Co-Occurrence of Chemical and Structural Defenses in the Gorgonian Corals of Guam

Total Page:16

File Type:pdf, Size:1020Kb

Co-Occurrence of Chemical and Structural Defenses in the Gorgonian Corals of Guam MARINE ECOLOGY PROGRESS SERIES Vol. 239: 105–114, 2002 Published August 23 Mar Ecol Prog Ser Co-occurrence of chemical and structural defenses in the gorgonian corals of Guam Melany P. Puglisi1,*, Valerie J. Paul3, Jason Biggs3, Marc Slattery1, 2 1Department of Pharmacognosy, School of Pharmacy, University of Mississippi, University, Mississippi 38677, USA 2National Center for the Development of Natural Products, Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, University, Mississippi 38677, USA 3University of Guam Marine Laboratory, Mangilao 96913, Guam ABSTRACT: Chemical and structural defense mechanisms have been reported to co-occur in algae and some soft corals. This study addressed the co-occurrence of chemical and structural defense mechanisms in 7 of the common gorgonian species found around Guam, specifically focusing on pat- terns of within-colony variation of these 2 modes of defense. Lipophilic crude extract and sclerite con- centrations were compared among the base, mid-axis and tip of multiple colonies of each species. Crude extract concentrations differed significantly among parts of Annella mollis, A. reticulata, Suber- gorgia suberosa, and Viminella sp. colonies. Sclerite concentrations differed significantly within colonies of Astrogorgia sp. and Villogorgia sp. Crude extracts and sclerites from the mid-axes and tips of the colonies were assayed in the field against natural assemblages of reef fishes. Extracts from the tips of 6 of the 7 species were unpalatable to fishes. Of these 6 species, extracts from the mid-axes of A. mollis, A. reticulata and S. suberosa, all of the family Subergorgiidae, deterred fish feeding. Chemical and structural defenses co-occurred in representatives of the families Plexauriidae (Astro- gorgia sp. and Villogorgia sp.) and Subergorgiidae (A. mollis and S. suberosa). Only 1 gorgonian coral, Viminella sp., appeared to rely primarily upon structural defenses rather than chemical defenses. To determine if size and shape were factors associated with sclerite structural defenses, a second set of feeding assays was conducted with powdered and whole sclerites from the unpalatable species. Fishes avoided the powdered sclerites from 4 of the 5 species when offered at natural con- centrations, suggesting that other properties remaining after the structural integrity of the sclerites was destroyed optimize the calcite skeletal elements for a defensive role. KEY WORDS: Extracts · Sclerites · Chemical Ecology · Annella spp. · Subergorgia suberosa · Rumphella sp. · Villogorgia sp. · Viminella sp. · Astrogorgia sp. · Guam Resale or republication not permitted without written consent of the publisher INTRODUCTION 1992, van Alstyne et al. 1994, Slattery 1999, Koh et al. 2000, Puglisi et al. 2000). Production of multiple de- Chemical (i.e. secondary metabolites) and structural fense mechanisms by sessile marine organisms may be defense mechanisms (i.e. CaCO3) have been reported to their advantage, allowing them to overcome preda- to co-occur in algae (Paul & Hay 1986, Pennings & Paul tion pressures from the high diversity of tropical con- 1992, Hay et al. 1994, Schupp & Paul 1994, Pennings et sumers (Paul & Hay 1986, Hay et al. 1994, Schupp & al. 1996) and octocorals (Gerhart et al. 1988, Harvell et Paul 1994, Pennings et al. 1996). Schupp & Paul (1994) al. 1988, Harvell & Fenical 1989, van Alstyne & Paul observed differences in the effects of diterpenoid sec- ondary metabolites from the green alga Halimeda *Present address: Scripps Institution of Oceanography, Mail macroloba and aragonite (the CaCO3 form found in H. Code 0204, UCSD, La Jolla, California 92093, USA. macroloba) when offered at natural concentrations to E-mail: [email protected] different herbivorous fishes in laboratory feeding assays. © Inter-Research 2002 · www.int-res.com 106 Mar Ecol Prog Ser 239: 105–114, 2002 Scarus sordidus and Ctenochaetus striatus avoided the Qualitative and quantitative variation of chemical diterpenes but not the aragonite, while Naso lituratus and structural components within colonies occurs in and Siganus spinus avoided the aragonite but not the some species of soft corals (Harvell & Fenical 1989, van diterpenes (Schupp & Paul 1994). A limited number of Alstyne & Paul 1992, Kim et al. 2000, Puglisi et al. 2000). comparative studies