Horizontal Gene Transfer Elements: Plasmids in Antarctic Microorganisms

Total Page:16

File Type:pdf, Size:1020Kb

Horizontal Gene Transfer Elements: Plasmids in Antarctic Microorganisms Chapter 5 Horizontal Gene Transfer Elements: Plasmids in Antarctic Microorganisms Matías Giménez, Gastón Azziz, Paul R. Gill, and Silvia Batista Abstract Plasmids play an important role in the evolution of microbial communi- ties. These mobile genetic elements can improve host survival and may also be involved in horizontal gene transfer (HGT) events between individuals. Diverse culture-dependent and culture-independent approaches have been used to character- ize these mobile elements. Culture-dependent methods are usually associated with classical microbiological techniques. In the second approach, development of spe- cific protocols for analysis of metagenomes involves many challenges, including assembly of sequences and availability of a reliable database, which are crucial. In addition, alternative strategies have been developed for the characterization of plas- mid DNA in a sample, generically referred to as plasmidome. The Antarctic continent has environments with diverse characteristics, including some with very low temperatures, humidity levels, and nutrients. The presence of microorganisms and genetic elements capable of being transferred horizontally has been confirmed in these environments, and it is generally accepted that some of these elements, such as plasmids, actively participate in adaptation mechanisms of host microorganisms. Information related to structure and function of HGT elements in Antarctic bac- teria is very limited compared to what is known about HGT in bacteria from temper- ate/tropical environments. Some studies are done with biotechnological objectives. The search for mobile elements, such as plasmids, may be related to improve the expression of heterologous genes in host organisms growing at very low tempera- tures. More recently, however, additional studies have been done to detect plasmids in isolates, associated or not with specific phenotypes such as drug resistance. Although various Antarctic metagenomes are available in public databases, corre- M. Giménez · G. Azziz · S. Batista (*) Unidad Microbiología Molecular, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay e-mail: [email protected] P. R. Gill Nevada City Biolabs, Nevada City, CA, USA © Springer Nature Switzerland AG 2019 85 S. Castro-Sowinski (ed.), The Ecological Role of Micro-organisms in the Antarctic Environment, Springer Polar Sciences, https://doi.org/10.1007/978-3-030-02786-5_5 86 M. Giménez et al. sponding studies of plasmidomes are needed. The difficulties usually associated with the study of metagenomes are increased in these cases by the limited number of sequences in functionally characterized databases. Keywords Horizontal gene transfer · Plastmidome · Global climate change · Animal and human influence · Antibiotic resistance genes 5.1 Definition of Biogeographic Regions Classically, the Antarctic Polar Frontal Zone is classified into three regions with distinct climates and accompanying biota: Continental Antarctica, Maritime Antarctica, and Sub-Antarctica (Convey 2010). The well-studied McMurdo Dry Valleys of Continental Antarctica that have been ice-free for many years are consid- ered to be a polar desert. Maritime Antarctica, which includes northwestern parts of the Antarctic Peninsula and surrounding Islands, has a cool moist climate and is less extreme in terms of high irradiance and low temperature compared with Continental Antarctica. The sub-Antarctic region includes various islands located between 35 and 60°S. These islands are breeding sites for seabird and mammal species and exhibit contrasting higher biodiversity compared with both the other regions. The incorporation of new data and criteria for classification has allowed the iden- tification of 16 Antarctic Conservation Biogeographic Regions (ACBRs) (Terauds and Lee 2016). These bioregions, located in ice-free areas (comprising 0.4% of the continent’s surface), are internationally recognized and studied for different pur- poses including biodiversity analysis (Fig. 5.1). 5.2 Characteristic of Antarctic Soil in ACBRs Soil properties of different ACBR sites are diverse, depending on their location, topography, local climate, and associated biota. Some soils have low carbon (C) and nitrogen (N) content, whereas those exposed to birds, like penguins, have relatively high C and N levels (Cowan 2014). Salt content is variable, depending on distance to a coastline. Some of these soils are especially dry, like those in the Dry Valleys, while others have comparatively higher humidity. Human activities, including those associated with scientific bases and tourism, are concentrated in these regions with their inevitable effects. Global climate change is also affecting these bioregions, in which retreating glaciers are exposing new surfaces with their particular soils. 