Basic Aerodynamics: Incompressible Flow Gary A

Total Page:16

File Type:pdf, Size:1020Kb

Basic Aerodynamics: Incompressible Flow Gary A Cambridge University Press 978-0-521-80582-7 - Basic Aerodynamics: Incompressible Flow Gary A. Flandro, Howard M. McMahon and Robert L. Roach Frontmatter More information BASIC AERODYNAMICS In the rapidly advancing fi eld of fl ight aerodynamics, it is important for students to completely master the fundamentals. This textbook, written by renowned experts, clearly presents the basic concepts underlying aerodynamic prediction methodology. These concepts are closely linked to physical principles so that they may be more readily retained and their limits of applicability fully appreciated. The ultimate goal is to provide the student with the necessary tools to confi dently approach and solve practical fl ight-vehicle design problems of current and future interest. The text is designed for use in a course in aerodynamics at the advanced undergraduate or graduate level. A comprehensive set of exercise problems is included at the end of each chapter. Gary A. Flandro is the Boling Chair (Emeritus) of Mechanical and Aerospace Engineering at the University of Tennessee Space Institute. He is also Vice President and Chief Engineer of Gloyer-Taylor Laboratories, LLC. He is a Fellow of the American Institute of Aeronautics and Astronautics. His research interests include acoustics, aerodynamics, rocket propulsion, fl ight mechanics and performance, hypersonic aerodynamics, propulsion, and vehicle design. Dr. Flandro received the National Aeronautics and Space Administration Exceptional Achievement Medal (1998) and the Fédération Aéronautique Internationale Diamond Soaring Badge (1979) for his work. Dr. Howard McMahon was a Professor Emeritus of Aerospace Engi- neering at the Georgia Institute of Technology. Following his graduate work at Santa Clara and doctoral research at the California Institute of Technology, he worked for CARDE (the Canadian Armament and Research Development Establishment) near Quebec City, with top rocketry researchers in Canada, including Gerald Bull. His desire to teach and expand his research work led him to the Georgia Institute of Technology, where he guided undergraduate and graduate students for 26 years. His particular area of focus was in aerodynamics, and he spent many years guiding research in the university wind tunnel with pro- jects involving rotary aviation, compressible fl ow, and fl uid mechanics. Following his retirement from the university in 1990, he continued to col- laborate with both teaching and research faculty until his death in 2008. Robert L. Roach currently teaches mathematics and science at the Kfar Hayarok School in Ramat Hasharon, Israel. He was formerly an Assistant Professor of Aerospace Engineering at the University of Tennessee Space Institute. He also taught aerodynamics, rocket pro- pulsion, and mathematics at the Georgia Institute of Technology and at the U. S. Air Force Institute of Technology. He is an Associate Fellow of the American Institute of Aeronautics and Astronautics. His research interests include numerical solutions of the canonical equations of engineering, propulsion, and many aspects of solar energy. © in this web service Cambridge University Press www.cambridge.org Cambridge University Press 978-0-521-80582-7 - Basic Aerodynamics: Incompressible Flow Gary A. Flandro, Howard M. McMahon and Robert L. Roach Frontmatter More information Cambridge Aerospace Series Editors: Wei Shyy and Michael J. Rycroft 1. J. M. Rolfe and K. J. Staples (eds.): Flight Simulation 2. P. Berlin: The Geostationary Applications Satellite 3. M. J. T. Smith: Aircraft Noise 4. N. X. Vinh: Flight Mechanics of High-Performance Aircraft 5. W. A. Mair and D. L. Birdsall: Aircraft Performance 6. M. J. Abzug and E. E. Larrabee: Airplane Stability and Control 7. M. J. Sidi: Spacecraft Dynamics and Control 8. J. D. Anderson: A History of Aerodynamics 9. A. M. Cruise, J. A. Bowles, C. V. Goodall, and T. J. Patrick: Principles of Space Instrument Design 10. G. A. Khoury (ed.): Airship Technology, 2nd Edition 11. J. P. Fielding: Introduction to Aircraft Design 12. J. G. Leishman: Principles of Helicopter Aerodynamics, 2nd Edition 13. J. Katz and A. Plotkin: Low-Speed Aerodynamics, 2nd Edition 14. M. J. Abzug and E. E. Larrabee: Airplane Stability and Control: A History of the Technologies that Made Aviation Possible, 2nd Edition 15. D. H. Hodges and G. A. Pierce: Introduction to Structural Dynamics and Aeroelasticity, 2nd Edition 16. W. Fehse: