Natural Occurrence in Argentina of a New Fungal Pathogen of Cockroaches, Metarhizium Argentinense Sp

Total Page:16

File Type:pdf, Size:1020Kb

Natural Occurrence in Argentina of a New Fungal Pathogen of Cockroaches, Metarhizium Argentinense Sp Fungal Biology 123 (2019) 364e372 Contents lists available at ScienceDirect Fungal Biology journal homepage: www.elsevier.com/locate/funbio Natural occurrence in Argentina of a new fungal pathogen of cockroaches, Metarhizium argentinense sp. nov. * Alejandra C. Gutierrez a, , Andreas Leclerque b, Romina G. Manfrino a, Christian Luz c, Walter A.O. Ferrari a, Jorge Barneche a, Juan J. García a, d, Claudia C. Lopez Lastra a a Centro de Estudios Parasitologicos y de Vectores e CEPAVE (CONICET, Consejo Nacional de Investigaciones Científicas; UNLP, Universidad Nacional de La Plata), La Plata, 1900, Buenos Aires, Argentina b Institute for Microbiology and Biochemistry, Geisenheim University, Geisenheim, D-65366, Germany c Instituto de Patologia Tropical e Saúde Pública (IPTSP), Universidade Federal de Goias (UFG), Goiania,^ 74605-050, Goias, Brazil d Comision de Investigaciones Científicas (CIC), La Plata, 1900, Buenos Aires, Argentina article info abstract Article history: The aim of this study was to search for entomopathogenic fungi that infect wild cockroaches in forest Received 18 October 2017 ecosystems in two protected natural areas of Argentina. Two isolates of Metarhizium argentinense were Received in revised form obtained and identified from wild cockroaches (Blaberidae: Epilamprinae) through the use of morpho- 16 January 2019 logical characteristics and molecular phylogenetic analyses. This novel species was found in Argentina Accepted 12 February 2019 and is a member of the Metarhizium flavoviride species complex. Phylogenetic analyses, based on Available online 21 February 2019 sequence similarity analysis using internal transcribed spacer (ITS) and a set of four protein-coding Corresponding Editor: Gustavo Henrique marker sequences (EF1A, RPB1, RPB2 and BTUB), supported the status of this fungus as a new species. Goldman In addition, we tested the biological activity of the new species through assays against Blattella germanica nymphs and found that the two evaluated isolates were pathogenic. However, isolate CEP424 was more Keywords: virulent and caused a confirmed mortality of 76 % with a median lethal time of 7.2 d. This study reports Blattodea the southernmost worldwide location of a Metarhizium species that infects cockroaches and will help Clavicipitaceae expand the knowledge of the biodiversity of pathogenic fungi of Argentine cockroaches. DNA sequencing © 2019 British Mycological Society. Published by Elsevier Ltd. All rights reserved. Entomopathogenic fungi Hypocreales 1. Introduction Hamilton, 1990). The control of these urban pests in large cities is difficult due to prevalent insecticide (pyrethroids, carbamates and Approximately 4000 cockroach species have been described others) resistance (Zhu et al., 2016; Wu and Appel, 2017). In addi- worldwide, and about 1 % of them are considered pests (Cochran, tion, several studies have shown that the exclusive use of in- 2003). Urban cockroaches act as mechanical vectors of pathogenic secticides does not promote satisfactory long-term control when microorganisms for humans and contribute to allergic processes compared to an integrated pest management approach (Wang and and exacerbation of asthma (Pai et al., 2004; Fu et al., 2009; Pomes Bennett, 2010). et al., 2017). There are no significant natural enemies of synan- Natural infection records of Blattodea pathogens and parasites thropic cockroaches in human environments, and this factor con- are scare and fragmented (Roth and Willis, 1960; Suiter, 1997). The tributes to the high levels of home infestations (Schal and few recorded fungal pathogens of cockroaches are Hymenostilbe ventricosa, described on nymphs that attached to the underside of leaves of forest plants in Thailand (Hywel-Jones, 1995); Ophio- cordyceps blattae (Petch), found on cockroaches in Sri Lankan gar- * Corresponding author. Centro de Estudios Parasitologicos y de Vectores e dens (Petch, 1931); Ophiocordyceps blattarioides, described on wild þ CEPAVE (CONICET-UNLP), La Plata, 1900, Buenos Aires, Argentina. Fax: 54 0221 adult cockroaches from Colombia (Sanjuan et al., 2015). Recently, 4232140. E-mail addresses: [email protected], [email protected] Montalva et al., (2016) described the novel species Metarhizium (A.C. Gutierrez), [email protected] (A. Leclerque), manfrino@cepave. blattodeae as a natural