FocusFocus onon MembraneMembrane TechnologyTechnology forfor WaterWater TreatmentTreatment

Toray Industries, Inc.

February 4, 2004 Masaru Kurihara CONTENTCONTENT

1.1. WorldWorld WaterWater ProblemProblem

2.2. WaterWater TreatmentTreatment MembranesMembranes

3.3. RORO MembranesMembranes && NFNF MembranesMembranes

4.4. UFUF MembranesMembranes && MFMF MembranesMembranes -- DrinkingDrinking WaterWater ProductionProduction --

5.5. ImmersedImmersed MembranesMembranes forfor WastewaterWastewater TreatmentTreatment

6.6. ConclusionConclusion TorayToray –– TheThe LeaderLeader inin ““AdvancedAdvanced MaterialsMaterials””

AchievingAchieving HighHigh GrowthGrowth byby ConstantlyConstantly SupplyingSupplying “Advanced“Advanced Materials”Materials”––DDevelopedeveloped withwith ourour CoreCore Technologies Technologies – –iintonto ourour ThreeThree GrowthGrowth AreasAreas (an (an expansionexpansion ofof ourour fourfour strategicstrategic businessbusiness areas)areas)

•Nanofibers Four Strategic •High-performance Fibers Business Areas and Resins Electronics & Info- IT-related Products Organic Synthetic •Nano-alloy Materials Related Products Chemistry •Advanced Electronics Materials Life Sciences Pharmaceuticals Polymer Chemistry •Biomaterials •Separation Materials Water Treatment Biochemistry •High-performance Composite Environment Safety Materials Amenity •Recycling Materials Carbon Fiber WorldWorld WaterWater ShortageShortage -- NowNow andand FutureFuture (WMO and others, 1996) 1995 Main regions which have high water shortage percentages of more than 20%

Water 1995: Shortage 1) ≧40% :Middle East, Singapore, ≧40% Korea, Pakistan 40~20% 20~10% 2) 20~40%: India, Mexico, Europe ≦10% (excluding UK and France), Taiwan, South Africa 2025

2025: 1) ≧40% : Middle East, Korea, Pakistan, India, Algeria, South Africa, etc. 2) 20~40%: Mexico, China, USA, Europe (excluding UK) WaterWater shortage shortage presumed presumed to to continue continue worldwide worldwide especially especially in in Europe Europe and and the the U.S.A., U.S.A., asas well well as as throughout throughout China China by by 2025 2025 WaterWater ProblemProblem andand MembraneMembrane TechnologyTechnology Water Problem Membrane Technology for Water Treatment Water Region, Country Water Fresh Water Wastewater Resource Desalination Reuse & Pollution Treatment Shortage Reclamation United States Problem Problem In operation In operation Construction Benelux Problem Being applied In operation UK, France Problem In operation Being applied Spain Problem Problem Being applied In operation Being applied Saudi Arabia Severe In operation Planning Kuwait Severe In operation Construction China Problem Severe Being applied Being Planning applied Singapore Severe In operation In operation In operation Problem In operation In operation Water resources are extending from fresh water to sea water & wastewater WaterWater TreatmentTreatment MembranesMembranes MembraneMembrane andand RelativeRelative SizeSize ofof CommonCommon MaterialsMaterials

Ultrafiltration Microfiltration MF Nanofiltration UF Membrane Reverse Osmosis NF RO Size (μm) 0.0001 0.001 0.01 0.1 1 10

Cl- ion Pesticide, Organic Material Influenza Virus Algae, Mad Relative Size Na+ion of Zn2+ion Vibrio Cholerae Common F- ion Virus 2+ Polio Virus Coliform Materials Pb ion Cryptosporidium NO -ion 3 Hepatitis A Virus Trihalomethane Bacillus anthracis Sea Water Desalination Wastewater Treatment Application Brackish Water Desalination Drinking Water Wastewater Treatment Drinking Water Drinking Water SeparationSeparation CharacteristicsCharacteristics ofof VariousVarious MembranesMembranes

RO/NF Membranes UF/MF Membranes

Low MW Middle to high organic materials MW materials (Mw ≦200) (Mw >200) Ions Dissolved Suspended Solid Monovalent ions Multivalent ions matter Particles Permeation Water and Water rejection Membrane Membrane

RO: Molecular interaction MF: Dynamic separation Separation Solution diffusion Size exclusion mechanism Electric repulsion NF: Size exclusion UF: Electric repulsion

RO: <1 nm UF: 10~100 nm Pore size NF: 1~10 nm MF: >100 nm GlobalGlobal CapacityCapacity ofof MembraneMembrane FiltrationFiltration PlantsPlants

Cumulative 12,0000 Annual Total

) Cumulative Total Estimated 3 RO&NF Cumulative Crypto outbreak 10,0000 Contracted /d x10 3 Potential New 0 8,000 Cumulative Estimate RO+NF 6,0000 Potential New MF&UF Cumulative 4,0000 Crypto outbreak Contract 2,0000 Installed Capacity (m Installed Capacity

00 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 8 8 8 8 8 9 9 9 9 9 9 9 9 9 9 0 0 0 59 69 79 8 9 9 9 0 9 9 2 9 3 9 4 9 5 9 6 9 7 9 8 9 9 9 0 0 0 2 0 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2

MF&UF Annual MembraneMembrane applicationsapplications -- ConventionalConventional & newnew technologiestechnologies : New membrane products ( ) : in R & D Water treatment processes Technical target Toray’s products

Multi Stage Flush (MSF) RO membrane Low cost with high boron Single Stage removal SWRO (=High recovery)

Conventional Sea- Drinking water water NF membrane for NF Multi stage flush (MSF) High quality scaling inhibition

