215-216 HH W11 Notes-Carbohydr-Part I

Total Page:16

File Type:pdf, Size:1020Kb

215-216 HH W11 Notes-Carbohydr-Part I Chem 215-216 HH W11-Notes – Dr. Masato Koreeda - Page 1 of 9. Date: March 24, 2011 Chapters 14.8; 23-1, 2, 5, and 7: Carbohydrates - Part I Carbohydrate nomenclature: http://www.chem.qmul.ac.uk/iupac/2carb/ Carbohydrates: e.g., • Polyhydroxylated aldehydes and ketones and their equivalents H O • Important constituents of both plants and animals (CHOH)n • D-glucose: The primary source of energy in the human body CH2OH • Hexoses: Sugars possessing six carbon atoms. • Pentoses: Sugars possessing five carbon atoms. • Aldoses: Sugars containing an aldehyde group. • Ketoses: Sugars containing a ketone group. • Monosaccharides: Carbohydrates that do not undergo cleavage on hydrolysis (treatment with water) to smaller molecules. I. Stereochemistry OH OH H H H OH 6 H 6 H 6 H 4 anomeric carbon 4 4 anomeric carbon HO O HO OH HO O 5 2 5 2 5 2 HO OH HO O HO H 3 1 3 1 H H 3 H 1 axial HO HO H H equatorial H H H HO OH one hemiacetal form of D-glucose open-chain form of D-glucose another hemiacetal form of D-glucose These are anomers and (C-1) epimers. Glucose reacts like an aldehyde since small amounts of the open-chain form are present at equilibrium. Glucose has 4 stereocenters → 24 = 16 stereoisomers possible → 8 pairs of enantiomers (1) Fischer projection formulas (a) (+)-Glyceraldehyde: configurational reference compound for all monosaccharides This stereochemistry is defined as "D" if the OH is projected to the right. O H O H O H vertical bonds go in R H OH H C OH C and horizontal bonds H HO CH2OH come out CH2OH CH2OH D-(+)-glyceraldehyde R-(+)-glyceraldehyde sign of optical rotation at the sodium D-line (589 nm) small upper-case D configurational designation • S-(-)-Glyceraldehyde has an L-configuration. • D-Stereochemistry and the sign of optical rotation have no direct correlation, although many D sugars are dextrorotatory (d or +). Chem 215-216 HH W11-Notes – Dr. Masato Koreeda - Page 2 of 9. Date: March 24, 2011 I. Stereochemistry (1) Fischer projection (cont’d) The configurational relatioship was established between D-glyceraldehyde and the naturally occurring positive-rotating grape sugar, (+)-glucose. OH OH OH O OH O 5 5 H 5 OH 4 2 HO 6 4 2 HO 6 4 2 HO 3 1 H 3 1 3 1 D HO HO O D HO HO D HO D-glucose D-fructose (found in many fruits) D-2-deoxyribose (found in DNA) [an aldohexose] [a ketohexose] [a deoxyaldopentose] (in its open-chain (in its open-chain (in its open-chain aldehyde form) aldehyde form) keto form) ------------------------------------------------------------------------------------------------------------------------ The Fischer projection of (+)-glucose • The more oxidized end of the chain (i.e., the aldehyde in this case) on top of the Fischer chain. • The first chiral center from the bottom of the chain determines the configuration (i.e., D or L). "view" through the "view" O O H surface of the paper 1 1 OH H H OH H OH H H OH 2 2 5 3 H HO 6 4 2 H H D-configuration HO 1 3 HO 3 H H OH HO H OH O H OH O H 6 H 4 4 "view" "view" HOH2C OH H OH (+)-glucose 5 5 H OH zig-zag conformation: 6 CH2OH CH2OH most favorable, all eclipsed! D-(+)-glucose natural conformation not a natural, D-(+)-glyceraldehyde in solution. stable conformation! For the conversion from the curved, eclipsed chain structure to the Fischer projection: 90° rotation O 1 HO HO OH H OH H OH 6 H H CH OH H H H 2 H 2 6 6 5 4 3 2 HO H H 1 5 H HO 1 5 H HO HO 4 1 H 3 O O HO H OH O H 2 3 OH HO 4 3 H 6 H 4 OH 2 "rotate" along HOH C HO H "rotate" along H the C -C -bond 2 5 OH HO H OH 1 2 the C3-C4-bond Look from this direction through the surface of the paper for the Fischer projection. Chem 215-216 HH W11-Notes – Dr. Masato Koreeda - Page 3 of 9. Date: March 24, 2011 Carbohydrate families: All aldoses are called “reducing sugars” because of the aldehyde group; they reduce certain metal ions and can be easily oxidized. Two well known reagents for reducing sugars are: 1) Ag(I) → Ag (0) in NaOH/H2O (Tollens test) 2) Cu(II)SO4 (blue) in NaOH/H2O → red Cu2O (Benedict’s reagent) Note: In addition to aldoses, ketoses are also reducing sugars. α-Hydroxyketones in general react