fungal pathogen of a sylvatic cockroach in edu.ar (R.G. Manfrino), [email protected] (C. Luz), [email protected] Brazil and evaluated its pathogenicity against Periplaneta americana (W.A.O. Ferrari), [email protected] (J. Barneche), [email protected] nymphs. (J.J. García), [email protected] (C.C. Lopez Lastra). https://doi.org/10.1016/j.funbio.2019.02.005 1878-6146/© 2019 British Mycological Society. Published by Elsevier Ltd. All rights reserved. A.C. Gutierrez et al. / Fungal Biology 123 (2019) 364e372 365 Genus Metarhizium (Metschn.) Sorokin was originally described Emergence of hyphae was monitored daily, and the fungus was based on its anamorphic stage. Liang et al. (1991) were the first to reisolated in fresh culture medium, SDAY 1 % and potato dextrose confirm the relationship between Metarhizium and its sexual form, agar (PDA), without antibiotics to obtain the pure fungal culture. which has been demonstrated by culturing. This genus level rela- tionship between anamorph-teleomorph was supported by 2.2.1. Morphological characterisation phylogenetic studies conducted by Liu et al. (2002) and Huang et al. Fungal species were identified based on macroscopic and (2005). The teleomorphic stages through sexual forms were microscopic features. Macroscopic features included the aspect, included in the Genera Cordyceps or Metacordyceps (Sung et al., colour and mycelium texture of the fungal colonies. Microscopic 2007; Kepler et al., 2012). Phylogenetic analysis of nuclear ribo- characteristics were obtained from material mounted in lactophe- somal RNA operon internal transcriber spacer (ITS) sequences nol/cotton blue (0.01 % w/v) and observed under brightfield optics demonstrated that the Metarhizium anisopliae species complex is microscopy (Olympus CH3). The observed features were the shape monophyletic (Driver et al., 2000). Subsequently, molecular taxo- and size of the conidia, conidiogenous cells and mycelium. These nomic studies of the fungal genus Metarhizium Sorokin (Hypo- characteristics were photographed using a digital camera (Sony creales; Clavicipitaceae) have increased considerably in recent DSCP73). Measurements were based on 50 objects per micro- years. However, species delineation within this genus, as in many structure and were used to calculate the mean, standard error of other entomopathogenic fungal genera, has remained a difficult the mean (SEM) and range (minimum and maximum values), all in task on the basis of morphological characteristics and ITS sequence micrometer (mm). Semi-permanent slides were mounted according data alone (Crous et al., 2005; Rehner and Buckley, 2005; Tsui et al., to Humber (2012a). Fungi were initially identified according to 2006). A more sensitive and robust basis for molecular taxonomic taxonomic keys of Humber (2012a) and for molecular taxonomic studies of Metarhizium fungi was achieved by the introduction studies were used Bischoff et al. (2006, 2009), Kepler et al. (2014) (Bischoff et al., 2006, 2009) and successful application (Kepler et al., and Rehner and Kepler (2017). Conidial germination percentage 2014; Montalva et al., 2016; Rehner and Kepler, 2017) of an addi- was calculated according to Lane et al. (1988). Isolates were pre- tional Multilocus Sequence Analysis (MLSA) scheme. This analysis served by cryopreservation at À20 C and subsequent lyophilisa- utilises partial sequences of four gene markers: translation elon- tion (Humber, 2012b); preserved samples were deposited at the gation factor 1-alpha (EF1A), RNA polymerase II subunit 1 (RPB1), RNA Entomopathogenic Fungal Culture Collection of CEPAVE (La Plata, polymerase II subunit 2 (RPB2) and beta tubulin (BTUB). Argentina) and the USDA-ARS Collection of Entomopathogenic Since previous records of natural infections of cockroaches by Fungal Cultures (ARSEF, Ithaca, New York, USA). entomopathogenic fungi are scarce, the aim of this study was to search for entomopathogenic fungi that infect wild cockroaches in 2.2.2. DNA extraction, PCR amplification and sequencing forest protected natural areas of Argentina. We describe a novel The fungal strains were cultured on potato dextrose agar (PDA) species of Metarhizium and characterise its pathogenicity against medium and incubated at 25 ± 1 C with a 12 h light and 12 h dark the urban pest Blatella germanica. cycle. A small portion of mycelium was harvested with a sterile loop from five-day-old cultures and placed in a 1.5 mL microcentrifuge 2. Material and methods tube. DNA was extracted using the ionic exchange resin in the Insta- Gene Matrix kit (Bio-Rad) according to the manufacturer's in- 2.1. Collection of infected cockroaches structions, and the supernatants that contained the genetic mate- rial were transferred to a 1.5 mL microcentrifuge tube. DNA samples Cockroaches with signs of mycoses were collected between Jun were stored at À20 C until use. Partial sequences of four nuclear 2013 and Mar 2015 in two natural protected areas of Argentina: El protein coding genes were amplified as follows: TUBB, using PCR Palmar National Park (Entre Ríos province; 31 510 1100 S, 58 190 2100 primers T1 and T22 (O'Donnell and Cigelnik, 1997); a large exon W) the predominant