have been conducted among dif- In an early study of the chemical and structural com- ferent species in the same phylum other than calcified ponents of Pseudopterogorgia spp., metabolites were algae (Paul & Hay 1986). Studies such as these are reported to be concentrated at the tips of colonies important to determine whether general patterns of whereas sclerites were more concentrated in the mid- defense exist among related groups of organisms. axes and bases, suggesting a potential tradeoff in re- Gorgonians, like other sessile marine organisms, source allocation between chemical and structural produce a variety of secondary metabolites (Faulkner components (Harvell & Fenical 1989). Van Alstyne & 2000a,b and references therein). These metabolites are Paul (1992) observed similar patterns for the soft corals concentrated in the coenenchyme (polyp bearing con- Sinularia polydactyla and Sinularia sp. where higher nective tissue surrounding the gorgonian skeleton) concentrations of metabolites where found in the termi- which also contains small calcite skeletal elements nal branches of colonies. Kim et al. (2000) recently re- called sclerites (Bayer 1955). Feeding studies with ported the crude extracts from the tips of healthy Gor- crude extracts and secondary metabolites from sea gonia spp. colonies to be more resistant to the fungal fans and whips have demonstrated that many species pathogen Aspergillus sydowii than extracts from other of gorgonians are chemically defended (Pawlik et al. parts of the colony. This activity was correlated with 1987, Harvell et al. 1988, 1993, 1996, Fenical & Pawlik higher crude extract concentrations in the tips of the 1991, Pawlik & Fenical 1992, Maia et al. 1999, Slattery colonies. However, 2 independent studies of G. ven- 1999, Koh et al. 2000, Puglisi et al. 2000). However, talina by van Alstyne & Paul (1992) and Slattery (1999), broad surveys of the common species of gorgonians in found no within-colony variation of crude extract and the Caribbean and Guam show that the production of sclerite concentrations in the upper portions of the chemical defenses is not ubiquitous in this group of colonies. In a recent study, feeding assays with crude animals (Pawlik et al. 1987, Puglisi 2001). extracts and sclerites from the Pacific gorgonians An- Sclerites are the microscopic components of a meso- nella mollis and A. reticulata showed that crude ex- skeleton that prevent damage to the tissues caused by tracts from the tips of colonies deterred fish feeding, heavy wave action and currents (Esford & Lewis 1990, while similar concentrations of extracts from the mid- Lewis & von Wallis 1991). Sclerites differ considerably axes were not always effective deterrents (Puglisi et al. in size, shape and color among species of octocorals and 2000). Crude extract concentrations did not differ be- are used as a taxonomic delineation (Bayer 1955). The tween mid-axes and tips for either species, thus sug- few feeding studies conducted with gorgonian sclerites gesting that quantitative differences in the concentra- have demonstrated that the Caribbean gorgonians tion of the crude extract does not reflect differences in Briareum asbestinum (Harvell et al. 1993, West 1997, the active components. 1998), Gorgonia ventalina (van Alstyne & Paul 1992, In addition to providing an advantage to the organism Cronin et al. 1995, Slattery 1999), Leptogorgia virgulata by affording multiple defenses against a multitude of (Gerhart et al. 1988), Pseudopterogorgia acerosa (Har- predators, the components of a multiple defense system vell et al. 1988) and the Singapore gorgonians Cteno- may act additively or synergistically (Gerhart et al. 1988, cella pectinata, Ctenocella sp. and Echinogorgia sp. Hay et al. 1994, Hay 1996). The components are additive (Koh et al. 2000) are structurally as well as a chemically if the combined effect is equal to the sum of the expected defended. In a broad survey of Caribbean species, the activities predicted by the dose response curve of the in- extracts from species with small sclerites were usually dividual components. They are synergistic if the com- found to be unpalatable to fishes (Pawlik et al. 1987, bined effect of the components is greater than the sum Harvell & Fenical 1989). The importance of the size, predicted by the dose response curves of the individual shape and density of sclerites in the coenenchyme to components (Berenbaum 1989). One advantage of syn- palatability has only been addressed for B. asbestinum ergism to the host organism is that multiple components (West et al. 1993, West 1998). Short, densely packed of the defense system can be maintained within the sclerites in colonies at shallow depths deterred fishes, tissues in a non-toxic state. Evidence for synergism be- while longer, larger, more loosely associated sclerites in tween chemical defenses and CaCO3 in feeding studies colonies at deeper depths did not (West et al. 1993, has been reported for the green alga Halimeda goreauii West 1998). In addition, simulated predator damage to (Hay et al. 1994) and the gorgonian Leptogorgia virgu- colonies resulted in the induction of the smaller scle- lata (Gerhart et al. 1988,