Automatic Rendezvous and Docking of Spacecraft 17. R. D. Flack: Fundamentals of Jet Propulsion with Applications 18. E. A. Baskharone: Principles of Turbomachinery in Air-Breathing Engines 19. D. D. Knight: Numerical Methods for High-Speed Flows 20. C. A. Wagner, T. Hüttl, and P. Sagaut (eds.): Large-Eddy Simulation for Acoustics 21. D. D. Joseph, T. Funada, and J. Wang: Potential Flows of Viscous and Viscoelastic Fluids 22. W. Shyy, Y. Lian, H. Liu, J. Tang, and D. Viieru: Aerodynamics of Low Reynolds Number Flyers 23. J. H. Saleh: Analyses for Durability and System Design Lifetime 24. B. K. Donaldson: Analysis of Aircraft Structures, 2nd Edition 25. C. Segal: The Scramjet Engine: Processes and Characteristics 26. J. F. Doyle: Guided Explorations of the Mechanics of Solids and Structures 27. A. K. Kundu: Aircraft Design 28. M. I. Friswell, J. E. T. Penny, S. D. Garvey, and A. W. Lees: Dynamics of Rotating Machines 29. B. A. Conway (ed): Spacecraft Trajectory Optimization 30. R. J. Adrian and J. Westerweel: Particle Image Velocimetry 31. G. A. Flandro, H. M. McMahon, and R. L. Roach: Basic Aerodynamics 32. H. Babinsky, and J. K. Harvey: Shock Wave–Boundary-Layer Interactions 33. C. K. W. Tam: Computational Aeroacoustics: A Wave Number Approach © in this web service Cambridge University Press www.cambridge.org Cambridge University Press 978-0-521-80582-7 - Basic Aerodynamics: Incompressible Flow Gary A. Flandro, Howard M. McMahon and Robert L. Roach Frontmatter More information Basic Aerodynamics Incompressible Flow Gary A. Flandro University of Tennessee Space Institute Howard M. McMahon Georgia Institute of Technology Robert L. Roach formerly University of Tennessee Space Institute © in this web service Cambridge University Press www.cambridge.org Cambridge University Press 978-0-521-80582-7 - Basic Aerodynamics: Incompressible Flow Gary A. Flandro, Howard M. McMahon and Robert L. Roach Frontmatter More information CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo, Delhi, Tokyo, Mexico City Cambridge University Press 32 Avenue of the Americas, New York, NY 10013-2473, USA www.cambridge.org Information on this title: www.cambridge.org/9780521805827 © Cambridge University Press 2012 This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press. First published 2012 Printed in the United States of America A catalog record for this publication is available from the British Library. Library of Congress Cataloging in Publication data Flandro, G. A. (Gary A.), 1934– Basic aerodynamics : incompressible fl ow / Gary A. Flandro, Howard M. McMahon, Robert L. Roach. p. cm. – (Cambridge Aerospace Series) Includes bibliographical references and index. ISBN 978-0-521-80582-7 (hardback) 1. Air fl ow – Textbooks. 2. Aerodynamics – Textbooks. I. McMahon, Howard M. (Howard Martin), 1927– II. Roach, Robert L. III. Title. IV. Series. TL574.F5F53 2011 629.132'3–dc23 2011022458 ISBN 978-0-521-80582-7 Hardback Additional resources for this publication at www. cambridge.org/fl andro Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party Internet Web sites referred to in this publication and does not guarantee that any content on such Web sites is, or will remain, accurate or appropriate. © in this web service Cambridge University Press www.cambridge.org Cambridge University Press 978-0-521-80582-7 - Basic Aerodynamics: Incompressible Flow Gary A. Flandro, Howard M. McMahon and Robert L. Roach Frontmatter More information For Howard Dr. Howard McMahon spent 26 years of his career as a professor and researcher at the Georgia Institute of Technology in Atlanta. Having been born just a few weeks after Charles Lindbergh’s fl ight across the Atlantic, he moved through the age of biplanes to the modern era of jets and rockets, working fi rst as a researcher and followed by his years as a teaching professor. His retirement from education allowed him to focus his energy on the completion of this textbook in collaboration with Dr. Gary Flandro and former student Dr. Bob Roach. Though he did not live to see the benefi ts of this book for aerospace students, we, his wife and children, are happy and proud that his work will be recognized. Dr. McMahon’s tenure at Georgia Tech occurred during a time of rapid change within the university. His work in the classroom and as a departmental colleague and leader helped to defi ne the Aerospace Engineering department’s identity and solidify the school’s recognition for excellence and high standards. Dr. McMahon’s strengths were his attention to meticulous detail and understanding of