with these reagents and can readily be oxidized. aldotriose: aldotetraoses: pentoses: O H O H O H O H O H H OH H OH HO H H OH H OH H OH H OH H OH HO H L! CH OH 2 H OH HO H CH2OH CH2OH CH OH CH OH D-glyceraldehyde D-erythrose D-threose 2 2 D-ribose: found in RNA L-arabinose Hexoses: There are 16 stereoisomers and 8 of these are D-sugars. Mnemonics for 8 D-aldohexoses: 1 1CHO 2 HO 2 H 3 HO 3 H H 4 HO 4 5 H 5 OH allose altrose glucose mannose gulose idose galactose talose 6 CH2OH All altruists gladly make gum in gallon tanks. Remember the structures of D-glucose and D-glyceraldehyde. You don’t need to memorize the structures of any other sugars. 1) Which of the eight D-hexoses shown above represent epimeric pairs? 2) Draw the Fischer projection structures of L-glucose, D-galactose (C-4 epimer of D- glucose; a milk sugar), and D-mannose (C-2 epimer of D-glucose). + - 3) Draw the Fischer projection structure of L-alanine, (H3C)-CH(NH3 )C(=O)O . Chem 215-216 HH W11-Notes – Dr. Masato Koreeda - Page 4 of 9. Date: March 24, 2011 I. Stereochemistry: (1) Mutarotation OH OH H H H OH 6 H β-OH 6 H 6 H 4 H O 4 H O 4 HO 2 HO H 2 HO 5 2 5 2 5 2 HO OH HO O HO H 3 1 3 1 1 axial H H 3 H HO HO H H equatorial H H H HO OH α-OH open-chain form of D-glucose β−anomer α−anomer [α] +18.7° [α] +112° D virtually no concentration of this species D β−D-(+)-glucopyranose in the equilibrium mixture; only a transient α−D-(+)-glucopyranose or β−D-glucose intermediate. or α−D-glucose • After the equilibrium is reached, the optical rotation of the mixture shows: [α]D +53°. Therefore, the mixture consists of 63% of β-D- and 37% of α-D-glucopyranose. Based on: X • 18.7 + (1 - X) • 112 = 53 Note: (1) Pyranose vs furanose 6-membered ring 5-membered ring O O (HO)n (HO)n OH OH O O pyranose furanose pyran furan (2) β− vs α−stereochemistry: anomeric stereoisomers (see pages 5-6 for definitions) Cyclic sugars such as furanoses and pyranoses: the stereochemistry at the anomeric carbon relative to that at the stereo-defining center whether the sugar is D or L. If a D-sugar and the non-ether part of the ring For D-sugars: drawn in front and the ether portion drawn β behind a group (usually OH, OR, or X) O O ponting up at the anomeric center OH H 1 (i.e., at C-1) is defined as β 1 H α and the one pointing down is OH defined as α. non-ether part of the ring For L-sugars: • The C-6 group such as CH2OH, C(=O)OH usually α adopts an equatorial orientation. O O • The or has nothing to do with the axial or OH H α β 1 equatorial orientation of the group attached at C-1. 1 H β • For L-sugars definition is reversed OH axial Examples equatorial equatorial OH HO 6 OH 6 β-OH equatorial 4 H 4 O HO α-OH O 5 OH HO 5 2 HO 2 6 5 O 1 H HO OH HO OH 1 OH 3 1 3 3 H equatorial β-OH OH H 4 2 HO H H HO β−D-glucose enantiomers!! β−L-glucose α−L-glucose Chem 215-216 HH W11-Notes – Dr. Masato Koreeda - Page 5 of 9. Date: March 24, 2011 α- or β- at the anomeric carbon – Taken from: http://www.chem.qmul.ac.uk/iupac/2carb/06n07.html The anomeric center: The new center of chirality generated by hemiacetal or hemiketal ring closure is called the anomeric center. The two stereoisomers are referred to as anomers, designated α or β according to the configurational relationship between the anomeric center and a specified anomeric reference atom. The anomeric reference atom and the anomeric configurational symbol (α or β): The anomeric reference atom is the configurational atom of the parent, unless multiple configurational prefixes are used. If multiple configurational prefixes are used, the anomeric reference atom is the highest-numbered atom of the group of chiral centers next to the anomeric center that is involved in the heterocyclic ring and specified by a single configurational prefix. In the α anomer, the exocyclic oxygen atom at the anomeric center is formally cis, in the Fischer projection (i.e., the same side with respect to the carbon main chain), to the oxygen attached to the anomeric reference atom; in the β anomer these oxygen atoms are formally trans. The anomeric symbol α or β, followed by a hyphen, is placed immediately before the configurational symbol D or L of the trivial name or of the configurational prefix.