5.3 Effect of Global Climate Change Effects of global climate change have been analyzed on the continent. Recently, measurements of changes in Antarctic ice sheets under the surface of the Southern ocean was determined using novel strategies, including satellite altimeter 5 Horizontal Gene Transfer Elements: Plasmids in Antarctic Microorganisms 87 Fig. 5.1 Location of biogeographic regions in Antarctica, numbered from 1 to 16. The arrows show approximately the sampling sites mentioned in the studies included in the chapter determinations of ice-elevation changes and ice geometry measurements (Konrad et al. 2018). They showed that 1463 km2 of ice melted between 2010 and 2016. In about 10.7% of oceanfront glaciers, the “grounding line,” where ocean, ice, and bedrock meet, glaciers are melting at a significant rate, probably because of the influence of warmer ocean water. In contrast, only 1.9% of these glaciers are actu- ally still expanding. Some Antarctic regions are especially vulnerable to global warming. Between 1979 and 1997, mean annual temperature in the Antarctic Peninsula increased about 0.32 °C per decade but dropped −0.47 °C per decade, from 1998 to 2014 (Sancho et al. 2017). These changes have further influenced public opinion especially with the occurrence of dramatic events, like the collapse of relatively large ice shelves (Shepherd et al. 2012). 88 M. Giménez et al. The effects of climate change on biota have been analyzed at different sites. One such study focused on six lichen species growing on surfaces of the Antarctic Peninsula that became deglaciated more than 20 years ago (Sancho et al. 2017). Some microbiota found to be in association with these organisms has also been evaluated. Antarctic hair grass (Deschampsia antarctica) has been spreading in some Maritime Antarctic sites (Smith 1994), affecting other organisms including mosses and soil microbiota. Microbes associated with these vascular plants incorporate soil N at higher rates compared with microbes associated with nonvascular plants. The increase in temperature in these regions promotes processes such as soil organic matter decomposition, thereby allowing for the further spread of hair grass. During winter, winds disperse remaining surface organic matter, affecting more areas. 5.4 Animal and Human Influence on Maritime Antarctica Some Maritime Antarctic locations are particularly affected by significant biotic and abiotic influence. King George Island, the largest island in Maritime Antarctica, e.g., is home to numerous marine mammals, including elephant, Weddell and leop- ard seals, as well as chinstrap and gentoo penguins. Whales sometimes frequent the nutrient-rich shoreline, but animal life on the island is restricted to seabirds and very small invertebrates. This island is one of the most inhabited or visited sites on the continent. Nine permanent research stations are in operation, and several research refuges have been constructed. More than 500 persons may visit the island during summer, and numerous research projects in many fields and by many countries are carried out in the region. 5.5 Strategies for the Study of Microbial Communities Microorganisms are essential for maintenance of diverse processes including soil structure formation, decomposition of xenobiotics, metabolism of organic matter, and support of biogeochemical cycles of specific elements such as C, N, and phos- phorous (P). Also, the study of microorganisms and their interactions with biotic and abiotic factors could be used for the development of bioremediation strategies, biotechnological processes, evaluation of soil management, etc. The first microbiological studies in Antarctica were initiated during the twentieth century (Darling and Siple 1941; Straka and Stokes 1960). These studies involved culture and isolation of microorganisms, and results obtained supported the idea of there being relatively low abundance and diversity in microbial assemblages. Microscopy has also been used to evaluate abundance, succession, and distribu- tion of microorganisms in Antarctic soil, microbial mats, etc. Ramsay (1983) stud- ied bacterial presence in ornithogenic soils by fluorescence microscopy using acridine orange, a dye that emits green fluorescence when bound to dsDNA and red 5 Horizontal Gene Transfer Elements: Plasmids in Antarctic Microorganisms 89 fluorescence when bound to ssDNA or RNA. Samples were collected at Cape Bird (Ross Island), and differences in numbers and forms of bacteria were found, depend- ing on sampling location and particularly near rookeries. In that study, the author mentions problems that some investigators had when attempting to recover cultured bacteria from these types of sampling locations.
