Vessel-Fibre Ratio, Specific Gravity and Durability of Four Ghanaian Hardwoods

Total Page:16

File Type:pdf, Size:1020Kb

Vessel-Fibre Ratio, Specific Gravity and Durability of Four Ghanaian Hardwoods Journal of Science and Technology, Vol. 29, No. 3 (2009), pp 8-23 8 © 2009 Kwame Nkrumah University of Science and Technology (KNUST) VESSEL-FIBRE RATIO, SPECIFIC GRAVITY AND DURABILITY OF FOUR GHANAIAN HARDWOODS C. Antwi-Boasiako and E. Atta-Obeng Department of Wood Science & Technology, Faculty of Renewable Natural Resources Kwame Nkrumah University of Science & Technology, Kumasi, Ghana. ABSTRACT Several factors affect wood durability but the influence of anatomy is scarcely studied. Vessels and fibres sampled across and along stems of Milicia excelsa (Welw.) C. C. Berg) (odum), En- tandrophragma cylindricum (Sprague) Sprague (sapele), Terminalia ivorensis A. Chev. (emire) and Antiaris toxicaria Lesch. (kyenkyen) were studied to understand the relationship between their vessel-fibre (V-F) ratios, specific gravities (SGs) and durabilities. Vessels, fibres and their proportions were examined from macerates and T.S. of prepared slides. While the timbers ex- hibit major hardwood cell-types (e.g. vessels, fibres and parenchyma), intra-stem variability ex- ists with more vessels and greater V-F ratios at the crowns and in sapwoods than at the butts and in heartwoods, unlike for fibres. Inter-specific variation also shows A. toxicaria has the greatest vessel content then T. ivorensis, E. cylindricum and M. excelsa, a contrary pattern for fibre con- tents. V-F ratio ranks as: A. toxicaria > E. cylindricum > T. ivorensis > M. excelsa, while SGs are higher in E. cylindricum (667) and M. excelsa (635) than in T. ivorensis (507) and A. toxi- caria (505), which hardly differ from published data. Except for E. cylindricum, butts have the greatest SGs. Correlations between their V-F ratios and SGs are R2 = 34%, 84%, 32% and 1% respectively. Timbers with greatest vessels and V-F ratios but least fibres and SGs have weak relationship and very low durabilities, as in A. toxicaria (R2 = 1%). However, M. excelsa, which has the strongest V-F ratio and SG relationship (R2 = 84%), is very durable. Keywords: Cell type, durability class, macerates, paratracheal parenchyma, vessel- fibre ratio INTRODUCTION characteristics including anatomy, specific Wood has always served man and contributed gravity, chemistry, physico-mechanical proper- decisively to his survival all through the devel- ties and durability. Anatomically, woods from opment of civilization, as the raw material for different timber species have different cell ar- several products including furniture, flooring, rangements (Irvine, 1961). Within a species, sleepers, dowels and bridges amid other com- the relative proportion of various cell types is petitive materials such as metals, cement (i.e. consistent. However, among species and spe- concrete) and plastics (Tsoumis, 1991). These cies groups (i.e. genera), various kinds of cells functions would require understanding of wood and properties are pronounced (Wilson and Journal of Science and Technology © KNUST December 2009 Vessel-fibre ratio, specific gravity and durability ... 9 White, 1986). Such cell type variation and their wood is most strongly influenced by the vessel- arrangement affect timber characteristics. Hard- to-fibre ratio, among others (Balatinecz et al, woods comprise at least four major cell types: 2001). Panshin and de Zeeuw (1980) reported fibres, vessels, longitudinal and ray paren- that the natural durability of wood is due to chyma. Each may constitute 15% or more of toxic heartwood extractives and principally its the volume of hardwood xylem. Of these, two cell wall constituents (lignifications) and their kinds of longitudinal cells, fibres and vessels, relative distributions in the different cell types. are common. Most conduction occurs through They stated that wood is degradable through the specialized vessels leaving the thick-walled attack by bacteria, fungi and certain insects (highly lignified) fibres the primary function of (e.g. termites). Thus, those with