Desalination (Low boron conc.) New Brine conversion RO membrane NF Two-stage SWRO for brine conversion system

Coagulation & Sand PAN hollow fiber ter Security a River Sedimentation Filter UF membrane Conv. Drinking conservation Lake ng w

i water Ground Coagulation & MF/UF Removal of PVDF hollow fiber production New Sedimentation membrane cryptosporidium MF(UF) membrane Drink

Activated PVDF MF/UF flat Sludge Sedimentation Discharge sheet membrane for Conv. Sewage ater High quality MBR & for reuse and Ind. MF/UF Membrane Low-fouling Drinking Low-fouling RO treatment reclamation Wastew New Bio-Reactor (MBR) RO water membrane TorayToray’’ss MembranesMembranes && ApplicationsApplications

eate TM erm 1. RO & NF Membrane Romembra * tube P uct Prod 1) Seawater & Brackish Water Desalination e Brin al e se rin acer 2) Ultra Pure Water Production B h sp Mes er wat eed ane 3) Harmful Material Removal F mbr me RO rrier e ca ater eat d w Perm 4) Wastewater Reuse Fee eate erm P 2. PAN Hollow Fiber UF Membrane Torayfil TM* 1078mm 1) Industrial Process Water Production 2) Drinking Water Production

3) Wastewater Reuse Φ114mm TorayToray’’ss MembranesMembranes && ApplicationsApplications

3. PVDF Hollow Fiber MF Membrane 8 inches Torayfil-F TM* 2m length 1) Drinking water production 2) Industrial process water production 3) Pre-treatment for seawater desalination 4) Wastewater reuse Element 4. PVDF Flat Sheet MF Membrane Permeate for MBR 1) Municipal and industrial wastewater treatment 2) Municipal and industrial wastewater reuse RORO MembranesMembranes && NFNF MembranesMembranes StructureStructure ofof RORO MembraneMembrane ElementElement Separation Membrane Feed Crosslinked Aromatic Polyamide 0.2μm

Structure of RO Membrane Support Membrane Polysulfone 45μm Structure of RO Element

ate me e Per Tub ter Cen

rine B ter l Wa Sea ne Bri ter Wa eed er Substrate F pac d S Fee r ate e W ran Polyester Taffta mb Me 150 RO μm ter Filtrate Wa ate ed me Fe ate Per cer me pa Structure of Composite Membrane Per S ApplicationApplication ofof RORO MembranesMembranes

1. Industrial Ultra Pure Water Industrial Process Water 3. Wastewater Pure Water for Boilers Recovery of Valuables Reuse & Food Industry Process Water Reclamation

Industry RO Membranes Agriculture Indirect Drinking 2. Drinking Water Water

Sea Water Desalination Brackish Water Desalination WaterWater ProductionProduction CostCost Sea Water

) 100 Desalination 3 (MSF) Sea Water )

3 Desalination (RO) Wastewater Reuse 円/m

( (MF + RO)

50 Ground water Surface Water Treatment (MF) ル造水コスト タ トー

Water Production Cost (yen/m Water Production 0 ) re 1) 4) 2) tu 00 00 00 a (2 (2 (2 ter e ) ) on ) (li or 3 /d t 3 /d ti 3 /d F ap m ai m a m ng ( w ( tim ( MS Si 00 Ku 00 Es 00 6,0 0,0 0,0 13 31 10

WaterWater ResourceResource cancan bebe ChosenChosen byby CountryCountry ProgressProgress ofof RORO SeawaterSeawater DesalinationDesalination PlantsPlants

1980‘s 1990‘s 2000‘s

Recovery % 25 40 - 50 55 - 65

psig 1,000 1,200 1,400 Operational Pressure (MPa) (6.9) (8.25) (9.7)

Product Water mg/l 500 300 <200 Quality (TDS)

Energy kWh/kgal 45 21 17.4 Consumption (kWh/m3) (12) (5.5) (4.6)

I. Moch, Pre-prints of ADA Conference in Lake Tahoe (2000) ProgressProgress ofof MembraneMembrane TechnologyTechnology RealizedRealized GoodGood QualityQuality && EnergyEnergy SavingSaving SeaSea WaterWater DesalinationDesalination RORO MembranesMembranes inin GlobalGlobal MarketMarket

Module Type Supplier Product Material Morphology Toray SU-800 Dow/ SW-30 Filmtech Composite Spiral Crosslinked Koch/ Membrane TFCL-HP Aromatic Polyamide Fluidosystems / NTR-SWC Hydranautics Asymmetric Hollow Fiber HOLLOSEP Cellulose Triacetate Membrane

CrosslinkedCrosslinkedaaromaticromatic polyamide/spiralpolyamide/spiral modulemodule isis globalglobal standard.standard. ToyoboToyobo isis thethe onlyonly hollowhollow fiberfiber modulemodule supplier.supplier. DuPontDuPontwithdrewwithdrew fromfrom thethe hollowhollow fiberfiber RORO modulemodule businessbusiness inin MarchMarch 2001.2001. TechnologicalTechnological TrendsTrends ofof RO/NFRO/NF MembranesMembranes

Operating Super low Ultra low Low High Ultra high Pressure Notes [MPa] 0.3 0.5 1.0 2.0 5.5 10.0 Recovery = 60%

tg. High TDS removal s Pressure durability

2nd High boron removal

SWRO Recovery = 40% High TDS removal N Co., D Co. High boron removal 1st stg. Cost reduction RO BW Low-fouling Lower pressure N Co., H Co. High TOC removal