Recommended publications
  • Complete Genome Sequence of the Antarctic Halorubrum Lacusprofundi Type Strain ACAM 34 Iain J
    Anderson et al. Standards in Genomic Sciences (2016) 11:70 DOI 10.1186/s40793-016-0194-2 SHORT GENOME REPORT Open Access Complete genome sequence of the Antarctic Halorubrum lacusprofundi type strain ACAM 34 Iain J. Anderson1, Priya DasSarma2*, Susan Lucas1, Alex Copeland1, Alla Lapidus1, Tijana Glavina Del Rio1, Hope Tice1, Eileen Dalin1, David C. Bruce3, Lynne Goodwin3, Sam Pitluck1, David Sims3, Thomas S. Brettin3, John C. Detter3, Cliff S. Han3, Frank Larimer1,4, Loren Hauser1,4, Miriam Land1,4, Natalia Ivanova1, Paul Richardson1, Ricardo Cavicchioli5, Shiladitya DasSarma2, Carl R. Woese6 and Nikos C. Kyrpides1 Abstract Halorubrum lacusprofundi is an extreme halophile within the archaeal phylum Euryarchaeota. The type strain ACAM 34 was isolated from Deep Lake, Antarctica. H. lacusprofundi is of phylogenetic interest because it is distantly related to the haloarchaea that have previously been sequenced. It is also of interest because of its psychrotolerance. WereportherethecompletegenomesequenceofH. lacusprofundi type strain ACAM 34 and its annotation. This genome is part of a 2006 Joint Genome Institute Community Sequencing Program project to sequence genomes of diverse Archaea. Keywords: Archaea, Halophile, Halorubrum, Extremophile, Cold adaptation, Tree of life Abbreviations: TE, Tris-EDTA buffer; CRITICA, Coding region identification tool invoking comparative analysis; PRIAM, PRofils pour l’Identification Automatique du Métabolisme; KEGG, Kyoto Encyclopedia of Genes and Genomes; COG, Clusters of Orthologous Groups; TMHMM, Transmembrane hidden Markov model; CRISPR, Clustered regularly interspaced short palindromic repeats Introduction 2006 Joint Genome Institute Community Sequencing Halorubrum lacusprofundi is an extremely halophilic Program project because of its ability to grow at low archaeon belonging to the class Halobacteria within the temperature and its phylogenetic distance from other phylum Euryarchaeota.
    [Show full text]
  • Halorubrum Chaoviator Mancinelli Et Al. 2009 Is a Later, Heterotypic Synonym of Halorubrum Ezzemoulense Kharroub Et Al
    TAXONOMIC DESCRIPTION Corral et al., Int J Syst Evol Microbiol 2018;68:3657–3665 DOI 10.1099/ijsem.0.003005 Halorubrum chaoviator Mancinelli et al. 2009 is a later, heterotypic synonym of Halorubrum ezzemoulense Kharroub et al. 2006. Emended description of Halorubrum ezzemoulense Kharroub et al. 2006 Paulina Corral,1 Rafael R. de la Haba,1 Carmen Infante-Domínguez,1 Cristina Sanchez-Porro, 1 Mohammad A. Amoozegar,2 R. Thane Papke3 and Antonio Ventosa1,* Abstract A polyphasic comparative taxonomic study of Halorubrum ezzemoulense Kharroub et al. 2006, Halorubrum chaoviator Mancinelli et al. 2009 and eight new Halorubrum strains related to these haloarchaeal species was carried out. Multilocus sequence analysis using the five concatenated housekeeping genes atpB, EF-2, glnA, ppsA and rpoB¢, and phylogenetic analysis based on the 757 core protein sequences obtained from their genomes showed that Hrr. ezzemoulense DSM 17463T, Hrr. chaoviator Halo-G*T (=DSM 19316T) and the eight Halorubrum strains formed a robust cluster, clearly separated from the remaining species of the genus Halorubrum. The orthoANI value and digital DNA–DNA hybridization value, calculated by the Genome-to-Genome Distance Calculator (GGDC), showed percentages among Hrr. ezzemoulense DSM 17463T, Hrr. chaoviator DSM 19316T and the eight Halorubrum strains ranging from 99.4 to 97.9 %, and from 95.0 to 74.2 %, respectively, while these values for those strains and the type strains of the most closely related species of Halorubrum were 88.7–77.4 % and 36.1– 22.3 %, respectively. Although some differences were observed, the phenotypic and polar lipid profiles were quite similar for all the strains studied.