remarkably mechanical support (Esau, 1977). Fibre applies excellent, moderate or no resistance at all to bio to long, narrow cells with closed ends other -deterioration are termed durable, moderately than tracheids (Panshin and de Zeeuw, 1980), and non-durable (or perishable) respectively. tapered and usually thick-walled cells of hard- Properties and proportions of vessels and fibres wood xylem (Tsoumis, 1991). Kollman and of timbers would likely affect their SGs besides Côté (1984) also described vessel as the dis- chemistry and strength. Thus, this study sought tinctive tracheary structure of all hardwoods to determine the fibre-vessel properties and referred to as a pore because, when viewed in their relationship with SGs as well as durabili- cross section, it has a larger lumen than other ties of four Ghanaian timbers [odum (Milicia cell types. They vary in size and shape depend- excelsa (Welw.) C. C. Berg), emire (Terminalia ing upon the wood species and location within ivorensis A. Chev.), sapele (Entandrophragma the growth increment of the stem. Parenchyma cylindricum) (Sprague) Sprague and kyenkyen cells are thin-walled and rectangular, which (Antiaris toxicaria Lesch.)]. contain protoplasm. Lateral types (called ray parenchyma) conduct sap horizontally. Nota- MATERIALS AND METHODS bly, cell types affect wood properties including Preparation of wood samples for various specific gravity (SG), which Haygreen and Bowyer (1996) defined as the ratio of its den- tests sity to the density of water, and is also consid- The four hardwood species were selected from ered the single best indicator of strength and Mim, Brong-Ahafo (in the semi-deciduous for- durability (Shrivastava, 1987). McDonald et al. est of Ghana) based on variation in their natural (1995) citing, Whitmore (1973) and Wiemann durability, minimum felling rate and availabil- and Williamson (1988, 1989), reported that ity. Two discs (30cm), taken from the sapwood while many species have a constant SG, some and heartwood (near the bark and pith respec- tropical wet forest trees show very large in- tively) from the butt (i.e. diameter at breast creases (>200%) from heartwood to the sap- height) and crown (1m beneath the main wood. Wiemann (1990) and McDonald et al. branch) regions of each timber were air–dried, (1995) associated the radial increase in wood cut and planed into radial strips (2×2×20cm) SG probably with one of the following ana- and air-dried to 12-14% moisture content (mc). ο tomical changes: increase in fibre wall thick- They were conditioned (at 25 C and 65%rh) ness, decrease in fibre lumen diameter and in- and further sectioned into the required dimen- crease in fibre frequency. SG is also generally sions for the various tests. related to the proportion of wood volume occu- pied by fibre relative to that occupied by ves- Determination of specific gravity sels (Wilson and White, 1986). Specific gravity was determined based on air- dried weight (12-14% mc) and volume of wood The amounts of cell types also affect wood (Haygreen and Bowyer, 1996). Ten blocks durability, specific gravity and its strength (2×2×5cm) from the sapwood and heartwood properties. For instance, the relative density of sampled from the butt and crown regions of Journal of Science and Technology © KNUST December 2009 10 Antwi-Boasiako and Atta-Obeng each timber were weighed, made air-tight with ate the relationship between vessel-fibre ratio plastic foils and their volumes determined by and specific gravity of each timber. water displacement. The specific gravity of each stake was calculated by dividing the con- RESULTS ditioned air-dried weight by the volume of wa- Brief anatomical properties of the timbers ter it displaced in the formula: Qualitative anatomical descriptions of the four species (i.e. M. excelsa, E. cylindricum, T. W SG , where, W = air-dried weight ivorensis and A. toxicaria) are represented us- (Va Vb) ing micrographs in Plates 1-4 respectively. Plate 1 shows the transverse section (T.S.) of of stake at 12-14% mc, Va = volume of water sapwood and heartwood of M. excelsa from its after immersion, Vb = volume of