Reverse osmosis High quality pure Ultra water N Co. Cost reduction Low-fouling

reuse D Co., N Co., H Co. water Cost reduction Waste ng r i

e Toxic mat. removal t

wa D Co., N Co. Cost reduction Product. Drink

Scale removal Nanofiltration Pre- Ttreat. of SWRO in R & D by Toray D Co. : Dow N Co. : Nitto Denko H Co.: Hydranautics ProgressProgress ofof RORO MembraneMembrane PerformancePerformance

Changing of Controlling of Interfacial Polycondensation 99.8 Material and/or Reaction, and use of Catalyst Morphology of Membrane Ⅱ 99.5 Ⅰ Ⅲ Ⅳ

99.0 CA (1987) (1988) (1996) (1999) Asymmetric UTC-70 UTC-70L UTC-70U UTC-70UL Membrane Crosslinked Aromatic PA Composite Membrane 98.0 (1970's)

NaCl Rejection (%) Crosslinked PA Composite Membrane 95.0 (1980's)

90.0 Flux 00.20.4 0.60.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 (m3/m2 day MPa) Operating Pressure 5.0 3.0 2.0 1.5 1.0 0.8 0.7 0.5 (MPa/(m3/m2 day)) Medium Low Pressure Ultra Low Super Ultra Low

World’sWorld’s No.No. 11 MembraneMembrane PerformancePerformance ConventionalConventional OneOne--StageStage RORO SeaSea WaterWater DesalinationDesalination SystemSystem

Pretreatment Cartridge Filter RO Element Pressure≦7MPa*) NaHSO3 FeCl3 High Pressure Chlorine Chlorine Motor H2SO4

Energy Recovery Turbine Brine Product Sea Water Sea Water Tank Feed Tank Water

*) Spiral element OkinawaOkinawa SeaSea WaterWater DesalinationDesalination PlantPlant (Capacity:(Capacity: 40,000 m³/d, 1996)

40,000m³/d: Tap water for 160,000 people

RO Module Installation (each unit produces 5,000m³/d)

TorayToray ModuleModule isis usedused inin Japan’sJapan’s LargestLargest PlantPlant LargestLargest SeaSea WaterWater DesalinationDesalination PlantsPlants inin thethe WorldWorld

Country Location Capacity Operation Plant Supplier Membrane (m3/d) (year) Supplier 1 Israel Ashkelon 272,520 2004 OTID/ IDE/ OTV Dow 2 UAE Taweelah 227,300 2006 Toray/ / Veolia Toray 3 UAE Fujairah 170,000 2003 ONDEO Hydra 4 Israel Ashdod 137,000 2004 Ionics Toray 5 Trinidad and Tobago Point Lisa 136,000 2002 Ionics Toray 5 Singapore Tuas 136,000 2004 Hyflux (Toray) 7 Mexico Hermosillo 128,690 2004 IDE/ IL - 8 Saudi Arabia Yanbu 128,000 1995 Mitsubishi Toyobo 9 Spain Carboneras 120,000 2001 ABENS/ONDEO/PRI Hydra 10 USA Tampa 94,625 2003 COVANTA Hydra 11 Saudi Arabia Al Jubail III 90,909 2000 PWT DuPont/Toray * DuPont withdrew from RO business in 2001

RORO seasea waterwater desalinationdesalination seemsseems veryvery difficultdifficult inin theArabiantheArabianGulf,Gulf, becausebecause troublestroubles occurredoccurred atat allall ofof DuPont’sDuPont’sRORO plants.plants. AlAl JubailJubail IIIIII isis thethe firstfirst successfulsuccessful plant.plant. Typical Flow Diagram of Brine Conversion Two Stage RO Seawater Desalination System Brine Conversion Two Stage RO Seawater Desalination System

Conventional System High Pressure Product Seawater RO Element Water (100) Pump 1st Stage (40) Total C=3.5% SW 6.5MPa Product Water Pretreatment (40+20)

Brine Water Water (60) RO Element Recovery C=5.8% SW 2nd Stage 60%

Booster Pump Product Water (20) 6.5 →9.0MPa Brine Water (40) ( ): Water Flow Ratio C=8.8% SW

Toray’s Patent: Japanese Patent Application 1994-245184(1994), US: 6187200(2001), CA: 216033(2001), RC: 302294(1997), AU: 691649(1998), EU(granted 2002), KR: 204608(1999), Pending - JP, CH Performance Trends of RO Membranes for Seawater Desalination

35,000 mg/L Seawater Ultra High Pressure Spiral PA 10.0 Composite Membrane (Toray 1996)

9.0 Spiral PA Composite Membrane (1998) High Pressure Hollow Fiber PA 8.0 Membrane (1992) High Pressure 7.0 Hollow Fiber PA Hollow Fiber CA Membrane Membrane (1969) ( 1998) Membrane Elements (MPa) Membrane Elements 6.0 Spiral PA Composite Membrane Pressure Resistance Level of RO Pressure Resistance (1978-1979) 5.0 01020 3040 50 60 Water Recovery Ratio from 3.5% seawater (%)

WorldWorld No.No. 11 MembraneMembrane PerformancePerformance forfor SeaSea WaterWater DesalinationDesalination GlobalGlobal InstallationsInstallations ofof TorayToray SeaSea WaterWater DesalinationDesalination ROsROs

KAE Curacao Mas Palomas Mas Palomas (Netherlands Antilles) (Spain Canary Island) (Spain Canary Islands) 11,400 (m3/d) No. 1 Plant 4,500 (m3/d) No. 2, 3 Plant 9,000 (m3/d) Okinawa (Japan) 40,000 (m3/d) ● ● ● ● ● ● ●● ● ● ● ●● ● ● ● ●●● ● ●● ●● ●●● ●● ● ● ● ●● ●●● ● ● ● Tortola ● ● ● ● ● (British Virgin Islands) ● ● 690 (m3/d) ● ●