Recommended publications
  • MM# Modeling of Aldopentose Pyranose Rings Michael K
    Chemical and Biological Engineering Publications Chemical and Biological Engineering 2002 MM# Modeling of Aldopentose Pyranose Rings Michael K. Dowd United States Department of Agriculture William M. Rockey Iowa State University Alfred D. French United States Department of Agriculture See next page for additional authors Follow this and additional works at: http://lib.dr.iastate.edu/cbe_pubs Part of the Biochemical and Biomolecular Engineering Commons, and the Biological Engineering Commons The ompc lete bibliographic information for this item can be found at http://lib.dr.iastate.edu/ cbe_pubs/31. For information on how to cite this item, please visit http://lib.dr.iastate.edu/ howtocite.html. This Article is brought to you for free and open access by the Chemical and Biological Engineering at Iowa State University Digital Repository. It has been accepted for inclusion in Chemical and Biological Engineering Publications by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. MM# Modeling of Aldopentose Pyranose Rings Abstract MM3 (version 1992, ϵ=3.0) was used to study the ring conformations of d-xylopyranose, d-lyxopyranose and d-arabinopyranose. The nee rgy surfaces exhibit low-energy regions corresponding to chair and skew forms with high-energy barriers between these regions corresponding to envelope and half-chair forms. The lowest 4 energy conformer is C 1 for α- and β-xylopyranose and α- and β-lyxopyranose, and the lowest energy 1 conformer is C 4 for α- and β-arabinopyranose. Only α-lyxopyranose exhibits a secondary low-energy region 1 ( C 4) within 1 kcal/mol of its global minimum.
    [Show full text]
  • Structural Features
    1 Structural features As defined by the International Union of Pure and Applied Chemistry gly- cans are structures of multiple monosaccharides linked through glycosidic bonds. The terms sugar and saccharide are synonyms, depending on your preference for Arabic (“sukkar”) or Greek (“sakkēaron”). Saccharide is the root for monosaccha- rides (a single carbohydrate unit), oligosaccharides (3 to 20 units) and polysac- charides (large polymers of more than 20 units). Carbohydrates follow the basic formula (CH2O)N>2. Glycolaldehyde (CH2O)2 would be the simplest member of the family if molecules of two C-atoms were not excluded from the biochemical repertoire. Glycolaldehyde has been found in space in cosmic dust surrounding star-forming regions of the Milky Way galaxy. Glycolaldehyde is a precursor of several organic molecules. For example, reaction of glycolaldehyde with propenal, another interstellar molecule, yields ribose, a carbohydrate that is also the backbone of nucleic acids. Figure 1 – The Rho Ophiuchi star-forming region is shown in infrared light as captured by NASA’s Wide-field Infrared Explorer. Glycolaldehyde was identified in the gas surrounding the star-forming region IRAS 16293-2422, which is is the red object in the centre of the marked square. This star-forming region is 26’000 light-years away from Earth. Glycolaldehyde can react with propenal to form ribose. Image source: www.eso.org/public/images/eso1234a/ Beginning the count at three carbon atoms, glyceraldehyde and dihydroxy- acetone share the common chemical formula (CH2O)3 and represent the smallest carbohydrates. As their names imply, glyceraldehyde has an aldehyde group (at C1) and dihydoxyacetone a carbonyl group (at C2).