water before crown and butt regions, as in the other three immersion. timbers. Generally, M. excelsa has medium (100-200µm) to very large (300µm) vessels. Sectioning of wood samples Proportion of solitary vessels is medium with 3 Conditioned stakes (3cm ) from each stem po- two to three radial multiples of the same size. sition of each timber were first softened by Fibre tissue proportion is low (21-40%) to me- boiling in water for 18hrs. 20µm-thick sections dium (41-60%). Axial parenchyma is paratra- from their transverse surfaces were made from cheal, while the ray parenchyma is narrow (≤ each stake (using a sliding microtome), washed 0.5mm) and of uniform width. T.S. of E. cylin- in water and stained in 1% Safranin in 50% dricum (Plate 2) shows it has small (<100µm) ethanol for 10 minutes. The sections were re- to medium ((100-200µm) vessels, solitary with washed in water and passed through a series of 2 - 3 radial multiples, and also of the same size. increasing concentration of ethanol (30, 50, 70, Fibre proportion is low (21-40%) to medium 95 and 100%) for 5mins. each to dehydrate (41-60%). Similarly, axial parenchyma is para- them. The samples were then mounted in Can- tracheal, ray parenchyma uniform and narrow ada balsam. All prepared slides were dried at (≤ 0.5mm). T.S. of the T. ivorensis stem shows 60°C overnight and observations then made its vessels are medium (100-200µm) to large under the light microscope. Fibre, vessel and (200-300µm), solitary with 2 to 4 radial multi- parenchyma tissue proportions were determined ples, and of the same size. Fibre tissue propor- from each sample using ×10 and × 40 objective tion is low (21-40%) to medium (41-60%). and ×10 eyepiece lens with a 20-point dot grid Axial parenchyma is paratracheal (i.e. associ- scale placed progressively at five different posi- ated with pores, and of vasicentric type), ray tions. At each placement, the number of points parenchyma very narrow (≤ 0.5mm) and of covering any tissue was counted and later ex- uniform width (Plate 3).
Recommended publications
  • Kwame Nkrumah University of Science and Technology
    KWAME NKRUMAH UNIVERSITY OF SCIENCE AND TECHNOLOGY, KUMASI COLLEGE OF AGRICULTURE AND NATURAL RESOURCES FACULTY OF AGRICULTURE DEPARTMENT OF HORTICULTURE PHENOLOGY AND SEED GERMINATION IMPROVEMENT OF TWO IMPORTANT TREE SPECIES IN THE MOIST SEMI-DECIDUOUS FOREST ZONE OF GHANA BY JAMES OPPONG AMPONSAH APRIL, 2016 ii PHENOLOGY AND SEED GERMINATION IMPROVEMENT OF TWO IMPORTANT TREE SPECIES IN THE MOIST SEMI-DECIDUOUS FOREST ZONE OF GHANA By JAMES OPPONG AMPONSAH A THESIS SUBMITTED TO THE SCHOOL OF RESEARCH AND GRADUATE STUDIES, KWAME NKRUMAH UNIVERSITY OF SCIENCE AND TECHNOLOGY (KNUST), KUMASI, IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF PHILOSOPHY (SEED SCIENCE AND TECHNOLOGY) APRIL, 2016 iii DECLARATION I hereby declare that this submission is my own work towards the MPhil. and that, to the best of my knowledge it contains no material previously published by another person nor material which has been accepted for the award of any other degree of the university, except where due acknowledgement has been made in the text. ............................................... ................................. JAMES OPPONG AMPONSAH DATE (STUDENT) .............................................. .................................... DR. B. K. MAALEKU DATE (SUPERVISOR) .............................................. .................................... MR. PATRICK KUMAH DATE (CO- SUPERVISOR) .............................................. .................................... DR. FRANCIS APPIAH DATE (HEAD OF DEPARTMENT) i DEDICATION To my dear wife Faustina Oppong and son Jayden Oppong for their patience and understanding when I had to scale down my time and attention for them when working on this thesis. ii ACKNOWLEDGEMENT My heartfelt gratitude goes to my supervisors, Dr. B. K. Maaleeku and Mr. Patrick Kumah of the Department of Horticulture, Kwame Nkrumah University of Science and Technology for their direction, encouragements, and supervision without which the work would not have been accomplished.