● :Toray’s 2-Stage RO Systems ● :Conventional RO Systems Trinidad and Tobago Al Jubail 136,000 (m3/d) (Saudi Arabia) 91,000 (m3/d) ResultsResults ofof MembraneMembrane BiofoulingBiofouling (MBP)(MBP) AssayAssay

Surface Bad (Orange County water district: Dr.Ridgway) (High attachment) Cross 0.14 600nm section RO 0.12 Mycobacteria疎水性微生物 (hydrop(Mhycobicobac cellter isurface)a)

B/F ratio) 0.10 ( Flavobacteria親水性微生物 o i t (hydrop(Fhlailicvob cellacter surface)ia) a 0.08 Surface R 0.06 Cross B/F 600nm section 0.04 Low-fouling RO 0.02 Good Bacterial Attachment Standard level (Low attachment)0.00 (Cellulose Acetate Membrane) RO Low-fouling RO Fouling : Deterioration of membrane performance caused by stains

TorayToray less-foulingless-fouling RORO membranemembrane hashas extremelyextremely low low bacteria bacteria attachment attachment WastewaterWastewater ReclamationReclamation && ReuseReuse PlantsPlants

Disinfections Wastewater MF RO Reclamation Reuse

Country Location Capacity Operation Plant Membrane (m3/d) Year Supplier Supplier 1 Kuwait Sulaibiya 300,000 2003 IONICS Toray 2 USA CA Fountain Val 264,950 2004 PROJECT 3 Singapore Ulu Pandan 140,000 2004 4 India Chennai 135,000 1999 CAMP DRESSER 5 USA CA San Diego 75,000 6 Spain Almeria 42,000 2001 PRIDESA/INIMA PERMETEC ES 7 Singapore Kranji 40,000 2003 VEOLIA Hydranautics 8 Singapore Bedok 32,000 2003 HYFLUX Hydranautics 9 Saudi Arabia Jeddah 30,000 1990 BIWATER GB DuPont 10 Korea 26,182 1996 IONICS US Dow/Filmtec 11 Singapore Seletar 24,000 2003 HYFLUX Toray 12 Japan 22,984 1983 KURITA JP Toray 13 USA AZ Scottsdale 22,710 1998 ADVANCED ES USA Koch (Nov. 2003 :Based on IDA Inventory Report 2002) TorayToray less-foulingless-fouling RORO waswas selectedselected atat thethe world’sworld’s largestlargest RORO plantplant ListList ofof LargeLarge WaterWater TreatmentTreatment PlantPlant usingusing RORO membranemembrane (under(under operationoperation oror construction)construction)

Country Location Capacity Raw Wate User Operating Plant Mmbrane (m3/d) Year Supplier Supplier 1 Kuwait Sulaibiya 310,000 Waste Irrigation 2004 Ionics Toray 2 USA AZ Yuma 276,672 Brackish Discharge 1983 Fluid System Koch 3 Israel Ashkelon 272,520 Sea Municipal 2004 OTID IDE OTV Dow/Film Tec 4 USA CA Fountain Val 264,950 Waste Municipal 2004 Project sellecton 5 UAE Taweelah C RO 227,300 Sea Municipal 2006 Toray/Mitsui/Veolia Toray 6 UAE Fujairah 170,000 Sea Municipal 2003 ONDEO Hydranautics 7 Spain Malaga 165,000 Brackish Municipal 2003 ABENSUR/ONDO unkown 8 USA FL Boca Raton 151,400 River Municipal 2003 ADVANCED EWT unkown 9 France Mery-sur-Oise 140,000 River Municipal 1999 OTV VIVENDI Dow/FilmTec 10 Singapore Ulpandan 140,000 Waste Municipal 2004 PUB selection 11 Israel Ashdod 137,000 Sea Municipal 2004 OTV/Ionics Toray 12 Singapore Tuas 136,380 Sea Municipal 2004 Hyflux (Toray) 13 Oman Sharqiya 136,000 Sea Municipal 2004 Project selection 14 Trinidad Tobago Point Lisas 136,000 Sea Industry 2002 Ionics Toray 15 India Chennai 135,000 Waste Industry 1999 Camp Dresser unkown 16 Mexico Hermosillo 128,690 Sea Municipal 2004 IDE IL selection 17 Saudi Arabia Medina/Yanbu II 128,000 Sea Municipal 1995 Mitsubishi Toyobo 18 Spain Carboneras 120,000 Sea Municipal 2001 ABENS/ONDEO/PRI Hydranautics 19 Saudi Arabia Hail 105,980 Brackish Municipal 1996 EMCO SIDMAS

(Nov. 2003 ; Based on IDA Inventory Report 2002) CumulativeCumulative InstallationsInstallations ofof TorayToray ROsROs byby ApplicationApplication

2,500,000 /d)

3 2,000,000 ) 1,500,000 3/日 (m

1,000,000 累積造水量

500,000 Cumulative Installation (m 0 87 88 19 89 0 19 19 199 991 1 992

93 3

1 (thousand m /d) 94 19 95

19 超純水 147万m3/d 7

19 Ultra pure water 1,470 年度 996

1 かん水 204万m3/d Year 98 199 Brackish water 2,940

99 海淡 65万m3/d 19 00

19 その他Sea w 13万mater3/d desalination 650 20 Global Extension 001

2 Others 13 002 2 Ultra pure water production Wastewater reuse Sea water desalination Brackish water desalination & reclamation TorayToray GroupGroup’’ss BusinessBusiness BasesBases andand GlobalGlobal OperationsOperations

Flat Sheet Membrane Flat Sheet ● ● Membrane

● ● ● ● ● ● ● ●

Toray Ropur TMA Flat Sheet Membrane Production Three Main Element Production Base Structure ConclusionConclusion –– RORO••NFNF MembranesMembranes