Recommended publications
  • Major Clades of Agaricales: a Multilocus Phylogenetic Overview
    Mycologia, 98(6), 2006, pp. 982–995. # 2006 by The Mycological Society of America, Lawrence, KS 66044-8897 Major clades of Agaricales: a multilocus phylogenetic overview P. Brandon Matheny1 Duur K. Aanen Judd M. Curtis Laboratory of Genetics, Arboretumlaan 4, 6703 BD, Biology Department, Clark University, 950 Main Street, Wageningen, The Netherlands Worcester, Massachusetts, 01610 Matthew DeNitis Vale´rie Hofstetter 127 Harrington Way, Worcester, Massachusetts 01604 Department of Biology, Box 90338, Duke University, Durham, North Carolina 27708 Graciela M. Daniele Instituto Multidisciplinario de Biologı´a Vegetal, M. Catherine Aime CONICET-Universidad Nacional de Co´rdoba, Casilla USDA-ARS, Systematic Botany and Mycology de Correo 495, 5000 Co´rdoba, Argentina Laboratory, Room 304, Building 011A, 10300 Baltimore Avenue, Beltsville, Maryland 20705-2350 Dennis E. Desjardin Department of Biology, San Francisco State University, Jean-Marc Moncalvo San Francisco, California 94132 Centre for Biodiversity and Conservation Biology, Royal Ontario Museum and Department of Botany, University Bradley R. Kropp of Toronto, Toronto, Ontario, M5S 2C6 Canada Department of Biology, Utah State University, Logan, Utah 84322 Zai-Wei Ge Zhu-Liang Yang Lorelei L. Norvell Kunming Institute of Botany, Chinese Academy of Pacific Northwest Mycology Service, 6720 NW Skyline Sciences, Kunming 650204, P.R. China Boulevard, Portland, Oregon 97229-1309 Jason C. Slot Andrew Parker Biology Department, Clark University, 950 Main Street, 127 Raven Way, Metaline Falls, Washington 99153- Worcester, Massachusetts, 01609 9720 Joseph F. Ammirati Else C. Vellinga University of Washington, Biology Department, Box Department of Plant and Microbial Biology, 111 355325, Seattle, Washington 98195 Koshland Hall, University of California, Berkeley, California 94720-3102 Timothy J.
    [Show full text]
  • Phylogenetic Classification of Trametes
    TAXON 60 (6) • December 2011: 1567–1583 Justo & Hibbett • Phylogenetic classification of Trametes SYSTEMATICS AND PHYLOGENY Phylogenetic classification of Trametes (Basidiomycota, Polyporales) based on a five-marker dataset Alfredo Justo & David S. Hibbett Clark University, Biology Department, 950 Main St., Worcester, Massachusetts 01610, U.S.A. Author for correspondence: Alfredo Justo, [email protected] Abstract: The phylogeny of Trametes and related genera was studied using molecular data from ribosomal markers (nLSU, ITS) and protein-coding genes (RPB1, RPB2, TEF1-alpha) and consequences for the taxonomy and nomenclature of this group were considered. Separate datasets with rDNA data only, single datasets for each of the protein-coding genes, and a combined five-marker dataset were analyzed. Molecular analyses recover a strongly supported trametoid clade that includes most of Trametes species (including the type T. suaveolens, the T. versicolor group, and mainly tropical species such as T. maxima and T. cubensis) together with species of Lenzites and Pycnoporus and Coriolopsis polyzona. Our data confirm the positions of Trametes cervina (= Trametopsis cervina) in the phlebioid clade and of Trametes trogii (= Coriolopsis trogii) outside the trametoid clade, closely related to Coriolopsis gallica. The genus Coriolopsis, as currently defined, is polyphyletic, with the type species as part of the trametoid clade and at least two additional lineages occurring in the core polyporoid clade. In view of these results the use of a single generic name (Trametes) for the trametoid clade is considered to be the best taxonomic and nomenclatural option as the morphological concept of Trametes would remain almost unchanged, few new nomenclatural combinations would be necessary, and the classification of additional species (i.e., not yet described and/or sampled for mo- lecular data) in Trametes based on morphological characters alone will still be possible.