    [Show full text]
  • Complete Index of Common Names: Supplement to Tropical Timbers of the World (AH 607)
    Complete Index of Common Names: Supplement to Tropical Timbers of the World (AH 607) by Nancy Ross Preface Since it was published in 1984, Tropical Timbers of the World has proven to be an extremely valuable reference to the properties and uses of tropical woods. It has been particularly valuable for the selection of species for specific products and as a reference for properties information that is important to effective pro- cessing and utilization of several hundred of the most commercially important tropical wood timbers. If a user of the book has only a common or trade name for a species and wishes to know its properties, the user must use the index of common names beginning on page 451. However, most tropical timbers have numerous common or trade names, depending upon the major region or local area of growth; furthermore, different species may be know by the same common name. Herein lies a minor weakness in Tropical Timbers of the World. The index generally contains only the one or two most frequently used common or trade names. If the common name known to the user is not one of those listed in the index, finding the species in the text is impossible other than by searching the book page by page. This process is too laborious to be practical because some species have 20 or more common names. This supplement provides a complete index of common or trade names. This index will prevent a user from erroneously concluding that the book does not contain a specific species because the common name known to the user does not happen to be in the existing index.
    [Show full text]
  • The Woods of Liberia
    THE WOODS OF LIBERIA October 1959 No. 2159 UNITED STATES DEPARTMENT OF AGRICULTURE FOREST PRODUCTS LABORATORY FOREST SERVICE MADISON 5, WISCONSIN In Cooperation with the University of Wisconsin THE WOODS OF LIBERIA1 By JEANNETTE M. KRYN, Botanist and E. W. FOBES, Forester Forest Products Laboratory,2 Forest Service U. S. Department of Agriculture - - - - Introduction The forests of Liberia represent a valuable resource to that country-- especially so because they are renewable. Under good management, these forests will continue to supply mankind with products long after mined resources are exhausted. The vast treeless areas elsewhere in Africa give added emphasis to the economic significance of the forests of Liberia and its neighboring countries in West Africa. The mature forests of Liberia are composed entirely of broadleaf or hardwood tree species. These forests probably covered more than 90 percent of the country in the past, but only about one-third is now covered with them. Another one-third is covered with young forests or reproduction referred to as low bush. The mature, or "high," forests are typical of tropical evergreen or rain forests where rainfall exceeds 60 inches per year without pro­ longed dry periods. Certain species of trees in these forests, such as the cotton tree, are deciduous even when growing in the coastal area of heaviest rainfall, which averages about 190 inches per year. Deciduous species become more prevalent as the rainfall decreases in the interior, where the driest areas average about 70 inches per year. 1The information here reported was prepared in cooperation with the International Cooperation Administration. 2 Maintained at Madison, Wis., in cooperation with the University of Wisconsin.
