Ribose Behavior in Silica Hydrogel
Astrobiology Science Conference 2017 (LPI Contrib. No. 1965) 3264.pdf RIBOSE BEHAVIOR IN SILICA HYDROGEL. Avinash Dass1, Thomas Georgelin1,2, Frederic Foucher1 Terence Kee3, Frances Westall1. 1CNRS-CBM- Orléans, France, 2Sorbonne Universités, UPMC Paris 06, CNRS UMR 7197, Laboratoire de Réactivité de Surface, 4 place Jussieu, F-75005 Paris-France, 3School of Chemistry, University of Leeds, Leeds, West Yorkshire, UK Introduction: Sugars are one of the most important serves 90% of its mobility in the gel compared in wa- classes of molecules, essential for all life species and ter. Moreover, in the gel, the isomerization of ribose extremely recoverable for biocatalysis of biomass. changes. Although we have not noted an evolution in However, some of sugars are unstable in solution, such the ratio pyronose/furanose, we have observed a pro- as D-ribose (C5H10O5)[1]. This sugar is highly im- gression of forms and a decrease of forms. C1 p C2 portant for life because it constitutes the carbohydrate p part of DNA and RNA. For example, at pH 9 and C4 p C5 60°C, its half life is about 50 h; in more physiological p C3 conditions, at pH 7 and 37°C, it should be around 500 p h extrapolating from the data of Miller and co- workers[2]. In solution, D-ribose is in equilibrium with four isomers : -pyranose, -pyranose,-furanose, - C1 furanose. p O OH O OH C4 C1 f C2 f f C5 5 1 f C1 C4 4 2 f f C5 HO OH HO 3 OH f OH OH -pyranose -pyranose 100 95 90 85 80 75 70 65 Chemical Shift (ppm) 5 O O OH OH In situ NMR and Raman spectroscopy have been HO HO 4 1 3 2 applied to evaluate the thermal behavior of ribose in HO OH HO OH the gel in hydrothermal conditions.
[Show full text]