people. He directed the under- graduate fl uid dynamics laboratories and guided students through cooperative work- study programs, placing them in research and laboratory settings throughout the country. Whether at the university or at home, Dr. McMahon’s offi ce was an obvious destin- ation for anyone who needed advice on how to handle a diffi cult problem. He blended a knowledge and love of people with an ability to always make the complex seem simple. He shared his talents with much energy and passion during his tenure at the university, having taught more than 4000 aerospace engineers. We know that through the gift of this textbook many more people will learn from his wisdom and insights. As family members, we were fortunate to have that experience throughout our own lives. With loving memory, The McMahon Family June 2011 v © in this web service Cambridge University Press www.cambridge.org Cambridge University Press 978-0-521-80582-7 - Basic Aerodynamics: Incompressible Flow Gary A.
Recommended publications
  • Mission to Jupiter
    This book attempts to convey the creativity, Project A History of the Galileo Jupiter: To Mission The Galileo mission to Jupiter explored leadership, and vision that were necessary for the an exciting new frontier, had a major impact mission’s success. It is a book about dedicated people on planetary science, and provided invaluable and their scientific and engineering achievements. lessons for the design of spacecraft. This The Galileo mission faced many significant problems. mission amassed so many scientific firsts and Some of the most brilliant accomplishments and key discoveries that it can truly be called one of “work-arounds” of the Galileo staff occurred the most impressive feats of exploration of the precisely when these challenges arose. Throughout 20th century. In the words of John Casani, the the mission, engineers and scientists found ways to original project manager of the mission, “Galileo keep the spacecraft operational from a distance of was a way of demonstrating . just what U.S. nearly half a billion miles, enabling one of the most technology was capable of doing.” An engineer impressive voyages of scientific discovery. on the Galileo team expressed more personal * * * * * sentiments when she said, “I had never been a Michael Meltzer is an environmental part of something with such great scope . To scientist who has been writing about science know that the whole world was watching and and technology for nearly 30 years. His books hoping with us that this would work. We were and articles have investigated topics that include doing something for all mankind.” designing solar houses, preventing pollution in When Galileo lifted off from Kennedy electroplating shops, catching salmon with sonar and Space Center on 18 October 1989, it began an radar, and developing a sensor for examining Space interplanetary voyage that took it to Venus, to Michael Meltzer Michael Shuttle engines.
    [Show full text]
  • The Other Side
    Just how did we get there? and space; like Tarzan swinging from technology, and human expertise As the outer planets plod through vine to vine through the jungle, missing to catch up. the frozen void, once every 175 years a transition by even the smallest of JPL formally proposed the Grand they line up in such a way that Jupiter’s margins would spell disaster. A few Tour in 1970, with Harris M. “Bud” gravity can be used to fing a properly months and several reams of graph Schurmeier (BS ’45, MS ’48, ENG aimed spacecraft on toward Saturn, paper later, Flandro had worked out ’49) as the project manager. This was and thence to Uranus and Neptune. In hundreds of itineraries—some reaching an A-team effort: Schurmeier had just THE the spring of 1965, Caltech aeronautics all the way to then-planet Pluto—for presided over the Mariner 6 and 7 grad student Gary Flandro (MS ’60, the upcoming launch window. His fybys of Mars, and his collaborators PhD ’67) was working part-time up boss, Elliott “Joe” Cutting, booked included JPL’s planetary program at JPL analyzing so-called gravity- him a meeting with the chief of JPL’s director, Robert Parks (BS ’44), and its assist trajectories when he realized that advanced technical studies offce, spacecraft systems manager, Raymond OTHER such a four-for-one alignment would aeronautics professor Homer Stewart Heacock (BS ’52, MS ’53). It was also occur between 1976 and 1979; (PhD ’40). Stewart embraced the idea, a gold-plated Cadillac of a mission—a intrigued by the possibilities, he set christening it the Grand Tour.