Recommended publications
  • In the Long Island and It's Adjacent Areas in Middle Andaman, India
    Indian Journal of Geo Marine Sciences Vol. 47 (01), January 2018, pp. 96-102 Diversity and distribution of gorgonians (Octocorallia) in the Long Island and it’s adjacent areas in Middle Andaman, India J. S. Yogesh Kumar1*, S. Geetha2, C. Raghunathan3 & R. Sornaraj2 1Marine Aquarium and Regional Centre, Zoological Survey of India, (Ministry of Environment, Forest and Climate Change), Government of India, Digha – 721428, West Bengal, India. 2Research Department of Zoology, Kamaraj College (Manonmaniam Sundaranar University), Thoothukudi – 628003, Tamil Nadu, India. 3Zoological Survey of India (Ministry of Environment, Forest and Climate Change), Government of India, M Block, New Alipore, Kolkata - 700 053,West Bengal, India. [E.mail: [email protected] ] Received 05 November 2015 ; revised 17 November 2016 The diversity and distribution of gorgonian were assessed at seven sites at Long Island and it’s adjusting areas in Middle Andaman during 2013 to 2015. A total of 28 species of gorgonians are reported in shallow reef areas. Maximum life form was observed in Guaiter Island and Minimum in Headlamp Patch. A significant positive correlation was observed between the Islands, the species diversity was high for the genera Junceella, Subergorgia and Ellisella. Principal Component Analysis also supported for this three genes. [Keywords: Diversity, Gorgonian, Octocoral, Long Island, Middle Andaman, Andaman and Nicobar, India] Introduction The gorgonians popularly called as sea In India, the study on gorgonians fans and sea whips are marine sessile taxonomy initiated by Thomson and coelenterates with colonial skeleton and living Henderson15,16 and 50 species were reported of polyps1. They are exceptionally productive and a which 26 species were new from oyster banks of valuable natural asset.
    [Show full text]
  • Coelenterata: Anthozoa), with Diagnoses of New Taxa
    PROC. BIOL. SOC. WASH. 94(3), 1981, pp. 902-947 KEY TO THE GENERA OF OCTOCORALLIA EXCLUSIVE OF PENNATULACEA (COELENTERATA: ANTHOZOA), WITH DIAGNOSES OF NEW TAXA Frederick M. Bayer Abstract.—A serial key to the genera of Octocorallia exclusive of the Pennatulacea is presented. New taxa introduced are Olindagorgia, new genus for Pseudopterogorgia marcgravii Bayer; Nicaule, new genus for N. crucifera, new species; and Lytreia, new genus for Thesea plana Deich- mann. Ideogorgia is proposed as a replacement ñame for Dendrogorgia Simpson, 1910, not Duchassaing, 1870, and Helicogorgia for Hicksonella Simpson, December 1910, not Nutting, May 1910. A revised classification is provided. Introduction The key presented here was an essential outgrowth of work on a general revisión of the octocoral fauna of the western part of the Atlantic Ocean. The far-reaching zoogeographical affinities of this fauna made it impossible in the course of this study to ignore genera from any part of the world, and it soon became clear that many of them require redefinition according to modern taxonomic standards. Therefore, the type-species of as many genera as possible have been examined, often on the basis of original type material, and a fully illustrated generic revisión is in course of preparation as an essential first stage in the redescription of western Atlantic species. The key prepared to accompany this generic review has now reached a stage that would benefit from a broader and more objective testing under practical conditions than is possible in one laboratory. For this reason, and in order to make the results of this long-term study available, even in provisional form, not only to specialists but also to the growing number of ecologists, biochemists, and physiologists interested in octocorals, the key is now pre- sented in condensed form with minimal illustration.