1. The RO seawater desalination system has entered a stable growth stage and the business is expanding steadily.

2. Wastewater reuse and reclamation is expected to be a new RO application.

3. Expansion of the NF membrane businesses is expected in the pretreatment of seawater desalination, and in highly efficient water purification systems. UFUF MembranesMembranes && MFMF MembranesMembranes -- DrinkingDrinking WaterWater ProductionProduction -- UFUF && MFMF MembranesMembranes – Breakdown of World Applications -

Others Industrial Water

Wastewater Drinking Water Treatment

Ref: David H. Furukawa, WATERMARK, October 17, 2002 Total Water Production: 4.9 million m3/d Market for Hollow-fiber Membranes for Drinking Water Production 200 US /d)

3 EU

日)日)日) Total Drinking Water m /// 4 150 4 3 Large Plant Production (x10 m /d) In Operation US: 2900 100 Japan: 6900 Regulation Cryptosporidium 50 Outbreak Cumulative (x10 Japan 累積造水量(m 累積造水量(m 累積造水量(m 0 1990 1992 1994 1996 1998 2000 2002 (年)(year) Cryptosporidium parvum (4~8μm) 1993 400,000 people experienced intestinal illness in Milwaukee. At least 50 died of the disease. 1996 8,000 people infected in Ogose, Saitama, Japan 1998 Enhanced regulations of surface water treatment EnhancementEnhancement ofof PathogenPathogen RegulationsRegulations causedcaused MarketMarket ExpansionExpansion MembraneMembrane FiltrationFiltration PlantsPlants forfor DrinkingDrinking WaterWater inin JapanJapan Capacity Location Engineering Membrane Supplier Installation (m3/d) (Year) 1 27,500 Tokyo, Hamura Suido Kiko 2004 2 10,000 Tochigi, Imaichi Orugano Daiseru (UF) 2000 3 8,000 Suido Kiko Toray (MF) 2003 4 6,200 Hokkaido, Nishisorachi Orugano Daiseru (UF) 1999 5 6,000 Miyagi, Onagawa NKK Memcore (MF) 2001 6 5,320 Aichi, Shinshiro Orugano Daiseru (UF) 2003 7 5,000 Suido Kiko Toray (MF) 2002 7 5,000 Mie, Kiho Ebara Mitsubishi (MF) 2001 9 4,500 Gifu, Ena Suido Kiko (UF) 2001 10 4,000 Saitama, Ogose Kurita Kuraray (UF) 1998 11 2,400 Ooita, Notsu Toray (UF) 1999 12 1,900 Fukui, Eiheiji Maezawa Toray (UF) 2001 13 1,900 Gunma, Showa Suido Kiko Asahi Kasei (UF) 2001 14 1,900 Fukui, Miyazaki Suido Kiko Asahi Kasei (UF) 2000 ApplicationApplication ofof UF/MFUF/MF membranesmembranes isis expandingexpanding inin JapanJapan CumulativeCumulative installationsinstallations areare 210,000210,000 (m(m33/d)/d) asas ofof JuneJune 20032003 PANPAN--basedbased HollowHollow FiberFiber UFUF MembraneMembrane

Cross section Pore size: 0.01 micrometer Outer surface CasingCasing TypeType ModuleModule

1 07 8m m

Φ m m 4 1 1

Membrane area: 12 m2 Water production: 10 m3/d Drinking water production plant TankTank TypeType ModuleModule D

Merit - Low Initial Cost H - Small Footprint - Easy Maintenance

Flux (m3/d) 70 200 500 800 Membrane area (m2) 84 228 576 960 Diameter (D) (cm) 45 75 120 150 Height (H) (cm) 200 230 250 250 DesignDesign ConceptConcept ofof PVDFPVDF HollowHollow FiberFiber MFMF MembraneMembrane

Operation Functional Requirement

1. High Water Flux 1. High Water Permeability 2. Low Operational Pressure 2. Precise Pore Size 3. Frequent Physical Washing 3. High Physical Stability 4. Frequent Chemical Rinse 4. Good Chemical Resistance

PVDF(Poly Vinylidene Fluoride) polymer is suitable

Performance of hollow fiber membrane Proprietary spinning process depends highly on spinning process

High Permeability & High Physical Strength TorayToray PVDFPVDF HollowHollow FiberFiber MembraneMembrane

Spinning Method Feature Outer surface Lumen Extraction Melt spinning with pore High Strength formation agent and extraction High Cost Drawing High Strength Melt spinning and drawing Low Cost Melt Spinning

Non-solvent Induced UF/MF Applicable Phase Separation Low Cost Permeability and Polymer solution is High-strength coagulated by non-solvent inconsistent Water flow Thermally Induced Phase Separation High Strength Polymer solution is cooled High Flux Solution Spinning down to phase separation Low Cost temperature Comparison of Hollow Fiber Membrane with Other Companies * Pure Water, at 50 kPa

Supplier U Company Z Company N Company A Company Toray

Material PP PVDF PVDF PES PVDF PVDF

* Permeability - (m3/m2・d) 4.8 1.5 3.0 5.3 6.7

Membrane - Area (m2) 30 56 35 50 72

Module

PP: Polypropylene, PVDF: Poly (Vinylidene Fluoride), PES: Poly (Ether Sulfone)

World’sWorld’s No.No. 11 PermeabilityPermeability andand LargestLargest ModuleModule ComparisonComparison ofof StrengthStrength && ElongationElongation - Membrane Material -

PVDF

PAN

CA

PS

15 10 5 0 0 50 100 150 Strength (MPa) Elongation (%)