    [Show full text]
  • Deinococcus Radiodurans : La Recombinaison Entre S´Equencesr´Ep´Et´Eeset La Transformation Naturelle Solenne Ithurbide
    Variabilit´eg´en´etiquechez la bact´erieradior´esistante Deinococcus radiodurans : la recombinaison entre s´equencesr´ep´et´eeset la transformation naturelle Solenne Ithurbide To cite this version: Solenne Ithurbide. Variabilit´eg´en´etiquechez la bact´erieradior´esistante Deinococcus radio- durans : la recombinaison entre s´equencesr´ep´et´eeset la transformation naturelle. Biologie mol´eculaire.Universit´eParis Sud - Paris XI, 2015. Fran¸cais. <NNT : 2015PA112193>. <tel- 01374867> HAL Id: tel-01374867 https://tel.archives-ouvertes.fr/tel-01374867 Submitted on 2 Oct 2016 HAL is a multi-disciplinary open access L'archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destin´eeau d´ep^otet `ala diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publi´esou non, lished or not. The documents may come from ´emanant des ´etablissements d'enseignement et de teaching and research institutions in France or recherche fran¸caisou ´etrangers,des laboratoires abroad, or from public or private research centers. publics ou priv´es. UNIVERSITÉ PARIS-SUD ÉCOLE DOCTORALE 426 GÈNES GÉNOMES CELLULES Institut de Biologie Intégrative de la Cellule THÈSE DE DOCTORAT SCIENCES DE LA VIE ET DE LA SANTÉ par Solenne ITHURBIDE Variabilité génétique chez la bactérie radiorésistante Deinococcus radiodurans : La recombinaison entre séquences répétées et la transformation naturelle Soutenue le 23 Septembre 2015 Composition du jury : Directeur de thèse : Suzanne SOMMER Professeur
    [Show full text]
  • Developing a Genetic Manipulation System for the Antarctic Archaeon, Halorubrum Lacusprofundi: Investigating Acetamidase Gene Function
    www.nature.com/scientificreports OPEN Developing a genetic manipulation system for the Antarctic archaeon, Halorubrum lacusprofundi: Received: 27 May 2016 Accepted: 16 September 2016 investigating acetamidase gene Published: 06 October 2016 function Y. Liao1, T. J. Williams1, J. C. Walsh2,3, M. Ji1, A. Poljak4, P. M. G. Curmi2, I. G. Duggin3 & R. Cavicchioli1 No systems have been reported for genetic manipulation of cold-adapted Archaea. Halorubrum lacusprofundi is an important member of Deep Lake, Antarctica (~10% of the population), and is amendable to laboratory cultivation. Here we report the development of a shuttle-vector and targeted gene-knockout system for this species. To investigate the function of acetamidase/formamidase genes, a class of genes not experimentally studied in Archaea, the acetamidase gene, amd3, was disrupted. The wild-type grew on acetamide as a sole source of carbon and nitrogen, but the mutant did not. Acetamidase/formamidase genes were found to form three distinct clades within a broad distribution of Archaea and Bacteria. Genes were present within lineages characterized by aerobic growth in low nutrient environments (e.g. haloarchaea, Starkeya) but absent from lineages containing anaerobes or facultative anaerobes (e.g. methanogens, Epsilonproteobacteria) or parasites of animals and plants (e.g. Chlamydiae). While acetamide is not a well characterized natural substrate, the build-up of plastic pollutants in the environment provides a potential source of introduced acetamide. In view of the extent and pattern of distribution of acetamidase/formamidase sequences within Archaea and Bacteria, we speculate that acetamide from plastics may promote the selection of amd/fmd genes in an increasing number of environmental microorganisms.
    [Show full text]
  • Horizontal Gene Transfer
    Genetic Variation: The genetic substrate for natural selection Horizontal Gene Transfer Dr. Carol E. Lee, University of Wisconsin Copyright ©2020; Do not upload without permission What about organisms that do not have sexual reproduction? In prokaryotes: Horizontal gene transfer (HGT): Also termed Lateral Gene Transfer - the lateral transmission of genes between individual cells, either directly or indirectly. Could include transformation, transduction, and conjugation. This transfer of genes between organisms occurs in a manner distinct from the vertical transmission of genes from parent to offspring via sexual reproduction. These mechanisms not only generate new gene assortments, they also help move genes throughout populations and from species to species. HGT has been shown to be an important factor in the evolution of many organisms. From some basic background on prokaryotic genome architecture Smaller Population Size • Differences in genome architecture (noncoding, nonfunctional) (regulatory sequence) (transcribed sequence) General Principles • Most conserved feature of Prokaryotes is the operon • Gene Order: Prokaryotic gene order is not conserved (aside from order within the operon), whereas in Eukaryotes gene order tends to be conserved across taxa • Intron-exon genomic organization: The distinctive feature of eukaryotic genomes that sharply separates them from prokaryotic genomes is the presence of spliceosomal introns that interrupt protein-coding genes Small vs. Large Genomes 1. Compact, relatively small genomes of viruses, archaea, bacteria (typically, <10Mb), and many unicellular eukaryotes (typically, <20 Mb). In these genomes, protein-coding and RNA-coding sequences occupy most of the genomic sequence. 2. Expansive, large genomes of multicellular and some unicellular eukaryotes (typically, >100 Mb). In these genomes, the majority of the nucleotide sequence is non-coding.
