rank and wheel running in mammals kept in groups, and the majority up.poznan.pl of published researches were conducted on male house mice (Mus musculus). The aim of our study was to investigate if social dominance and wheel running are related in female Djungarian hamsters (Phodopus sun- gorus). Hamsters were kept in groups, and social position of every animal was expressed as dominance index calculated on the basis of agonistic behaviour. We found significant positive correlation between dominance index and wheel running (rs = 0.809, n = 18, P < 0.0001), thus dominants used wheel more often than subor- dinates. Our results are consistent with those published on male mice. In conclusion, we claim that in majority of mammals (independent of their sex) kept in groups with restricted possibility of wheel running, dominants use wheel more often (or in optimal time) than subordinates, what is consistent with the fact that dominants have priority of access to resources. KEYWORDS rodent; activity; behavior; Syberian hamster; exercise. © 2017 Marcin T. Górecki, Bożena Błaszczyk This is an open access article distributed under the Creative Commons Attribution-NonCommercial-NoDerivs license INTRODUCTION animals’ physiology and behaviour, for example, brain activity Wheel running is a behaviour that is very often observed in cap- (e.g.
    [Show full text]
  • A Zebrafish Genetic Screen Identifies Neuromedin U As a Regulator of Sleep/Wake States
    HHS Public Access Author manuscript Author ManuscriptAuthor Manuscript Author Neuron. Manuscript Author Author manuscript; Manuscript Author available in PMC 2017 February 17. Published in final edited form as: Neuron. 2016 February 17; 89(4): 842–856. doi:10.1016/j.neuron.2016.01.007. A zebrafish genetic screen identifies neuromedin U as a regulator of sleep/wake states Cindy N. Chiu1,*,†, Jason Rihel2,3,*, Daniel A. Lee1,$, Chanpreet Singh1,$, Eric A. Mosser1,‡, Shijia Chen1, Viveca Sapin1, Uyen Pham1, Jae Engle1, Brett J. Niles1, Christin J. Montz1, Sridhara Chakravarthy1, Steven Zimmerman3, Kourosh Salehi-Ashtiani4,§, Marc Vidal4, Alexander F. Schier3,5,6,#, and David A. Prober1,# 1Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA 2Department of Cell and Developmental Biology, University College London, London, WC1E 6BT, UK 3Departments of Molecular and Cellular Biology, and Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA 4Center for Cancer Systems Biology and Department of Cancer Biology, Dana-Farber Cancer Institute, and Department of Genetics, Harvard Medical School, Boston, MA 02115, USA 5Center for Brain Science, Harvard University, Cambridge, MA, 02138, USA 6Division of Sleep Medicine, Harvard University, Cambridge, MA, 02138, USA Summary Neuromodulation of arousal states ensures that an animal appropriately responds to its environment and engages in behaviors necessary for survival. However, the molecular and circuit properties underlying neuromodulation of arousal states such as sleep and wakefulness remain unclear. To tackle this challenge in a systematic and unbiased manner, we performed a genetic overexpression screen to identify genes that affect larval zebrafish arousal. We found that the #Correspondence: [email protected], [email protected].
    [Show full text]
  • Ligand-Specific Signaling Profiles and Resensitization Mechanisms of the Neuromedin U2 Receptor
    1521-0111/94/1/674–688$35.00 https://doi.org/10.1124/mol.117.111070 MOLECULAR PHARMACOLOGY Mol Pharmacol 94:674–688, July 2018 Copyright ª 2018 by The American Society for Pharmacology and Experimental Therapeutics Ligand-Specific Signaling Profiles and Resensitization Mechanisms of the Neuromedin U2 Receptor Khaled Alhosaini,1 Omar Bahattab,2 Heider Qassam, R. A. John Challiss, and Gary B. Willars Department of Molecular and Cell Biology, University of Leicester, Leicester, United Kingdom Received November 8, 2017; accepted April 24, 2018 Downloaded from ABSTRACT The structurally related, but distinct neuropeptides, neuromedin resensitization is faster following NmU compared with NmS U (NmU) and neuromedin S (NmS) are ligands of two G protein- exposure, but is similar if endothelin-converting enzyme-1 coupled NmU receptors (NMU1 and NMU2). Hypothalamic activity is inhibited or knocked down. Although acute activation NMU2 regulates feeding behavior and energy expenditure and of extracellular signal-regulated kinase (ERK) is also similar, has therapeutic potential as an anti-obesity target, making an activation by NMU2 is longer lasting if NmS is the ligand. understanding of its signaling and regulation of particular in- Furthermore, when cells are briefly challenged before removal molpharm.aspetjournals.org terest. NMU2 binds both NmU and NmS with high affinity, of free, but not receptor-bound ligand, activation of ERK and p38 resulting in receptor-ligand co-internalization. We have investi- mitogen-activated protein kinase by NmS is more sustained. gated whether receptor trafficking events post-internalization However, only NmU responses are potentiated and extended by are biased by the ligand bound and can therefore influence endothelin-converting enzyme-1 inhibition.
    [Show full text]