    [Show full text]
  • NASA PAST and Future: a Personal Memoir
    STORY | ASK MAGAZINE | 25 NASA Past anD FUTURE: A PER sonaL MEmoIR BY Ken Randle When I was working for the Sperry Corporation in the sixties, we submitted a proposal to the Jet Propulsion Laboratory (JPL) to provide support for their unmanned space exploration programs. Our proposal won and, in July 1966, I took a team of twenty-three engineers to JPL. I had two responsibilities: manage the team and provide the configuration design of spacecraft for the Future Projects Study team. Mariner 10’s first image of Mercury, Photo Credit: NASA acquired on March 24, 1974. 26 | ASK MAGAZINE Exploring the Solar System For this discovery, Flandro received an award from the British T he Fut u re Projec t s St udy te a m, u nder JPL’s d irec t ion, per formed Interplanetary Society. The grand tour missions would require four six-month feasibility studies for NASA’s consideration. Two an entirely new kind of spacecraft, a design with capabilities far of them became successful missions—a pretty good record. beyond those of the simple machines that had reached the moon, The first study was for a mission to Venus with the release of Venus, and Mars. At the time, Voyager was the most complex a capsule to the surface before going on to a flyby of Mercury. unmanned machine ever designed. There had to be a boom for This became the Mariner 10 mission, the first mission to use the radioisotope thermoelectric generator, another boom for the the gravity assist of one planet to reach another planet.
    [Show full text]
  • Voyager Issue 2 Spring 2018
    ISSUE The University of Tennessee Space Institute’s 02 May 2018 Voyager Featured in this Highlights Issue A Message from the Executive Director, 2018 Black History Month program Dr. Mark Whorton Recent & Spring is now in full swing at the UT Space Institute and Wu’s Student Upcoming great things are happening. Thanks to Meghan Morris Competition Events for a great job in pulling together our UTSI Newsletter – The UTSI Voyager! We are especially excited about our newsletter title this month because it directly reflects on Astronaut Seddon Accolades our friend and colleague, Dr. Gary Flandro. Dr. Flandro is being honored in May as a Distinguished Alumnus of Caltech for his stellar achievement in conceiving the Students Dominate Featured Grand Tour of outer planets using gravitational assists in AIAA Student Department the Voyager Missions. Please congratulate Dr. Flandro Conference for this well-deserved, high honor. You will also read in the following pages about other great work by our team Welcomes as well as upcoming events. We are excited that our Kraft - Guest Speaker Chancellor, Dr. Beverly Davenport, is bringing her cabinet for AIAA Greater to visit our campus on June 4. Let’s get ready for a great Huntsville Section Student Clubs visit to show that UTSI is the place to be. Schmisseur lead of $9.8 million dollar contract UTSI’s newest family Marvin Look for in each issue! member, Tonya Travis Recent Events at UTSI Dr. Sidney A. 3rd Annual Wu Student Former NASA Astronaut, Rhea McPhee, speaker for Presentation Competition rd Seddon, M.D. 23 Annual African March 28, 2018 at UTSI American History Twelve students competed in the student competition.
    [Show full text]
  • Beyond the Heliopause
    BOOKS & ARTS COMMENT SPACE SCIENCE Beyond the heliopause Roger D. Launius savours a masterful account, by a veteran of interplanetary space science, of the Voyager probes’ mission to the giant planets. spacecraft for an extended mission. Voyager was downgraded to a Jupiter–Saturn fly-by, but engineers designed as much longevity into the probes as the US$875-million budget would allow. NASA launched Voyager 2 on 20 August 1977, and Voyager 1 followed on a faster, shorter trajectory on 5 September. Bell, who hung out with the science team as an undergraduate at the California Insti- tute of Technology in Pasadena, describes how the craft achieved their objectives — and then some. Voyager 1 was, for example, pro- grammed for a close encounter with Saturn’s moon Titan, during which it revealed a com- plex world with an atmosphere, thick clouds and water ice. It showed that Titan was ripe for scientific investigation, paving the way for the sustained investigations of the Huygens– Cassini mission at the dawn of this century. But this fly-by deflected Voyager 1 out of the Solar System’s elliptical plane; unable to con- tinue on to Uranus and Neptune, the craft’s planetary mission ended. Voyager 2 continued on to the two outer­ most giant planets. Bell reports how, as the probes flew, controllers constantly repro- grammed the on-board computers, which had only about 5,000 words’ worth of mem- ory each, to take advantage of scientific opportunities. Successfully capturing data was hugely taxing, but mission engineers and scientists made it work. The probes explored the giant planets’ systems of rings and magnetic fields, find- NASA/SPL Jupiter’s Great Red Spot, a massive stable storm photographed by Voyager 2 in 1979.