    [Show full text]
  • Diversity of Halophilic Archaea in Fermented Foods and Human Intestines and Their Application Han-Seung Lee1,2*
    J. Microbiol. Biotechnol. (2013), 23(12), 1645–1653 http://dx.doi.org/10.4014/jmb.1308.08015 Research Article Minireview jmb Diversity of Halophilic Archaea in Fermented Foods and Human Intestines and Their Application Han-Seung Lee1,2* 1Department of Bio-Food Materials, College of Medical and Life Sciences, Silla University, Busan 617-736, Republic of Korea 2Research Center for Extremophiles, Silla University, Busan 617-736, Republic of Korea Received: August 8, 2013 Revised: September 6, 2013 Archaea are prokaryotic organisms distinct from bacteria in the structural and molecular Accepted: September 9, 2013 biological sense, and these microorganisms are known to thrive mostly at extreme environments. In particular, most studies on halophilic archaea have been focused on environmental and ecological researches. However, new species of halophilic archaea are First published online being isolated and identified from high salt-fermented foods consumed by humans, and it has September 10, 2013 been found that various types of halophilic archaea exist in food products by culture- *Corresponding author independent molecular biological methods. In addition, even if the numbers are not quite Phone: +82-51-999-6308; high, DNAs of various halophilic archaea are being detected in human intestines and much Fax: +82-51-999-5458; interest is given to their possible roles. This review aims to summarize the types and E-mail: [email protected] characteristics of halophilic archaea reported to be present in foods and human intestines and pISSN 1017-7825, eISSN 1738-8872 to discuss their application as well. Copyright© 2013 by The Korean Society for Microbiology Keywords: Halophilic archaea, fermented foods, microbiome, human intestine, Halorubrum and Biotechnology Introduction Depending on the optimal salt concentration needed for the growth of strains, halophilic microorganisms can be Archaea refer to prokaryotes that used to be categorized classified as halotolerant (~0.3 M), halophilic (0.2~2.0 M), as archaeabacteria, a type of bacteria, in the past.
    [Show full text]
  • Comprehensive Analysis of Mobile Genetic Elements in the Gut Microbiome Reveals Phylum-Level Niche-Adaptive Gene Pools
    bioRxiv preprint doi: https://doi.org/10.1101/214213; this version posted December 22, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Comprehensive analysis of mobile genetic elements in the gut microbiome 2 reveals phylum-level niche-adaptive gene pools 3 Xiaofang Jiang1,2,†, Andrew Brantley Hall2,3,†, Ramnik J. Xavier1,2,3,4, and Eric Alm1,2,5,* 4 1 Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, 5 Cambridge, MA 02139, USA 6 2 Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA 7 3 Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard 8 Medical School, Boston, MA 02114, USA 9 4 Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General 10 Hospital and Harvard Medical School, Boston, MA 02114, USA 11 5 MIT Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 12 02142, USA 13 † Co-first Authors 14 * Corresponding Author bioRxiv preprint doi: https://doi.org/10.1101/214213; this version posted December 22, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 15 Abstract 16 Mobile genetic elements (MGEs) drive extensive horizontal transfer in the gut microbiome. This transfer 17 could benefit human health by conferring new metabolic capabilities to commensal microbes, or it could 18 threaten human health by spreading antibiotic resistance genes to pathogens. Despite their biological 19 importance and medical relevance, MGEs from the gut microbiome have not been systematically 20 characterized.