PhysicalPhysical propertyproperty dependsdepends highlyhighly onon materialmaterial && spinningspinning methodmethod ComparisonComparison ofof ChemicalChemical StabilityStability ofof PVDFPVDF HollowHollow FiberFiber -Accelerated Oxidation- Purpose: Confirmation of stability against strong oxidation agent

1.0 Accelerated oxidation PVDF

1. Evaluation of membrane PE configuration PS 2. Evaluation under cleaning / Initial Strength/ Initial Strength

condition kk 0.5 PAN (5,000 ppm as H2O2 with FeSO4) CA r soar soa ee tt h afh af Results

StrengtStrengt 0 1. PVDF-MF membrane is very stable 0 50 100 150 200 250 under strong oxidation conditions. Soaking period (h) 2. PVDF-MF membrane can be cleaned with a concentrated oxidation agent. Comparison of Oxidation Resistance ComparisonComparison ofof ChlorineChlorine ResistanceResistance ofof PVDFPVDF HollowHollow FiberFiber Purpose: Confirmation of stability against chlorine

1.0 Evaluation condition 1. Evaluation of membrane PVDF configuration PE 2. Evaluation under cleaning PAN

condition / Initial Elongation PS (1,000 ppm as Chlorine, pH=10) 0.5 CA

Results 1. PVDF MF membrane is very Elongation after soak 0 stable in a concentrated chlorine solution. 0 200 400 600 800 1000 2. PVDF-MF membrane can be cleaned Soaking period (h) with a concentrated chlorine solution. Comparison of Chlorine Resistance PVDFPVDF MFMF MembraneMembrane 88”” ModuleModule

Specifications Permeate Back Wash

Air out PVDF-HF large Module (& Circulate) 8 inches, 2m length

PAN-HF Module 4 inches, 1m length

1724

2160 216

Items Toray 8B Module Module Size [mm] 216 (8B) dia. x 2,160L Feed Membrane Area [m2] 72 Flux (pure water) [m3/h/50kPa] 20 (Feed) Drain Temperature [deg.] 0 – 40 &Air HFMHFM--20202020 StandardStandard OperationalOperational ConditionsConditions Pretreated Water River & Lake Surface Feed Water Type Clean Ground Water Water Filtration Flux(m3/m2/d) 2 - 5 1 - 2 Flux: 1 - 2 times of filtration flux Chlorine dosing: 1 - 10 ppm Backwash Condition Time: 30 – 60 sec. Frequency: every 0.3 – 2 h Air flow: 4 – 10 Nm3/h/Module Scrubbing Condition Time: 30 – 120 sec. Frequency: every 0.3 – 2 h Operation Temp. (degrees C) ≦ 40 Operation pH 1 – 10 (1) CIP (Clean In Place): every 3 - 6 months (2) Trans-Membrane pressure Chemical Cleaning (3 - 5 times of initial, or 150 kPa) (3) Chemicals: 1N-HCl + 3,000 ppm NaClO LargeLarge ScaleScale GroundGround WaterWater FiltrationFiltration PlantPlant ((5,000 m3/d、for 20,000 people)

4 m 2 m

CompactCompact andand HighHigh ProductivityProductivity Water Treatment Related National Projects

Year Title Toray’s R&D Theme 1992 Project Membrane Aqua 1993 Century 21 (MAC21) 1994 New Membrane Aqua ・Highly efficient water purification system 1995 Century 21 utilizing NF membranes (MAC21) 1996 (Toray Engineering Co.) 1997 Advanced Aqua Clean 【Search for New Technology Application of Membrane Filtration】 st ・ 1998 Technology for the 21 Development of efficient coagulation and sedimentation technology Century to be applied in the UF pretreatment 1999 (ACT21) ・Development of operational stability during the NF advanced water 2000 purification process 2001 【Development of Advanced Water Purification System of River Water】 ・Technological examination of combination of conventional water purification systems and membrane filtration 2002 Environmental, Group 1: Development of large-capacity membrane filtration 2003 Ecological, Energy technology (Kawai,Yokohama/Shinishikawa,Okinawa) Saving and Economical Group 2: Total water purification system 2004 Water Purification System (Ayase,Yokohama/Otokane,Fukuoka) (e-Water) Group 3: Observation technology at the drinking water supply source Participation in National Project (e-water) Water Drinking Production Plant Order Award Requirements: 1. Qualification of the Facility 2. Approval of Construction Work 3. Acquisition of National Licenses 4. Actual Experience in Plant Delivery Water Feed Water Subject Participants/ Purification Plant Toray’s Expected Role Kawai, Fresh Water ・Comparative Experiments of 6 ・Toray/Suido Kiko Joint Team Yokohama Groups, including Ebara ・Toray; Experiment Supervisor, June/03 ~ Basic Design, Manufacture of Mar/05 ・Case Trial - 200,000 m3/d Experimental Facility, Follow-up of Operations Ayase, Fresh Water ・Examination of Appropriate ・Co-R&D of 38 Companies Yokohama Operating Conditions ・Toray; Basic Design, Supply of Aug/03~Mar/05 PVDF Modules Otogane, Fresh Water ・Comparative Experiments of 5 ・Suido Kiko as the Supervisor Fukuoka Groups including Maezawa and ・Toray; Supplies PVDF Sept/03 ~ Shinko Pantec Modules, Supports System Mar/05 ・ Case Trial - 110,000 m3/d Examination Ishikawa, Fresh Water ・MF Pretreatment+NF Membrane ・Nishihara; Supervisor, Joint Okinawa (to confront Ozone + Activated Team of Suido Kiko, Ebara, Carbon Method) Kubota, and Toray Oct/03 ~ ・Only Successful Group to ・Toray; Basic Design and Mar/05 actually demonstrate use of Supply of PVDF and NF membranes Modules Case Trial - 50,000 m3/d ConclusionConclusion -- UF/MFUF/MF MembranesMembranes forfor DrinkingDrinking WaterWater