    [Show full text]
  • Preliminary Report on the Octocorals (Cnidaria: Anthozoa: Octocorallia) from the Ogasawara Islands
    国立科博専報,(52), pp. 65–94 , 2018 年 3 月 28 日 Mem. Natl. Mus. Nat. Sci., Tokyo, (52), pp. 65–94, March 28, 2018 Preliminary Report on the Octocorals (Cnidaria: Anthozoa: Octocorallia) from the Ogasawara Islands Yukimitsu Imahara1* and Hiroshi Namikawa2 1Wakayama Laboratory, Biological Institute on Kuroshio, 300–11 Kire, Wakayama, Wakayama 640–0351, Japan *E-mail: [email protected] 2Showa Memorial Institute, National Museum of Nature and Science, 4–1–1 Amakubo, Tsukuba, Ibaraki 305–0005, Japan Abstract. Approximately 400 octocoral specimens were collected from the Ogasawara Islands by SCUBA diving during 2013–2016 and by dredging surveys by the R/V Koyo of the Tokyo Met- ropolitan Ogasawara Fisheries Center in 2014 as part of the project “Biological Properties of Bio- diversity Hotspots in Japan” at the National Museum of Nature and Science. Here we report on 52 lots of these octocoral specimens that have been identified to 42 species thus far. The specimens include seven species of three genera in two families of Stolonifera, 25 species of ten genera in two families of Alcyoniina, one species of Scleraxonia, and nine species of four genera in three families of Pennatulacea. Among them, three species of Stolonifera: Clavularia cf. durum Hick- son, C. cf. margaritiferae Thomson & Henderson and C. cf. repens Thomson & Henderson, and five species of Alcyoniina: Lobophytum variatum Tixier-Durivault, L. cf. mirabile Tixier- Durivault, Lohowia koosi Alderslade, Sarcophyton cf. boletiforme Tixier-Durivault and Sinularia linnei Ofwegen, are new to Japan. In particular, Lohowia koosi is the first discovery since the orig- inal description from the east coast of Australia.
    [Show full text]
  • Siboga Plexaurids (Coelenterata: Octocorallia) Re-Examined
    Siboga plexaurids (Coelenterata: Octocorallia) re-examined L.P. van Ofwegen & M.I.Y.T. Hermanlimianto L.P. van Ofwegen & M.I.Y.T. Hermanlimianto. Siboga plexaurids (Coelenterata: Octocorallia) re-ex- amined. Zool. Meded. Leiden 88 (3), 31.xii.2014: 19-58, figs 1-43.— ISSN 0024-0672. Leen P. van Ofwegen, Naturalis Biodiversity Center, P.O. Box 9517, 2300 RA Leiden, The Netherlands (e-mail: [email protected]; [email protected]). M.I.Y.T. Hermanlimianto, Research Centre for Oceanography, Indonesian Institute of Sciences Jl. Raden Saleh 43, Jakarta 10330. Indonesia (e-mail: [email protected]). Key words: Alcyonacea; Plexauridae; Indonesia; type material; re-descriptions. The type material of shallow-water plexaurid octocorals of the Siboga expedition has been re-exam- ined. Sclerites of all available types have been depicted using Scanning Electron Microscopy (SEM). Echinogorgia parareticulata (Stiasny, 1942) is synonymized with Echinogorgia clausa (Nutting, 1910). No type specimens of Echinogorgia thomsonideani Stiasny, 1942, Villogorgia aurivilliusi Stiasny, 1942, and Vil- logorgia spatulata Nutting, 1910 were found. Introduction With the merger of the Zoological Museum Amsterdam (ZMA) and Naturalis Bio- diversity Center (NBC) all octocorals of the Siboga expedition were merged in the coe- lenterate collection of the NBC and therefore they became more easily accessible for research. With the re-examination of ZMA nephtheid types the first author (Ofwegen, 2005) noticed that several of these types showed disintegrated sclerites, probably caused by acidity of their storage medium. To check other available material and to make information accessible for Indonesian octocoral reef research, the Siboga plexau- rid collection was checked for the genera expected to occur in shallow water, viz.