    [Show full text]
  • FAO Forestry Paper 120. Decline and Dieback of Trees and Forests
    FAO Decline and diebackdieback FORESTRY of tretreess and forestsforests PAPER 120 A globalgIoia overviewoverview by William M. CieslaCiesla FADFAO Forest Resources DivisionDivision and Edwin DonaubauerDonaubauer Federal Forest Research CentreCentre Vienna, Austria Food and Agriculture Organization of the United Nations Rome, 19941994 The designations employedemployed and the presentation of material inin thisthis publication do not imply the expression of any opinion whatsoever onon the part ofof thethe FoodFood andand AgricultureAgriculture OrganizationOrganization ofof thethe UnitedUnited Nations concerning the legallega! status ofof anyany country,country, territory,territory, citycity oror area or of itsits authorities,authorities, oror concerningconcerning thethe delimitationdelimitation ofof itsits frontiers or boundarboundaries.ies. M-34M-34 ISBN 92-5-103502-492-5-103502-4 All rights reserved. No part of this publicationpublication may be reproduced,reproduced, stored in aa retrieval system, or transmittedtransmitted inin any form or by any means, electronic, mechani-mechani­ cal, photocopying or otherwise, without the prior permission of the copyrightownecopyright owner.r. Applications for such permission, withwith aa statement of the purpose andand extentextent ofof the reproduction,reproduction, should bebe addressed toto thethe Director,Director, Publications Division,Division, FoodFood andand Agriculture Organization ofof the United Nations,Nations, VVialeiale delle Terme di Caracalla, 00100 Rome, Italy.Italy. 0© FAO FAO 19941994
    [Show full text]
  • A Guide to Lesser Known Tropical Timber Species July 2013 Annual Repo Rt 2012 1 Wwf/Gftn Guide to Lesser Known Tropical Timber Species
    A GUIDE TO LESSER KNOWN TROPICAL TIMBER SPECIES JULY 2013 ANNUAL REPO RT 2012 1 WWF/GFTN GUIDE TO LESSER KNOWN TROPICAL TIMBER SPECIES BACKGROUND: BACKGROUND: The heavy exploitation of a few commercially valuable timber species such as Harvesting and sourcing a wider portfolio of species, including LKTS would help Mahogany (Swietenia spp.), Afrormosia (Pericopsis elata), Ramin (Gonostylus relieve pressure on the traditionally harvested and heavily exploited species. spp.), Meranti (Shorea spp.) and Rosewood (Dalbergia spp.), due in major part The use of LKTS, in combination with both FSC certification, and access to high to the insatiable demand from consumer markets, has meant that many species value export markets, could help make sustainable forest management a more are now threatened with extinction. This has led to many of the tropical forests viable alternative in many of WWF’s priority places. being plundered for these highly prized species. Even in forests where there are good levels of forest management, there is a risk of a shift in species composition Markets are hard to change, as buyers from consumer countries often aren’t in natural forest stands. This over-exploitation can also dissuade many forest willing to switch from purchasing the traditional species which they know do managers from obtaining Forest Stewardship Council (FSC) certification for the job for the products that they are used in, and for which there is already their concessions, as many of these high value species are rarely available in a healthy market. To enable the market for LKTS, there is an urgent need to sufficient quantity to cover all of the associated costs of certification.
    [Show full text]
  • Grown Terminalia Ivorensis (Black Afara) Timber
    Nigerian Journal of Technology (NIJOTECH) Vol. 38, No. 2, April 2019, pp. 302 – 310 Copyright© Faculty of Engineering, University of Nigeria, Nsukka, Print ISSN: 0331-8443, Electronic ISSN: 2467-8821 www.nijotech.com http://dx.doi.org/10.4314/njt.v38i2.5 DETERMINED UNCERTAINTY MODELS OF REFERENCE MATERIAL PROPERTIES AND THE EN 338 STRENGTH CLASS OF NIGERIAN GROWN TERMINALIA IVORENSIS (BLACK AFARA) TIMBER A. I. Mohammed1,*, S. P. Ejeh2, Y. D. Amartey3 and A. Ocholi4 1, JULIUS BERGER NIGERIA PLC, 10 SHETTIMA MUNGUNO CRESCENT, UTAKO, ABUJA FCT, NIGERIA 2, 3, 4, DEPARTMENT OF CIVIL ENGINEERING, AHMADU BELLO UNIVERSITY, ZARIA, KADUNA STATE. NIGERIA E-mail addresses: 1 [email protected], 2 [email protected], 3 [email protected], 4 [email protected] ABSTRACT The purpose of this paper was the determination of the uncertainty models of reference material properties and [1] strength class of Nigerian Grown Terminalia ivorensis timber, so that it can be used in structures designed based on the Eurocode 5. The test data were analysed using Easyfit® statistical package. The uncertainty models (Coefficients of Variation and Distribution models) of the reference material properties (density, bending strength and modulus of elasticity) were determined. The coefficient of variation of the density, modulus of elasticity and bending strength were found to be 15%, 21% and 16% respectively. The mean values of the density, modulus of elasticity and the bending strengths were determined at moisture contents of 17.93%. The values were adjusted to 12% moisture content for the determination of the strength class according to [1]. Five standard probability distribution models (Normal, Lognormal, Gumbel, Weibull and Frechet) were fitted to each of the three reference material properties using Kolmogorov Smirnov probability distribution fitting technique.