1. The Drinking Water Production Market is expanding rapidly, centering on the U.S. and Europe.

2. Toray has developed highly water-permeable and highly stable PVDF hollow fiber large modules suitable for drinking water production. 3. Although still in the experimental stage, Toray’s technology is highly appraised, and we are aiming to enter the market as soon as possible. ImmersedImmersed MembraneMembrane ModulesModules forfor WastewaterWastewater TreatmentTreatment MeritMerit ofof MembraneMembrane BioBio--reactorreactor

1. Good permeate quality 1) Low COD concentration 2) Low total nitrogen and total phosphorous 3) No suspended solid 4) Removal of bacteria and viruses

2. Very space efficient design

3. Considerable reduction of excess sludge

4. Reclamation of wastewater Integrated system with RO membrane FlatFlat SheetSheet MembraneMembrane oror HollowHollow FiberFiber MembraneMembrane

Type Merit Demerit Effective aeration per Small membrane area footprint per volume Flat Ease to remove Difficulty for backwash Sheet fouling substances Less pressure loss Small dead space Large membrane area Inter-fiber fouling Hollow per volume causes flux decline Fiber Backwash cleaning & fiber damage FlatFlat SheetSheet MembraneMembrane oror HollowHollow FiberFiber MembraneMembrane

50

40 Hollow fiber 30 membrane Flat Sheet Membrane 20

Trans Membrane Pressure (kPa) 10

0 100 200 300 Operation Time (h) Industrial Wastewater Treatment Test FlatFlat SheetSheet MembraneMembrane BioreactorBioreactor

Wastewater Immersed Membrane Effluent

RO Reuse Membrane Bioreactor

Element Activated Sludge Effluent

Feed Wat er

Bubble Feed Water Aeration Effluent (Activated Sludge) Support Membrane RequirementRequirement andand DesignDesign forfor ImmersedImmersed MembraneMembrane

Requirement 1. Chemical and physical durability 2. High water permeability and high permeate quality 3. Prevention for clogging

Design Concept 1. Membrane material : HH Poly(vinylidene fluoride) (PVDF) n High stability for chemicals and high physical strength FF 2. Membrane form : Fiber reinforced membrane 3. Surface pore : 1) Small pore size 2) Narrow pore size distribution 3) Large pore number PorePore sizesize ofof FlatFlat SheetSheet MembranesMembranes ) 2 1.5

/ m PVDF Membrane 12 1.0 Type B

東レBF014 3.0 micrometer 0.5 クボタ

0 0 0.2 0.4 0.6 0.8 Number of pore (10 Pore size (micrometer)

Pore Size Distribution of Flat Sheet Membranes 3.0 micrometer PVDFPVDF FlatFlat SheetSheet MembraneMembrane PerformancePerformance

100

80 PVDF Type B

60

40

20 Rejection (%)

0 0.2 0.4 0.6 0.8 1.0 Particle size (micrometer) Rejection of PSt latex particles PVDF Type B Average Surface Pore Size (micron) 0.08 0.4 Pure Water Flux (m3/m2/h, 10 kPa) 1.44 0.90

PVDF membrane has small pore and high flux ChemicalChemical ResistanceResistance ofof PVDFPVDF FlatFlat SheetSheet MembraneMembrane Purpose: Confirmation of membrane stability for cleaning chemical

1.2 1.2

1 oak 1

NaClO s soak 0.8 0.8 NaClO 0.6 0.6 0.4 0.4 Initial flux 0.2 0.2 Flux after

0 Initial rejection 0 0 100 200 300 Rejection after 0 100 200 300 Soaking period (h) Soaking period (h) Retention of Flux after soaking Retention of PSt rejection after soaking

Evaluation condition Result PVDF MF membrane 1. Membrane configuration 1. is very stable in concentrated 2. Under cleaning condition chlorine solution (1,000ppm as Chlorine , pH=10) 2. can be cleaned with concentrated chlorine solution ImmersedImmersed MembraneMembrane ModuleModule Small Test Module Large Size Module

Membrane Module 2 Membrane (24m , 20 elements) Module (10 elements)

Housing Effluent 1,500mm Membrane 500mm

500mm Diffuser Membrane Element 490mm (1.2m2) Membrane Element (0.45m2) ModuleModule TypeType andand StandardStandard OperationOperation ConditionCondition Module Type Module type M1 M2 M3 Number of element 50 100 200 Width (m) 0.80 0.80 0.80 Dimension Depth (m) 0.98 1.65 3.00 Height (m) 2.20 2.20 2.20 Housing SUS Material Permeate manifold PVC Diffuser PVC

MLSS (mg/L) 3,000 – 20,000 Standard operation Temperature (degree C) 5 – 40 condition pH 2 – 12 Operation flux (m3/m2/d) 0.4 – 1.0 Air flow (NL/min/Element) 10 - 15 Filtration pressure (kPa) < 50 SludgeSludge FiltrationFiltration TestTest (Small Test Module)

10 LV=0.4m/d LV=0.7m/d 8 Type B 6

4 PVDF 2 Trans Membrane Pressure [kPa] 0 1000 2000 3000 Operation Time [h]

Quality of Effluent Test Equipment PVDF Type B Conventional MLSS : 3,000-4,000 (mg/L) Turbidity(NTU) 0.20 0.21 1.25 Tank Size : 750L BOD (mg/L) 3.5 3.4 3.8 2 Membrane Area : 1.6 m COD (mg/L) 5.1 5.0 6.1 ComparisonComparison ofof ModuleModule PerformancePerformance