    [Show full text]
  • Fall 2014 HO OH O OH O OH
    Fall 2014! HO OH O OH O OH HO OH HO OH !-D-ribofuranose (Haworth) HO HO O O HO OH OH HO HO OH !-D-mannopyranose HO OH (Haworth) anomeric anomeric carbon carbon The anomeric monosaccharides, α-D-glucopyranose and β-D-glucopyranose, drawn as Fischer and Haworth projections, and as ball-and-stick models Upon cyclization, the carbonyl carbon becomes chiral and is referred to as the anomeric carbon. In the α-form, the anomeric OH (O1) is on the opposite side of the ring from the CH2OH group, and in the β-form, O1 is on the same side. The α- and β-forms are referred to as anomers or anomeric pairs, and they interconvert in aqueous solution via the acyclic (“linear”) form (anomerization). Aqueous solutions of D-glucose contain ~64% β-pyranose and ~36% α-pyranose. OH OH O HO HO H O HO OH OH CHO OH OH !-D-glucopyranose OH OH 37.6 % !-D-glucofuranose HO 0.11 % OH OH OH OH OH O HO H HO D-glucose O OH HO OH acyclic aldehyde OH 0.006 % OH "-D-glucopyranose OH 62.0 % "-D-glucofuranose -H2O +H2O 0.28 % CH(OH)2 OH HO OH OH OH D-glucose acyclic hydrate 0.004 % Monosaccharides that are capable of assuming a form in solution that contains a free carbonyl group can be oxidized by relatively mild oxidizing agents such as Fe+3 or Cu+2 (Fehling’s reaction). The saccharide is oxidized and the reagent is reduced.! CHO COO- OH OH HO cyclic and hydrate HO forms of D-glucose OH OH 2Cu+2 2Cu+ OH OH OH OH D-glucose D-gluconate acyclic aldehyde q " Phosphorylation can restrict the types of cyclization reactions of the acyclic carbonyl form.
    [Show full text]
  • Furanosic Forms of Sugars: Conformational Equilibrium of Methyl B-D-Ribofuranoside† Cite This: Chem
    ChemComm View Article Online COMMUNICATION View Journal | View Issue Furanosic forms of sugars: conformational equilibrium of methyl b-D-ribofuranoside† Cite this: Chem. Commun., 2016, 52,6241 Patricia E´cija,a Iciar Uriarte,a Lorenzo Spada,ab Benjamin G. Davis,c Received 5th February 2016, Walther Caminati,b Francisco J. Basterretxea,a Alberto Lesarri*d and Accepted 1st April 2016 Emilio J. Cocinero*a DOI: 10.1039/c6cc01180b www.rsc.org/chemcomm The investigation of an isolated ribofuranose unit in the gas phase reveals the intrinsic conformational landscape of the biologically active sugar form. We report the rotational spectra of two conformers of methyl b-D-ribofuranoside in a supersonic jet expansion. Both 3 conformers adopt a near twisted ( T2) ring conformation with the methoxy and hydroxymethyl substituents involved in various intra- molecular hydrogen bonds. Scheme 1 The pyranose (1) and furanose (2) constitutional isomers of ribose, together with methyl-b-D-ribofuranoside (3), in Haworth projection. Sugars are flexible polymorphic species, exhibiting complex con- stitutional, configurational and conformational isomerism. The intramolecular reaction between carbonyl (typically reducing (RNA), as substrates (ATP or sugar-diphospho-nucleosides), or as terminus) and hydroxyl groups gives rise to cyclic hemiacetal/ cofactors (NAD(P) or NAD(P)H).7 Remarkably, their roles are often ketals, particularly stable for five- or six-membered ring forms critical: DNA analogues in which thefuranoseringsareexchanged (furanose or pyranose, respectively, Scheme 1). Large amplitude by pyranoses produce double helices with much stronger base motions, like ring puckering, inversion or pseudorotation, com- pairing, but are unsuitable to replace DNA.8 The biochemical bine with the internal rotation of the hydroxyl groups to produce a functionality in ribose-based biomolecules probably relies on Published on 01 April 2016.