    [Show full text]
  • Terminalia Ivorensis A.Chev and Nauclea Diderrichii De Wild
    An International Multi-Disciplinary Journal, Ethiopia Vol. 3 (4), July, 2009 ISSN 1994-9057 (Print) ISSN 2070-0083 (Online) Fusarium Damping-off of two Timber Species (Terminalia Ivorensis A. Chev and Nauclea Diderrichii De Wild and Th.Dur) in the Nursery (Pp. 252-260) Omokhua, G. E. - Department of Forestry and Wildlife Management, Faculty of Agriculture, University of Port Harcourt, PMB 5323, Port Harcourt, Rivers State, Nigeria E-mail: [email protected] Godwin-Egein, M. I. - Department of Crop and Soil Science, Faculty of Agriculture, University of Port Harcourt, PMB 5323, Port Harcourt, Rivers State. Nigeria. Okereke, V. C. - Department of Crop and Soil Science, Faculty of Agriculture, University of Port Harcourt, PMB 5323, Port Harcourt, Rivers State. Nigeria. E-mail: [email protected] Abstract The incidence of the damping–off disease of two timber species Terminalia ivorensis and Nauclea diderrichii sown in ground granite, sharp river sand, topsoil and sawdust was assessed at the nursery site of the Department of Forestry and Wildlife Management, University of Port Harcourt. The experiment was laid out in a completely randomised design replicated three times. Fusarium oxysporum was implicated as the causal agent of the disease. Terminalia ivorensis was not susceptible to Fusarium damping-off in the study. A significant effect (P<0.05) was observed in top soil which recorded the highest disease incidence in Nauclea diderrichii. Saw dust showed 0% disease incidence and supported the highest plant growth in both Copyright © IAARR, 2009: www.afrrevjo.com 252 Indexed African Journals Online: www.ajol.info Fusarium Damping-off of two Timber Species… in the Nursery species.
    [Show full text]
  • SEED LEAFLET No
    SEED LEAFLET No. 63 January 2002 Milicia excelsa (Welw.) C.C. Berg Taxonomy and nomenclature Uses Family: Moraceae With wood that is equivalent in value to teak, M. Synonyms: Chlorophora excelsa (Welw.) Benth., C. excelsa is one of the most important timber trees of alba A. Chev., C. tenuifolia Engl., Maclura excelsa tropical Africa. The heartwood is durable, workable (Welw.) Bureau, Milicia africana Sim, Morus and resistant to termites and marine borers. It is also excelsa Welw. extremely resistant to preservative treatments Vernacular/common names: ioko (Hausa); iroko whereas the sapwood is permeable. The gravity is (Yoruba); mvule (Swahili); rock-elm (Eng.); iroko about 0.55 g/cm3. It is mainly used for outdoor con- (trade name). struction work, furniture, boats, cabinet-work, panel- Related species of interest: the two African Milicia ling, frames and floors. species, M. excelsa and M. regia are known together The bark, its ashes, leaves and latex are used in as iroko and logging companies do not distinguish local medicine and the trees play a major role in many between the two. M. regia has a more western distri- local cultures where they are considered sacred, or bution, occurring from Senegal to Ghana. Where the parts of the tree serve ceremonial purposes. The two species overlap, hybridisation may take place. leaves are edible and are used as mulch. It is often planted as a shade tree and along roads as an Distribution and habitat ornamental. Widespread in tropical Africa from Guinea-Bissau to Mozambique where it is found in lowland rain forests Botanical description and wetter savannah woodland areas.