    [Show full text]
  • Linking Asteroids and Meteorites Through Reflectance Spectroscopy
    Astronomy 101 The Solar System Tuesday, Thursday 2:30-3:45 pm Hasbrouck 20 Tom Burbine [email protected] Course • Course Website: – http://blogs.umass.edu/astron101-tburbine/ • Textbook: – Pathways to Astronomy (2nd Edition) by Stephen Schneider and Thomas Arny. • You also will need a calculator. Office Hours • Mine • Tuesday, Thursday - 1:15-2:15pm • Lederle Graduate Research Tower C 632 • Neil • Tuesday, Thursday - 11 am-noon • Lederle Graduate Research Tower B 619-O Homework • We will use Spark • https://spark.oit.umass.edu/webct/logonDisplay.d owebct • Homework will be due approximately twice a week Class Averages • For people who took all 4 tests: • Class average is 81 • Grades range from a 98.5 to a 55.4 • Scores will go up when the lowest exam grade is dropped after the final • A (92.50 – 100) • A- (89.50 – 92.49) • B+ (87.50 – 89.49) • B (82.50 – 87.49) • B- (79.50 – 82.49) • C+ (77.50 – 79.49) • C (72.50 – 77.49) • C- (69.50 – 72.49) • D (59.50 – 69.49) • F (below 59.49) Final • Cumulative • Monday - 12/14 • 4:00 pm • Hasbrouck 20 • Review Session • Sunday -12/13 • 3:00 pm • Hasbrouck 134 Formulas you may need to know • p2 = a3 • F = GMm/r2 • F = ma • a = GM/r2 • Escape velocity = sqrt(2GM/r) • T (K) = T (oC) + 273.15 • c = f*λ • E = h*f • KE = 1/2mv2 • E = mc2 • Density = mass/volume • Volume = 4/3πr3 More Formulas • Power emitted per unit surface area = σT4 • λmax (nm) = (2,900,000 nm*K)/T • Apparent brightness = Luminosity 4π x (distance)2 Intelligent Life • Intelligent life that we can detect is usually defined as life that can build a radio telescope Radio • Transmitting information over radio waves is very cheap • uses equipment that is easy to build • has the information-carrying capacity necessary for the task • The information also travels at the speed of light.
    [Show full text]
  • The Conversion of Volume Integrals to Surface Form
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Masters Theses Graduate School 5-2005 Industry Motivated Advancements of Current Combustion Instability Model: The Conversion of Volume Integrals to Surface Form Sean Robert Fischbach University of Tennessee, Knoxville Follow this and additional works at: https://trace.tennessee.edu/utk_gradthes Part of the Aerospace Engineering Commons Recommended Citation Fischbach, Sean Robert, "Industry Motivated Advancements of Current Combustion Instability Model: The Conversion of Volume Integrals to Surface Form. " Master's Thesis, University of Tennessee, 2005. https://trace.tennessee.edu/utk_gradthes/4556 This Thesis is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Masters Theses by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a thesis written by Sean Robert Fischbach entitled "Industry Motivated Advancements of Current Combustion Instability Model: The Conversion of Volume Integrals to Surface Form." I have examined the final electronic copy of this thesis for form and content and recommend that it be accepted in partial fulfillment of the equirr ements for the degree of Master of Science, with a major in Aerospace Engineering. Joseph Majdalani, Major Professor We have read this thesis and recommend its acceptance: Gary
    [Show full text]
  • PDF Transcript
    You are cordially invited to the ~rrurru[lJl~~ M®®frarru~ Friends of the Malcolm A. Love Library, SDSU and the f->~©rru~©arru fr~®· ~~fr~@ Faculty Staff Center Saturday, June 3,1989 11:45 Punch in the Patio, Courtesy of the Board 12:30 Luncheon in Dining Room "The Voyager Guide to Giant Worlds" will be presented by Dr. Mark Littmann, author of Planets Beyond: Discovering the Outer Solar System, from which his talk is adapted. NASA's 12-year Voyager mission will be completing its tour of the giants Jupiter, Saturn, and Uranus with a fly-by of Neptune this August. Dr. Littmann's timely and entertaining talk will be accompanied by slides. An accomplished author, Dr. Littmann is President of Starmaster Corporation, a publisher and distributer of educational materials, with a special interest in astronomy education. Among other