    [Show full text]
  • Chem 352 - Lecture 5 Carbohydrates
    Chem 352 - Lecture 5 Carbohydrates Question for the Day: Unlike amino acids, which owe their diversity to a diverse array of functional groups, monosaccharides feature primarily two functional groups, hydroxyl groups and either a ketone or aldehyde group. What, then, do monosaccharides owe their diversity to? Introduction to Carbohydrates Carbohydrates are included as one of the major classes of biological molecules: ✦ Proteins ✦ Nucleic acids ✦ Carbohydrates ✦ Lipids Chem 352, Lecture 5 - Carbohydrates 2 Introduction to Carbohydrates ✦ Carbohydrates provide a major source of energy for living organisms. ✦ They also play major structural, protective and communication roles. Chem 352, Lecture 5 - Carbohydrates 3 Introduction to Carbohydrates ✦ Carbohydrates provide a major source of energy for living organisms. ✦ They also play major structural, protective and communication roles. Chem 352, Lecture 5 - Carbohydrates 3 Introduction to Carbohydrates ✦ Carbohydrates provide a major source of energy for living organisms. ✦ They also play major structural, protective and communication roles. Chem 352, Lecture 5 - Carbohydrates 3 Introduction to Carbohydrates Carbohydrates are chemically simple, but structurally complex ✦ (CH2O)n Like amino acid, simple sugars (monosaccharides) can combine to form polymers. ✦ monosaccharides (monomer) ✦ oligosaccharides (several monomers linked together) ✦ polysaccharides (many monomers linked together Chem 352, Lecture 5 - Carbohydrates 4 Monosaccharides Monosaccharides are ✦ either Aldoses ‣ polyhydroxylaldehydes
    [Show full text]
  • Structural and Functional Aspects of Pyranose-Furanose
    STRUCTURAL AND FUNCTIONAL ASPECTS OF PYRANOSE-FURANOSE MUTASES By Jijin Raj Ayanath Kuttiyatveetil A Thesis Submitted to the College of Graduate Studies and Research University of Saskatchewan In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Department of Chemistry, University of Saskatchewan, Saskatoon, SK, Canada © Jijin Raj Ayanath Kuttiyatveetil, May 2016. All rights reserved. Permission to Use In presenting this thesis in partial fulfillment of the requirements for a postgraduate degree from the University of Saskatchewan, I agree that the Libraries of this University may make it freely available for inspection. I further agree that permission for copying of this thesis in any manner, in whole or in part, for scholarly purposes may be granted by the professor or professors who supervised my thesis work or, in their absence, by the Head of the Department or the Dean of the College in which my work was completed. It is understood that any copying or publication or use of this thesis or parts thereof for financial gain shall not be allowed without my written permission. It is also understood that due recognition shall be given to me and to the University of Saskatchewan in any scholarly use which may be made of any material in this thesis. Requests for permission to copy or to make other use of material in this thesis in whole or part should be addressed to: Head of the Department of Chemistry University of Saskatchewan Saskatoon, Saskatchewan (S7N 5C9) i Abstract Pyranose-Furanose mutases are enzymes that catalyze the isomerization of six-membered pyranose and five-membered furanose forms of a nucleotide-based sugar.
    [Show full text]
  • Biochemistry Prelude: Carbohydrates (Part-A)-Mono & Oligosaccharides
    Paper : 04 Metabolism of carbohydrates Module : 01 Prelude: Carbohydrates (Part-A) –Mono & Oligosaccharides Principal Investigator Dr.S.K.Khare,Professor IIT Delhi. Paper Coordinator Dr. Ramesh Kothari,Professor UGC-CAS Department of Biosciences Saurashtra University, Rajkot-5, Gujarat-INDIA Dr. S. P. SinghProfessor Content Reviewer UGC-CAS Department of Biosciences Saurashtra University, Rajkot-5, Gujarat-INDIA Dr. Ramesh Kothari,Professor UGC-CAS Department of Biosciences Content Writer Saurashtra University, Rajkot-5, Gujarat-INDIA 1 Metabolism of Carbohydrates Biochemistry Prelude: Carbohydrates (Part-A)-Mono & Oligosaccharides Description of Module Subject Name Biochemistry Paper Name 04 Metabolism of Carbohydrates Module Name/Title 01 Prelude: Carbohydrates (Part-A)- Mono & Oligosaccharides Dr. Vijaya Khader Dr. MC Varadaraj 2 Metabolism