    [Show full text]
  • 82 Organic and Inorganic Fertilizers Influence On
    Journal of Forestry Research and Management. Vol. 17(3).82-92; 2020, ISSN 0189-8418 www.jfrm.org.ng ORGANIC AND INORGANIC FERTILIZERS INFLUENCE ON EARLY GROWTH OF Terminalia ivorensis A. Chev. 1*Ojo, M. O., 1Asinwa, I. O and 2Anjorin, D. E 1Forestry Research Institute of Nigeria, P.M.B. 5054, Ibadan, Oyo State. Adekunle Ajasin University, Akungba Akoko, Ondo State *[email protected]/ 08023267156 ABSTRACT The use of organic and inorganic fertilizers during forest seedling culture is one of the most crucial factors which have positive effect on seedling quality especially the slow growing tree species. This study investigated the effect of organic and inorganic fertilizers on early growth of Terminalia ivorensis. Uniform seedlings were transplanted into 2kg of soil amended with different levels of fertilizers as follows:T1 = 10g of Cow dung, T2 = 10g of Poultry manure, T3 = 5g of Poultry manure + 5g of Cow dung, T4 = 6g of N:P:K: 20:10:10, T5 = 3g of NPK + 3g of Urea, T6 = 6g of Urea, T7 = 5g of Poultry manure + 0.13g of Urea, T8 = 0.13g of Cow dung + 3g of NPK, T9 = 5g of Cow dung + 0.13g of Urea, T10 = Control (Topsoil only). There were ten (10) treatments, replicated three (3) times and laid in Completely Randomized Design (CRD). Seedling height (cm), stem diameter (mm), number of leaves, leaf area (cm²) and biomass production were assessed. Data were subjected to Analysis of Variance (ANOVA) at 0.05 level; of probability. There were no significant differences among the treatments on seedling height, leaf area and collar diameter while there was significant difference among the treatments on leaf production.
    [Show full text]
  • Short Communication Tree Density and Growth Rate of Nauclea Diderrichii and Terminalia Ivorensis in the Arboretum of Forestry
    Journal of Agriculture and Food Environment Volume 6(2): 1-5, 2019 Onilude, 2019 Short Communication Tree Density and Growth Rate of Nauclea diderrichii and Terminalia ivorensis in the Arboretum of Forestry Research Institute of Nigeria Onilude, Q.A. Forestry Research Institute of Nigeria, P.M.B 5054, Jericho Hill, Ibadan, Nigeria E-mails: [email protected]; [email protected] Received 28th April, 2019; Accepted 6th June, 2019; Corrected 30th June, 2019 Abstract Stands of Nauclea diderrichii and Terminalia ivorensis within the arboretum of Forestry Research Institute of Nigeria were assessed for stand density and diameter growth rates of the tree species. Total enumeration of all the trees for both species was carried out and their diameters at breast height (dbh) measured. Nauclea diderrichii stand had the highest density of 430 trees ha-1 and a total basal area of 4.32m2ha-1 while Terminalia ivorensis stand had a density of 400 trees ha-1 and a total basal area of 26.83m2ha-1. The diameter growth rates for the two species were determined by calculating their mean annual increments (MAIs) in DBH. Nauclea diderrichii had an average DBH of 10.98cm and a mean annual increment (MAI) of 1.10cmyr-1 while Terminalia ivorensis had an average DBH of 24.31cm and MAI of 2.43cmyr-1. This study showed that Mean annual increment generally increased with reduction in stand density. Permanent sample plots (PSP) should be established in the arboretum for continuous inventory to provide data for academic and research activities; and also for sustainable management of the tree resources.