    [Show full text]
  • Diversity and Distribution of Shallow Water Octocorallia from Mahatma Gandhi Marine National Park, South Andaman, India
    Indian Journal of Geo Marine Sciences Vol. 48 (10), October 2019, pp. 1567-1575 Diversity and distribution of shallow water octocorallia from Mahatma Gandhi Marine National Park, South Andaman, India J. S. Yogesh Kumar1*, S. Geetha2, C. Raghunathan3 & R. Sornaraj2 1Marine Aquarium and Regional Centre, Zoological Survey of India, (MoEFCC), Government of India, Digha, West Bengal, India. 2Research Department of Zoology, Kamaraj College (Manonmaniam Sundaranar University), Thoothukudi, Tamil Nadu, India. 3Zoological Survey of India (MoEFCC), Government of India, M Block, New Alipore, Kolkata, West Bengal, India. *[E-mail: [email protected]] Received 25 April 2018; revised 04 June 2018 Diversity and distribution of octocorals of Mahatma Gandhi Marine National Park (MGMNP), South Andaman were investigated from June, 2013 to May, 2016 using a Line Intercept Transect method with help of SCUBA diving. The study was carried out in 11 different islands named as Alexandra, Belle, Chester, Snob, Grub, Jolly Bouy, Boat, Red Skin Rutland, Tarmugli and Twins Islands. We undertook a systematic study on the diversity of octocorals. Thirty five species belonging to 29 genera were reported from MGMNP of which, the alcyonacea was a dominant group followed by gorgonacea, helioporacea and pennatulacea at all the study sites which is also substantiated by Principal Component analysis, and Ternary plot. Results on Bray-Curtis cluster analysis showed 35 % to 76 % similarity between the study sites in MGMNP. [Keywords: Soft coral; Octocorallia; Diversity; Marine National Park; MNP; Wandoor, MGMNP]. Introduction the status and distribution patterns. Octocorallia The Andaman and Nicobar Islands are a low comprised of three orders: helioporacea (blue coral), mountainous chain of islands, which rise from a pennatulacea (sea pens), and alcyonacea (soft corals, submerged north-south trending ridge separating the Stolonifera, gorgonians and telestacea) found in Andaman Sea from the Bay of Bengal between 6°- intertidal to abyssal depths around World Ocean from 14°N and 92°-94°E.
    [Show full text]
  • From Mangroves to Coral Reefs; Sea Life and Marine Environments in Pacific Islands by Michael King Apia, Samoa: SPREP 2004
    SPREP fromto coral mangroves reefs sea life and marine environments in Pacific islands Michael King South Pacific Regional Environment Programme SPREP Cataloguing-in-Publication King, Michael From mangroves to coral reefs; sea life and marine environments in Pacific islands by Michael King Apia, Samoa: SPREP 2004 This handbook was commissioned by the South Pacific Regional Environment Programme with funding from the Canada South Pacific Ocean Development Program (C-SPODP) and the UN Foundation through the International Coral Reef Action Network (ICRAN) SPREP PO Box 240 Apia, Samoa Phone (685) 21929 Fax (685) 20231 Email: [email protected] Web site: www.sprep.org.ws From mangroves to coral reefs sea life and marine environments in Pacific islands ____________________________________________________________________________________________________ 1. Introduction 1 6. The classification and diversity of marine life 29 Biological classification – naming things 2. Coastal wetlands - estuaries and mangroves 5 Diversity – the numbers of species Estuaries – where rivers meet the sea 7. Crustaceans – shrimps to coconut crabs 33 Mangroves – coastal forests Smaller crustaceans 3. Shorelines – beaches and seaplants 9 Shrimps and prawns Beaches – rivers of sand Lobsters and slipper lobsters Seaweeds – large plants of the sea Crabs Seagrasses – underwater pastures Hermit crabs and stone crabs 4. Corals - from coral polyps to reefs 15 8. Molluscs – clams to octopuses 41 Stony corals and coral polyps Clams, oysters, and mussels (bivalves) Fire corals – stinging hydroids Sea snails (gastropods) Corals in deepwater Octopuses and their relatives (cephalopods) Soft corals and gorgonians - octocorals 9. Echinoderms – sea cucumbers to sand dollars 51 Coral reefs – the world’s Sea cucumbers largest natural structures Sea stars 5.