of Carbohydrates Biochemistry Prelude: Carbohydrates (Part-A)-Mono & Oligosaccharides PRELUDE-CARBOHYDRATES- (Monosaccharide’s and Oligosaccharides) Objectives 1. Introduction and the function of Functions of carbohydrates 2. To understand classification of carbohydrates 3. To study the characteristics of carbohydrates 4. To understand the properties of mono- and di- saccharides: 3 Metabolism of Carbohydrates Biochemistry Prelude: Carbohydrates (Part-A)-Mono & Oligosaccharides Introduction Carbohydrates are one of the three major macronutrients in our diet representing a wide group of substances which include the sugars, starches, glycogen, gums and celluloses. Carbohydrates are known as the important
    [Show full text]
  • 20H-Carbohydrates.Pdf
    Carbohydrates Carbohydrates are compounds that have the general formula CnH2nOn Because CnH2nOn can also be written Cn(H2O)n, they appear to be “hydrates of carbon” Carbohydrates are also called “sugars” or “saccharides” Carbohydrates can be either aldoses (ald is for aldehyde and ose means a carbohydrate) or ketoses (ket is for ketone) OH OH O OH CH2OH CH2OH OHC HOH2C OH OH OH OH An Aldose A Ketose (D-Glucose) (D-Fructose) Carbohydrates Due to the multiple chiral centers along a linear carbon chain for carbohydrates, Emil Fischer developed the “Fischer Projection” in order to represent these compounds Remember how to draw a Fischer projection: 1) View the linear carbon chain along the vertical axis (always place the more oxidized carbon [aldehyde in an aldose] towards the top) 2) The horizontal lines are coming out of the page toward the viewer 3) Will need to change the viewpoint for each carbon so the horizontal substituents are always pointing towards the viewer CHO OH OH H OH HO H CH2OH = OHC H OH OH OH H OH CH2OH Emil Fischer (1852-1919) Carbohydrates The aldoses are thus all related by having an aldehyde group at one end, a primary alcohol group at the other end, and the two ends connected by a series of H-C-OH groups CHO CHO CHO CHO CHO H OH H OH H OH H OH HO H CH2OH H OH H OH H OH HO H CH2OH H OH H OH HO H CH2OH H OH HO H CH2OH CH2OH Aldotriose Aldotetrose Aldopentose Aldohexose Aldohexose D-glyceraldehyde D-erythose D-ribose D-allose L-allose The D-aldoses are named according to glyceraldehyde, the D refers to the configurational
    [Show full text]
  • Molecular Dynamics Simulations of Forced Conformational Transitions in 1,6-Linked Polysaccharides
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector 1456 Biophysical Journal Volume 87 September 2004 1456–1465 Molecular Dynamics Simulations of Forced Conformational Transitions in 1,6-Linked Polysaccharides Gwangrog Lee,* Wies1aw Nowak,*z Justyna Jaroniec,* Qingmin Zhang,* and Piotr E. Marszalek*y *Department of Mechanical Engineering and Materials Science, yCenter for Bioinspired Materials and Material Systems, Duke University, Durham, North Carolina; and zInstitute of Physics, Nicholaus Copernicus University, Torun´, Poland ABSTRACT Recent atomic force microscopy stretching measurements of single polysaccharide molecules suggest that their elasticity is governed by force-induced conformational transitions of the pyranose ring. However, the mechanism of these transitions and the mechanics of the pyranose ring are not fully understood. Here we use steered molecular dynamics simulations of the stretching process to unravel the mechanism of forced conformational transitions in 1,6 linked polysaccharides. In contrast to most sugars, 1,6 linked polysaccharides have an extra bond in their inter-residue linkage, C5–C6, around which restricted rotations occur and this additional degree of freedom increases the mechanical complexity of these polymers. By comparing the computational results with the atomic force microscopy data we determine that forced rotations around the C5–C6 bond have a significant and different impact on the elasticity of a- and b-linked polysaccharides. b-linkages of a polysaccharide pustulan force the rotation around the C5–C6 bonds and produce a Hookean-like elasticity but do not affect the conformation of the pyranose rings. However, a-linkages of dextran induce compound conformational transitions that include simultaneous rotations around the C5–C6 bonds and chair-boat transitions of the pyranose rings.