positions, for eighteen years he was Director of the Hansen Planetarium in Salt Lake City. ;,U)Kt.LAKD fOR VUYAGl:R 2 DISCOVERIES AT NEPTUNE Best lrdormstion Data from before Voyager 2 Voyager 2 Encounter Encounter Ifill in! Nept1me Diameter 30,800 miles 149,600 kilometers) Mass [Earth e l ] 17.2 Density (water =11 1.76 Rotation period 17.0 hours (based on clouds]: about 18.0 hours suspected for interior Magnetic field not detectable from Earth; suspected to be similar to Uranus' in strength Satellites 2; shepherd moon lsi for ring arcs expected to exist Ring arcs 3 reasonably certain; materia! fills about 20 percent of orbit; ring particles expected to be black Distance from center of planet 25,000 to 44,000 miles
    [Show full text]
  • Consumer Goods
    National Aeronautics and Space Administration National Aeronautics and Space Administration spinoff Office of the Chief Technologist NASA Headquarters Washington, DC 20546 www.nasa.gov NP-2018-08-2611-HQ 2019 Technology Transfer Program NASA Headquarters Daniel Lockney, Technology Transfer Program Executive Spinoff Program Office Goddard Space Flight Center Daniel Coleman, Editor-in-Chief Mike DiCicco, Senior Science Writer Naomi Seck, Senior Science Writer John Jones, Senior Graphics Designer This 2018 NASA photograph captured the International Rebecca Carroll, Contributing Writer Space Station in silhouette as it transited the Moon. TABLE OF CONTENTS 5 Foreword 7 Introduction 8 Executive Summary 20 NASA Technologies Benefiting Society 156 Spinoffs of Tomorrow 178 Technology Transfer Program 66 DEPARTMENTS 37 HEALTH AND MEDICINE TRANSPORTATION PUBLIC SAFETY CONSUMER GOODS 24 Unique Polymer Finds Widespread 40 Battery Innovations Power 58 NASA Brings Accuracy to World’s 84 Bowflex System Spurs Revolution in Use in Heart Devices All-Electric Aircraft Global Positioning Systems Home Fitness 27 Material for Mars Makes Life- 43 Shuttle Tire Sensors Warn Drivers of 63 Gas Regulators Keep Pilots Breathing 87 Spacesuit Air Filters Eliminate Household Saving Sutures Flat Tires Pet Odors 66 RoboMantis Offers to Take Over 30 Fluorescent Paints Spot DNA 46 Space-Age Insulator Evolves to Dangerous Missions 89 NASA Research Sends Video Game Players Damage from Radiation, Gene Editing Replace Plastic and Save Weight on a Journey to Mars SPINOFFS 70
    [Show full text]
  • Development of a Database for Rapid Approximation of Spacecraft Radiation Dose During Jupiter Flyby
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Masters Theses Graduate School 5-2016 DEVELOPMENT OF A DATABASE FOR RAPID APPROXIMATION OF SPACECRAFT RADIATION DOSE DURING JUPITER FLYBY Sarah Gilbert Stewart University of Tennessee - Knoxville, [email protected] Follow this and additional works at: https://trace.tennessee.edu/utk_gradthes Part of the Astrodynamics Commons, and the Space Vehicles Commons Recommended Citation Stewart, Sarah Gilbert, "DEVELOPMENT OF A DATABASE FOR RAPID APPROXIMATION OF SPACECRAFT RADIATION DOSE DURING JUPITER FLYBY. " Master's Thesis, University of Tennessee, 2016. https://trace.tennessee.edu/utk_gradthes/3814 This Thesis is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Masters Theses by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a thesis written by Sarah Gilbert Stewart entitled "DEVELOPMENT OF A DATABASE FOR RAPID APPROXIMATION OF SPACECRAFT RADIATION DOSE DURING JUPITER FLYBY." I have examined the final electronic copy of this thesis for form and content and recommend that it be accepted in partial fulfillment of the equirr ements for the degree of Master of Science, with a major in Aerospace Engineering. James E. Lyne, Major Professor We have read this thesis and recommend its acceptance: Lawrence W. Townsend, Zhili Zhang Accepted for the Council: Carolyn R. Hodges Vice Provost and Dean of the Graduate School (Original signatures are on file with official studentecor r ds.) DEVELOPMENT OF A DATABASE FOR RAPID APPROXIMATION OF SPACECRAFT RADIATION DOSE DURING JUPITER FLYBY A Thesis Presented for the Master of Science Degree The University of Tennessee, Knoxville Sarah Gilbert Stewart May 2016 Copyright © 2015 by Sarah G.