    [Show full text]
  • Deinococcus Antarcticus Sp. Nov., Isolated from Soil
    International Journal of Systematic and Evolutionary Microbiology (2015), 65, 331–335 DOI 10.1099/ijs.0.066324-0 Deinococcus antarcticus sp. nov., isolated from soil Ning Dong,1,2 Hui-Rong Li,1 Meng Yuan,1,2 Xiao-Hua Zhang2 and Yong Yu1 Correspondence 1SOA Key Laboratory for Polar Science, Polar Research Institute of China, Shanghai 200136, Yong Yu PR China [email protected] 2College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China A pink-pigmented, non-motile, coccoid bacterial strain, designated G3-6-20T, was isolated from a soil sample collected in the Grove Mountains, East Antarctica. This strain was resistant to UV irradiation (810 J m”2) and slightly more sensitive to desiccation as compared with Deinococcus radiodurans. Phylogenetic analyses based on the 16S rRNA gene sequence of the isolate indicated that the organism belongs to the genus Deinococcus. Highest sequence similarities were with Deinococcus ficus CC-FR2-10T (93.5 %), Deinococcus xinjiangensis X-82T (92.8 %), Deinococcus indicus Wt/1aT (92.5 %), Deinococcus daejeonensis MJ27T (92.3 %), Deinococcus wulumuqiensis R-12T (92.3 %), Deinococcus aquaticus PB314T (92.2 %) and T Deinococcus radiodurans DSM 20539 (92.2 %). Major fatty acids were C18 : 1v7c, summed feature 3 (C16 : 1v7c and/or C16 : 1v6c), anteiso-C15 : 0 and C16 : 0. The G+C content of the genomic DNA of strain G3-6-20T was 63.1 mol%. Menaquinone 8 (MK-8) was the predominant respiratory quinone. Based on its phylogenetic position, and chemotaxonomic and phenotypic characteristics, strain G3-6-20T represents a novel species of the genus Deinococcus, for which the name Deinococcus antarcticus sp.
    [Show full text]
  • A New Biological Definition of Life
    BioMol Concepts 2020; 11: 1–6 Research Article Open Access Victor V. Tetz, George V. Tetz* A new biological definition of life https://doi.org/10.1515/bmc-2020-0001 received August 17, 2019; accepted November 22, 2019. new avenues for drug development and prediction of the results of genetic interventions. Abstract: Here we have proposed a new biological Defining life is important to understand the definition of life based on the function and reproduction development and maintenance of living organisms of existing genes and creation of new ones, which is and to answer questions on the origin of life. Several applicable to both unicellular and multicellular organisms. definitions of the term “life” have been proposed (1-14). First, we coined a new term “genetic information Although many of them are highly controversial, they are metabolism” comprising functioning, reproduction, and predominantly based on important biological properties creation of genes and their distribution among living and of living organisms such as reproduction, metabolism, non-living carriers of genetic information. Encompassing growth, adaptation, stimulus responsiveness, genetic this concept, life is defined as organized matter that information inheritance, evolution, and Darwinian provides genetic information metabolism. Additionally, approach (1-5, 15). we have articulated the general biological function of As suggested by the Nobel Prize-winning physicist, life as Tetz biological law: “General biological function Erwin Schrödinger, in his influential essay What Is of life is to provide genetic information metabolism” and Life ?, the purpose of life relies on creating an entropy, formulated novel definition of life: “Life is an organized and therefore defined living things as not just a “self- matter that provides genetic information metabolism”.
    [Show full text]
  • Access to Electronic Thesis
    Access to Electronic Thesis Author: Khalid Salim Al-Abri Thesis title: USE OF MOLECULAR APPROACHES TO STUDY THE OCCURRENCE OF EXTREMOPHILES AND EXTREMODURES IN NON-EXTREME ENVIRONMENTS Qualification: PhD This electronic thesis is protected by the Copyright, Designs and Patents Act 1988. No reproduction is permitted without consent of the author. It is also protected by the Creative Commons Licence allowing Attributions-Non-commercial-No derivatives. If this electronic thesis has been edited by the author it will be indicated as such on the title page and in the text. USE OF MOLECULAR APPROACHES TO STUDY THE OCCURRENCE OF EXTREMOPHILES AND EXTREMODURES IN NON-EXTREME ENVIRONMENTS By Khalid Salim Al-Abri Msc., University of Sultan Qaboos, Muscat, Oman Mphil, University of Sheffield, England Thesis submitted in partial fulfillment for the requirements of the Degree of Doctor of Philosophy in the Department of Molecular Biology and Biotechnology, University of Sheffield, England 2011 Introductory Pages I DEDICATION To the memory of my father, loving mother, wife “Muneera” and son “Anas”, brothers and sisters. Introductory Pages II ACKNOWLEDGEMENTS Above all, I thank Allah for helping me in completing this project. I wish to express my thanks to my supervisor Professor Milton Wainwright, for his guidance, supervision, support, understanding and help in this project. In addition, he also stood beside me in all difficulties that faced me during study. My thanks are due to Dr. D. J. Gilmour for his co-supervision, technical assistance, his time and understanding that made some of my laboratory work easier. In the Ministry of Regional Municipalities and Water Resources, I am particularly grateful to Engineer Said Al Alawi, Director General of Health Control, for allowing me to carry out my PhD study at the University of Sheffield.