Module Performance Membrane Performance Membrane Area = × = (m3/footprint) (m3/m2) (m2) 2 (Compared to (1.4) (1.5) other modules) Rinse 2.0 /d)

3 Differential pressure = 2 kPa 1.5

1.0 Toray: 0.8 (m3/d) 0.5 Type B: 0.4 (m3/d) 0.0

Module Performance (m 0 1000 2000 3000 4000 5000 6000 7000 8000 Operation (h)

TorayToray module module performance performance is is twice twice as as competent competent as as others others ChemicalChemical CleaningCleaning ofof PVDFPVDF FlatFlat SheetSheet MembraneMembrane

100

75

50

25 Flux recovery (%)

0 Before Before NaClO NaClO (COOH)2 NaClO cleaning cleaning

Chemical Concentration Cleaning time (h) Sodium hypochlorite 1,000 – 5,000 (mg/L) 2 – 5 Hydrogen peroxide 1,000 (mg/L) 2 – 5 Oxalic acid 1 – 2 (%) 1 - 3 PilotPilot TestTest forfor IndustrialIndustrial WastewaterWastewater (Chemical plant) Test conditions Parameter Unit Value Influent flow m3/d 41 ~ 68 BOD of raw water mg/l 180 ~ 430 MBR vessel capacity m3 5.5 MLSS mg/l 12,000 ~ 20,000 Membrane area m2 137 Permeate water flux m3/ m2 /d 0.30 ~ 0.50 Scouring air flow Nm3/min 1.0 ~ 1.2 Appearance of MBR Temperature Degree C 25 - 32 Influent and effluent quality Parameter Unit Influent Effluent pH - 7.6 7.4 BOD mg/l 230 4.6 COD mg/l 140 8.4 SS mg/l 15 None Total nitrogen mg/l 18.6 2.3 Total phosphorus mg/l 0.3 0.06 Module installation PilotPilot TestTest forfor BreweryBrewery WastewaterWastewater (Small test module) Operation Condition Parameter Unit Brewery COD-Cr of raw water mg/L 3,000 COD-Cr per sludge weight kg-COD-Cr/kg-SS/d 0.08 – 0.10 MLSS mg/L 4,000 – 5,500 Membrane area m2 6.0 Permeate water flux m3/m2/d 0.24 Temperature degree C 12 - 15 Result 1. COD removal was more than 95 % 2. Suspended solid was removed completely 3. TMP was stabilized PilotPilot TestTest forfor MunicipalMunicipal WastewaterWastewater Operation Condition Parameter Unit Municipal COD-Cr of raw water mg/L 275 COD-Cr per sludge weight kg-COD-Cr/kg-SS/d 0.15 – 0.22 MLSS mg/L 7,800 - 5,000 Membrane area m2 24 Permeate water flux m3/m2/d 0.53 Temperature degree C 13 - 16 Result 1. COD removal was about 90 % 2. Suspended solid was removed completely 3. TMP was stabilized TestTest forfor MunicipalMunicipal WastewaterWastewater Pilot test started at Beverwijk WWTP in March 2003, cooperated with Seghers Keppel Technology Group (SKG)

Toray Membrane element supply SKG MBR system design & build Operation TestTest forfor MunicipalMunicipal WastewaterWastewater ((BeverwijkBeverwijk WWTP)WWTP)

System Configuration

NO3--NN NHNH44--NN POPO4-4-PP DSDS DODO DODO PermeatePermeate F F PERPERMMEAEAAATT InfluentINFLUENT MTMT FF

AN1 AN2 DN1 DDNN22 DDNN33 NN11 NN22 FF

FF

2 m3 2 m3 1,2 m33 1,1,22 mm33 2,2,55 mm33 44 mm33 2,2,22 mm33

AN= Anaerobic zone, DN= Anoxic zone, N= Nitrification zone, MT= Membrane tank

Design capacity (m3/d) 120 Membrane area (m2) 137 TestTest forfor MunicipalMunicipal WastewaterWastewater ((BeverwijkBeverwijk WWTP)WWTP) 1. After 6 months of operation, no fouling measured on membranes 2. No chemical cleaning necessary 3. Without dosing chemicals the following effluent limits is reached

-PO4-P : 0.35 (mg/l)

-NH4-N : 0.10 (mg/l)

-NO3-N : 3.5 (mg/l) 4. Permeability is still more than 1,200 (l/m2/h/bar) 5. The following flux data were obtained compared with others (l/m2/h) Toray A B Critical flux 85 40 45 Peak flux (Rain) 70 30 35 Average flux (Dry Weather) 20 10 12 (based on “Membrantechnik in der Wasseraufbereitung und Abwasser be handlung, Aachen, 2003”) ConclusionConclusion 1. Flat sheet type immersed membrane with high flux, small pore size and narrow pore size distribution has been developed. 2. Immersed membrane module was operated at low trans membrane pressure even in high activated sludge concentration. 3. Permeability was recovered after chemical cleaning and there was no damage of membrane. 4. Pilot tests were carried out at several WWTP plants and operations were stable. ConclusionConclusion -- TorayToray’’ss MembraneMembrane SeparationSeparation TechnologyTechnology foforr WaterWater TreatmenTreatmentt 1. Toray is a synthetic membrane manufacturer whose products cover all types - RO, NF, UF, and MF.

2. Placing top priority on seawater desalination, drinking water production, and wastewater treatment, Toray intends to expand its membrane technology business throughout the world.

3. High water quality and an Integrated Membrane System (IMS), a combination of several membranes, is required in the future market. Toray, possessing all types of membranes, is in an advantageous position in expanding business utilizing the IMS. TorayToray cancan contributecontribute toto ensuringensuring sustainablesustainable waterwater resourcesresources withwith membranemembrane technologytechnology

River, Lake, Ground Water Sea Water Wastewater