    [Show full text]
  • Extreme Habitat Specialisation and Population Structure of Two Gorgonian-Associated Pygmy Seahorses
    Vol. 444: 195–206, 2012 MARINE ECOLOGY PROGRESS SERIES Published January 10 doi: 10.3354/meps09471 Mar Ecol Prog Ser Extreme habitat specialisation and population structure of two gorgonian-associated pygmy seahorses R. E. Smith*, A. S. Grutter, I. R. Tibbetts School of Biological Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia ABSTRACT: Pygmy seahorses are a group of little-known miniature hippocampid fish that differ considerably in biology and ecology from their larger congeners. We estimated the population density, sex ratio and habitat of 2 sympatric, obligate gorgonian-associated pygmy seahorses, Hip- pocampus bargibanti and H. denise, in a 20 km long coastal marine protected area in southeast Sulawesi, Indonesia. Belt transects covering 200 m2 each were surveyed at 7 sites and 5 depth con- tours to record the density of seahorses and their host gorgonians. The population density (±SE) was 1.17 (±0.27) per 200 m2 for H. denise and 0.34 (±0.20) per 200 m2 for H. bargibanti, some of the lowest densities for unexploited seahorse populations studied thus far. Male−female pairs (43.9%) were the most common group composition for H. denise, with single, 3 or 4 individuals found on 19.5, 7.3 and 29.3% of inhabited gorgonians, respectively. H. denise inhabited 7.8% of Annella reticulata gorgonians within the survey area but were recorded from a total of 8 gorgon- ian genera during extensive opportunistic ad hoc searches. Annella spp. density was 10.7 times higher than that of Muricella spp. (the sole host of H. bargibanti), of which 20.0% were inhabited.
    [Show full text]
  • Section 3.4 Invertebrates
    Hawaii-Southern California Training and Testing Final EIS/OEIS October 2018 Final Environmental Impact Statement/Overseas Environmental Impact Statement Hawaii-Southern California Training and Testing TABLE OF CONTENTS 3.4 Invertebrates .......................................................................................................... 3.4-1 3.4.1 Introduction ........................................................................................................ 3.4-3 3.4.2 Affected Environment ......................................................................................... 3.4-3 3.4.2.1 General Background ........................................................................... 3.4-3 3.4.2.2 Endangered Species Act-Listed Species ............................................ 3.4-15 3.4.2.3 Species Not Listed Under the Endangered Species Act .................... 3.4-20 3.4.3 Environmental Consequences .......................................................................... 3.4-29 3.4.3.1 Acoustic Stressors ............................................................................. 3.4-30 3.4.3.2 Explosive Stressors ............................................................................ 3.4-51 3.4.3.3 Energy Stressors ................................................................................ 3.4-59 3.4.3.4 Physical Disturbance and Strike Stressors ........................................ 3.4-64 3.4.3.5 Entanglement Stressors .................................................................... 3.4-85 3.4.3.6
    [Show full text]
  • Benthic Communities of Mesophotic Coral Ecosystem Off Puducherry, East Coast of India
    RESEARCH ARTICLES Benthic communities of mesophotic coral ecosystem off Puducherry, east coast of India P. Laxmilatha1,*, S. Jasmine2, Miriam Paul Sreeram3 and Periasamy Rengaiyan1 1ICAR-Madras Research Centre of the Central Marine Fisheries Research Institute, Chennai 600 028, India 2ICAR-Vizhinjam Research Centre of the Central Marine Fisheries Research Institute, Cochin 695 521, India 3ICAR-Central Marine Fisheries Research Institute, Cochin 682 018, India to 150 m in clear waters of the tropics3. However, several The shallow coral reef ecosystems along the Indian species of corals interface between the shallow and deep coast are being threatened by anthropogenic global 1,2,4,5 ocean warming and increased frequency of coral sea environments around the world . In general, bleaching in the recent past. Identification and con- MCEs occur at a depth of 30–150 m of the euphotic zone 4,5 servation of deeper reef habitats are essential as they in tropical regions . The MCEs, situated off Puducherry serve as a source of larvae and livestock to replenish the east coast of India are considered to be unique, show- the shallow reef habitats. Information on the location ing all the features mentioned above. and spatial extent of the mesophotic coral ecosystems Biotic assemblages in MCEs are considered to be (MCEs) and their biodiversity is poorly known in the extensions of shallow-water coral ecosystem assemblages continental shelf of the east coast of India. In this due to their unique depth range4. In addition, a number of study, we have documented the species diversity of unique or depth-restricted species occur in these habitats.