    [Show full text]
  • FSC Public Search
    CERTIFICATE Information from 2018/08/28 - 14:26 UTC Certificate Code CU-COC-816023 License Code FSC-C102167 MAIN ADDRESS Name Timber Link International Ltd. Address The Timber Office,Hazelwood Cottage,Maidstone Road,Hadlow Tonbridge TN11 0JH Kent UNITED KINGDOM Website http://www.timberlinkinternational.com CERTIFICATE DATA Status Valid First Issue Date 2010-10-16 Last Issue Date 2017-01-12 Expiry Date 2022-01-11 Standard FSC-STD-40-004 V3-0 GROUP MEMBER/SITES No group member/sites found. PRODUCTS Product Trade Species Primary Secondary Main Type Name Activity Activity Output Category W5 Solid Acer spp.; Alnus rubra var. pinnatisecta Starker; Alnus brokers/traders FSC wood serrulata; Apuleia leiocarpa; Betula spp.; Castanea sativa without physical Mix;FSC (sawn, P.Mill.; Cedrela odorata; Cedrus libani A. Rich.; Chlorocardium posession 100% chipped, rodiei (R.Schomb.) R.R.W.; Cylicodiscus gabunensis (Taub.) peeled) Harms; Dicorynia guianensis Amsh., D. paraensis Benth.; W5.2 Solid Dipterocarpus spp; Dipteryx odorata; Dryobalanops spp.; wood Dyera costulata (Miq.) Hook.f.; Entandrophragma cylindricum; boards Entandrophragma spp.; Entandrophragma utile; Eucalyptus spp; Fagus sylvatica L.; Fraxinus excelsior; Fraxinus americana; Gonystylus bancanus; Guibourtia spp.; Hymenaea courbaril; Intsia bijuga; Juglans nigra L.; Juglans regia L.; Khaya spp.; Larix sibirica; Liriodendron tulipifera L.; Lophira alata; Manilkara bidentata (A.DC.) A.Chev.; Microberlinia spp.; Milicia excelsa; Millettia laurentii; Nauclea diderrichii; Parashorea spp. (Urat mata, white seraya, gerutu); Peltogyne spp.*; Pinus rigida; Platanus occidentalis L; Prunus avium; Prunus serotina Ehrh.; Pseudotsuga menziesii; Pterocarpus soyauxii; Quercus alba; Quercus petraea; Quercus robur; Robinia pseudoacacia L.; Shorea balangeran; Shorea laevis Ridl.; Shorea spp.; Swietenia macrophylla; Tabebuia spp.; Tectona grandis; Terminalia ivorensis A.
    [Show full text]
  • Fplgtr113.Pdf
    Abstract Summarizes information on wood as an engineering material. Presents properties of wood and wood-based products of particular concern to the architect and engineer. Includes discussion of designing with wood and wood-based products along with some pertinent uses. Keywords: wood structure, physical properties (wood), mechanical properties (wood), lumber, wood-based composites, plywood, panel products, design, fastenings, wood moisture, drying, gluing, fire resistance, finishing, decay, sandwich construction, preservation, and wood- based products On the cover: (Left to right, top to bottom) 1. Research at the Forest Products Laboratory, Madison, Wisconsin, contributes to maximizing benefits of the Nation’s timber resource. 2. Testing the behavior of wood in fire helps enhance fire safety. 3. The all-wood, 162-m (530-ft ) clear-span Tacoma Dome exemplifies the structural and esthetic potential of wood construction (photo courtesy of Western Wood Structures, Inc., Tualatin, Oregon). 4. Bending tests are commonly used to determine the engineering properties of wood. 5. Engineered wood trusses exemplify research that has led to more efficient use of wood. 6. The Teal River stress-laminated deck bridge is March 1999 located in Sawyer County, Wisconsin. 7. Kiln drying of wood is an important procedure Forest Products Laboratory. 1999. Wood handbook—Wood as an during lumber manufacturing. engineering material. Gen. Tech. Rep. FPL–GTR–113. Madison, WI: 8. Legging adhesive (photo courtesy of Air Products U.S. Department of Agriculture, Forest Service, Forest Products and Chemicals, Inc., Allentown Pennsylvania). Laboratory. 463 p. Adhesive bonding is a critical component in the A limited number of free copies of this publication are available to the performance of many wood products.
    [Show full text]