    [Show full text]
  • Nucleotide Sugars in Chemistry and Biology
    molecules Review Nucleotide Sugars in Chemistry and Biology Satu Mikkola Department of Chemistry, University of Turku, 20014 Turku, Finland; satu.mikkola@utu.fi Academic Editor: David R. W. Hodgson Received: 15 November 2020; Accepted: 4 December 2020; Published: 6 December 2020 Abstract: Nucleotide sugars have essential roles in every living creature. They are the building blocks of the biosynthesis of carbohydrates and their conjugates. They are involved in processes that are targets for drug development, and their analogs are potential inhibitors of these processes. Drug development requires efficient methods for the synthesis of oligosaccharides and nucleotide sugar building blocks as well as of modified structures as potential inhibitors. It requires also understanding the details of biological and chemical processes as well as the reactivity and reactions under different conditions. This article addresses all these issues by giving a broad overview on nucleotide sugars in biological and chemical reactions. As the background for the topic, glycosylation reactions in mammalian and bacterial cells are briefly discussed. In the following sections, structures and biosynthetic routes for nucleotide sugars, as well as the mechanisms of action of nucleotide sugar-utilizing enzymes, are discussed. Chemical topics include the reactivity and chemical synthesis methods. Finally, the enzymatic in vitro synthesis of nucleotide sugars and the utilization of enzyme cascades in the synthesis of nucleotide sugars and oligosaccharides are briefly discussed. Keywords: nucleotide sugar; glycosylation; glycoconjugate; mechanism; reactivity; synthesis; chemoenzymatic synthesis 1. Introduction Nucleotide sugars consist of a monosaccharide and a nucleoside mono- or diphosphate moiety. The term often refers specifically to structures where the nucleotide is attached to the anomeric carbon of the sugar component.
    [Show full text]
  • 25.3 Cyclization of Monosaccharides
    Hornback_Ch25_1085-1122 12/15/04 8:13 PM Page 1090 1090 CHAPTER 25 I CARBOHYDRATES PROBLEM 25.4 Determine the identity of each of these carbohydrates: O O CH2OH X X CH CH HO H HO H HO H HO H a) b) c) HO H HO H HO H CH2OH H OH H OH HO H CH X CH2OH O (Hint: This must be rotated first.) 25.3 Cyclization of Monosaccharides Up to this point, the structure of glucose has been shown as an aldehyde with hydroxy groups on the other carbons. However, as described in Section 18.9, aldehydes and ke- tones react with alcohols to form hemiacetals. When this reaction is intermolecular— that is, when the aldehyde group and the alcohol group are in different molecules—the equilibrium is unfavorable and the amount of hemiacetal that is present is very small. However, when the aldehyde group and the alcohol group are contained in the same molecule, as is the case in the second equation that follows, the intramolecular reaction is much more favorable (because of entropy effects; see Sections 8.13 and 18.9) and the hemiacetal is the predominant species present at equilibrium. H S O O . W Intermolecular reaction R±C±H ϩ H±.O .±R' R±C±H Equilibrium favors W reactants OS R' A hemiacetal H S O O H . Intramolecular reaction . O . OH Equilibrium favors products (6.7%) (93.3%) A cyclic hemiacetal Because glucose and the other monosaccharides contain both a carbonyl group and hy- droxy groups, they exist predominantly in the form of cyclic hemiacetals.
    [Show full text]
  • Chem331 Lect 12 Carbos
    Carbohydrates • Of the macromolecules that we will cover in this class, those involving carbohydrates are the most abundant in nature. • Via photosynthesis, over 100 billion metric tons of CO2 and H2O are converted into cellulose and other plant products. • The term carbohydrate is a generic one that refers primarily to carbon-containing compounds that contain hydroxyl, keto, or aldehydic functionalities. • Carbohydrates can range in sizes, from simple monosaccharides (sugars) to oligosaccharides, to polysaccharides. What Roles Do Carbohydrates Play In Vivo? Energy—Photosynthesis, (CO2+ lightàSugar + O2) Structure—cell walls and extracellular structures in plants, animals and bacteria Conjugation onto lipids, proteins—glycosylation – Molecular Recognition – Protein Folding – Solubility DNA – DNA backbone – DNA capping Carbohydrate Naming Monosaccharides—simple sugars, can’t be broken down, molecular formula (CH2O)n Oligosaccharides—a few (2-10) monosaccharides linked together (conventional names: disaccharide, etc.) Polysaccharides—polymers of simple sugars. Can have molecular weights >1x106 g/mol Monosaccharide Structure and Naming The simplest aldose and ketose are both trioses—containing 3 carbon atoms HEXOSES are the most abundant sugar in nature (think: glucose) Stereochemistry Aldoses >3 carbons and Ketoses > 4 carbons all have chiral centers. Nomenclature for sugars specifies chirality—compared to glyceraldehyde: Aldose and Ketose Tree – see your book for figure Enantiomers and Diastereomers Diastereomers have opposite conformations
    [Show full text]