    [Show full text]
  • Introduction
    1 Introduction Fran Bagenal University of Colorado, Boulder Timothy E. Dowling University of Louisville, Kentucky William B. McKinnon Washington University, St. Louis 1.1 INTRODUCTION Jupiter is a substantial book. It reminds us of the vast heri­ tage of the careful astronomical observations, meticulous In the Sun's necklace of planets, one gem outshines the rest: Jupiter. Larger than all other planets and satellites combined, laboratory work and complex theoretical modeling on which Jupiter is a true giant. If intelligent beings exist on planets cir­ modern space-era investigations are based. cling nearby stars, it is probable that Jupiter is the only member of our planetary system they can detect. They can see the Sun After the spectacular Voyager flybys came books that wobble in its motion with a twelve-year period as Jupiter circles concentrated on a specific topic (sometimes expanded to in­ it, pulling first one way, then the other with the powerful tug of clude all four giant planets): Satellites of Jupiter edited by its gravity. If astronomers on some distant worlds put telescopes Morrison and Matthews (1982); Satellites edited by Burns in orbit above their atmospheres, they might even be able to de­ and Matthews (1986); Planetary Rings edited by Greenberg tect the sunlight reflected from Jupiter. But all the other planets - and Brahic (1984); and Physics of the Jovian Magnetosphere including tiny inconspicuous Earth - would be hopelessly lost in edited by Dessler (1983). Belton, West and Rahe (1989) the glare of our star, the Sun. Jupiter is outstanding among planets, not only for its size, edited a compendium of papers Time- Variable Phenomena but also for its system of orbiting bodies.
    [Show full text]
  • The Voyagers Forty Years Ago, the Two Voyager Spacecraft Left Earth to Begin One of the Most Rewarding Voyages of Human Discovery Ever to Have Been Undertaken
    mission control The Voyagers Forty years ago, the two Voyager spacecraft left Earth to begin one of the most rewarding voyages of human discovery ever to have been undertaken. Project Scientist Ed Stone recounts his treasured moments from the mission. wo Voyager spacecraft were launched on humankind’s longest journeys in T1977. At that time, Jupiter, Saturn, Uranus and Neptune were lined up so that the gravity assist of each planetary flyby could serve as a slingshot to speed a spacecraft on its way past all four giant planets in just 12 years rather than 30. This special planetary alignment occurs only every 176 years, and Gary Flandro, a Caltech graduate student working at NASA’s Jet Propulsion Laboratory (JPL) in the summer of 1965, found that the outer planets would align in the late 1970s. This led to a decade of planning and construction that eventually culminated in two Mini Cooper-sized spacecraft being launched into the Solar System: Voyager 2 on 20 August 1977 and Voyager 1 two weeks later. Fig. 1 | Professor Ed Stone in front of a replica of one of the Voyager spacecraft (left) and a Voyager The planetary encounters were the image of Jupiter’s volcanic moon Io (right). Credit: NASA/JPL-Caltech (left); US Geological Survey/ highlights for me personally as Voyager Science Photo Library (right) project scientist (Fig. 1, left). We knew we were on unequalled journeys of discovery, and every day we saw and learned new Io with respect to background stars. It was ago. The distance to the boundary of the things.
    [Show full text]