    [Show full text]
  • Host Species of Pygmy Seahorses
    University of Groningen Fish, fans and hydroids Reijnen, Bastian T.; van der Meij, Sancia E. T.; van Ofwegen, Leen P. Published in: Zookeys DOI: 10.3897/zookeys.103.953 IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Publisher's PDF, also known as Version of record Publication date: 2011 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): Reijnen, B. T., van der Meij, S. E. T., & van Ofwegen, L. P. (2011). Fish, fans and hydroids: Host species of pygmy seahorses. Zookeys, (103), 1-26. https://doi.org/10.3897/zookeys.103.953 Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne- amendment. Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
    [Show full text]
  • Sexual Reproduction in Octocorals
    Vol. 443: 265–283, 2011 MARINE ECOLOGY PROGRESS SERIES Published December 20 doi: 10.3354/meps09414 Mar Ecol Prog Ser REVIEW Sexual reproduction in octocorals Samuel E. Kahng1,*, Yehuda Benayahu2, Howard R. Lasker3 1Hawaii Pacific University, College of Natural Science, Waimanalo, Hawaii 96795, USA 2Department of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel 3Department of Geology and Graduate Program in Evolution, Ecology and Behavior, University at Buffalo, Buffalo, New York 14260, USA ABSTRACT: For octocorals, sexual reproductive processes are fundamental to maintaining popu- lations and influencing macroevolutionary processes. While ecological data on octocorals have lagged behind their scleractinian counterparts, the proliferation of reproductive studies in recent years now enables comparisons between these important anthozoan taxa. Here we review the systematic and biogeographic patterns of reproductive biology within Octocorallia from 182 spe- cies across 25 families and 79 genera. As in scleractinians, sexuality in octocorals appears to be highly conserved. However, gonochorism (89%) in octocorals predominates, and hermaphro- ditism is relatively rare, in stark contrast to scleractinians. Mode of reproduction is relatively plas- tic and evenly split between broadcast spawning (49%) and the 2 forms of brooding (internal 40% and external 11%). External surface brooding which appears to be absent in scleractinians may represent an intermediate strategy to broadcast spawning and internal brooding and may be enabled by chemical defenses. Octocorals tend to have large oocytes, but size bears no statistically significant relationship to sexuality, mode of reproduction, or polyp fecundity. Oocyte size is sig- nificantly associated with subclade suggesting evolutionary conservatism, and zooxanthellate species have significantly larger oocytes than azooxanthellate species.
    [Show full text]
  • Propagation and Nutrition of the Soft Coral Sinularia Sp
    Propagation and Nutrition of the Soft Coral Sinularia sp. By Luís Filipe Das Neves Cunha University of W ales, Bangor School of Ocean Sciences Menai Bridge, Anglesey This Thesis is submitted in partial fulfilment for the degree of Master of Science in Shellfish Biology, Fisheries and Culture to the University of W ales October 2006 1 DECLARATION & STATEM ENTS This work has not previously been accepted in substance for any degree and is not being concurrently submitted for any degree. This dissertation is being submitted in partial fulfilment of the requirement of M.Sc Shellfish Biology, Fisheries & Culture This dissertation is the result of my own independent work / investigation, except where otherwise stated. Other sources are acknowledged by footnotes giving explicit references. A bibliography is appended. I hereby give consent for my dissertation, if accepted, to be made available for photocopying and for inter-library loan, and the title and summary to be made available to outside organisations. Signed................................................................................................................................. ..................................................... … … … … … … … … … … … … ..… … … … .. (candidate) Date..................................................................................................................................... ....................................................................... … … … … … … … … … … … … … … … … … . 2 Índex Abstract.........................................................................................
    [Show full text]