    [Show full text]
  • Section 4. Guidance Document on Horizontal Gene Transfer Between Bacteria
    306 - PART 2. DOCUMENTS ON MICRO-ORGANISMS Section 4. Guidance document on horizontal gene transfer between bacteria 1. Introduction Horizontal gene transfer (HGT) 1 refers to the stable transfer of genetic material from one organism to another without reproduction. The significance of horizontal gene transfer was first recognised when evidence was found for ‘infectious heredity’ of multiple antibiotic resistance to pathogens (Watanabe, 1963). The assumed importance of HGT has changed several times (Doolittle et al., 2003) but there is general agreement now that HGT is a major, if not the dominant, force in bacterial evolution. Massive gene exchanges in completely sequenced genomes were discovered by deviant composition, anomalous phylogenetic distribution, great similarity of genes from distantly related species, and incongruent phylogenetic trees (Ochman et al., 2000; Koonin et al., 2001; Jain et al., 2002; Doolittle et al., 2003; Kurland et al., 2003; Philippe and Douady, 2003). There is also much evidence now for HGT by mobile genetic elements (MGEs) being an ongoing process that plays a primary role in the ecological adaptation of prokaryotes. Well documented is the example of the dissemination of antibiotic resistance genes by HGT that allowed bacterial populations to rapidly adapt to a strong selective pressure by agronomically and medically used antibiotics (Tschäpe, 1994; Witte, 1998; Mazel and Davies, 1999). MGEs shape bacterial genomes, promote intra-species variability and distribute genes between distantly related bacterial genera. Horizontal gene transfer (HGT) between bacteria is driven by three major processes: transformation (the uptake of free DNA), transduction (gene transfer mediated by bacteriophages) and conjugation (gene transfer by means of plasmids or conjugative and integrated elements).
    [Show full text]
  • Horizontal Gene Transfer and Recombination Analysis of SARS-Cov-2 Genes Helps Discover Its Close Relatives and Shed Light on Its Origin
    bioRxiv preprint doi: https://doi.org/10.1101/2020.12.03.410233; this version posted December 3, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Horizontal gene transfer and recombination analysis of SARS-CoV-2 genes helps discover its close relatives and shed light on its origin Vladimir Makarenkov1*, Bogdan Mazoure2*, Guillaume Rabusseau2,3 and Pierre Legendre4 1. Département d’informatique, Université du Québec à Montréal, Montréal, QC, Canada 2. Montreal Institute for Learning Algorithms (Mila), Montréal, QC, Canada 3. Département d'informatique et de recherche opérationnelle, Université de Montréal, Montréal, QC, Canada 4. Département de sciences biologiques, Université de Montréal, C. P. 6128, succursale Centre-ville, Montréal, QC, H3C 3J7 Canada *Both authors contributed equally to this manuscript. Vladimir Makarenkov is the corresponding author of this manuscript (email: [email protected]) Abstract Background The SARS-CoV-2 pandemic is among the most dangerous infectious diseases that have emerged in recent history. Human CoV strains discovered during previous SARS outbreaks have been hypothesized to pass from bats to humans using intermediate hosts, e.g. civets for SARS-CoV and camels for MERS-CoV. The discovery of an intermediate host of SARS-CoV-2 and the identification of specific mechanism of its emergence in humans are topics of primary evolutionary importance. In this study we investigate the evolutionary patterns of 11 main genes of SARS-CoV-2.
    [Show full text]