    [Show full text]
  • University of California Santa Cruz Responding to An
    UNIVERSITY OF CALIFORNIA SANTA CRUZ RESPONDING TO AN EMERGENT PLANT PEST-PATHOGEN COMPLEX ACROSS SOCIAL-ECOLOGICAL SCALES A dissertation submitted in partial satisfaction of the requirements for the degree of DOCTOR OF PHILOSOPHY in ENVIRONMENTAL STUDIES with an emphasis in ECOLOGY AND EVOLUTIONARY BIOLOGY by Shannon Colleen Lynch December 2020 The Dissertation of Shannon Colleen Lynch is approved: Professor Gregory S. Gilbert, chair Professor Stacy M. Philpott Professor Andrew Szasz Professor Ingrid M. Parker Quentin Williams Acting Vice Provost and Dean of Graduate Studies Copyright © by Shannon Colleen Lynch 2020 TABLE OF CONTENTS List of Tables iv List of Figures vii Abstract x Dedication xiii Acknowledgements xiv Chapter 1 – Introduction 1 References 10 Chapter 2 – Host Evolutionary Relationships Explain 12 Tree Mortality Caused by a Generalist Pest– Pathogen Complex References 38 Chapter 3 – Microbiome Variation Across a 66 Phylogeographic Range of Tree Hosts Affected by an Emergent Pest–Pathogen Complex References 110 Chapter 4 – On Collaborative Governance: Building Consensus on 180 Priorities to Manage Invasive Species Through Collective Action References 243 iii LIST OF TABLES Chapter 2 Table I Insect vectors and corresponding fungal pathogens causing 47 Fusarium dieback on tree hosts in California, Israel, and South Africa. Table II Phylogenetic signal for each host type measured by D statistic. 48 Table SI Native range and infested distribution of tree and shrub FD- 49 ISHB host species. Chapter 3 Table I Study site attributes. 124 Table II Mean and median richness of microbiota in wood samples 128 collected from FD-ISHB host trees. Table III Fungal endophyte-Fusarium in vitro interaction outcomes.
    [Show full text]
  • Fruiting Body Form, Not Nutritional Mode, Is the Major Driver of Diversification in Mushroom-Forming Fungi
    Fruiting body form, not nutritional mode, is the major driver of diversification in mushroom-forming fungi Marisol Sánchez-Garcíaa,b, Martin Rybergc, Faheema Kalsoom Khanc, Torda Vargad, László G. Nagyd, and David S. Hibbetta,1 aBiology Department, Clark University, Worcester, MA 01610; bUppsala Biocentre, Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, SE-75005 Uppsala, Sweden; cDepartment of Organismal Biology, Evolutionary Biology Centre, Uppsala University, 752 36 Uppsala, Sweden; and dSynthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Center, 6726 Szeged, Hungary Edited by David M. Hillis, The University of Texas at Austin, Austin, TX, and approved October 16, 2020 (received for review December 22, 2019) With ∼36,000 described species, Agaricomycetes are among the and the evolution of enclosed spore-bearing structures. It has most successful groups of Fungi. Agaricomycetes display great di- been hypothesized that the loss of ballistospory is irreversible versity in fruiting body forms and nutritional modes. Most have because it involves a complex suite of anatomical features gen- pileate-stipitate fruiting bodies (with a cap and stalk), but the erating a “surface tension catapult” (8, 11). The effect of gas- group also contains crust-like resupinate fungi, polypores, coral teroid fruiting body forms on diversification rates has been fungi, and gasteroid forms (e.g., puffballs and stinkhorns). Some assessed in Sclerodermatineae, Boletales, Phallomycetidae, and Agaricomycetes enter into ectomycorrhizal symbioses with plants, Lycoperdaceae, where it was found that lineages with this type of while others are decayers (saprotrophs) or pathogens. We constructed morphology have diversified at higher rates than nongasteroid a megaphylogeny of 8,400 species and used it to test the following lineages (12).
    [Show full text]
  • Forest Fungi in Ireland
    FOREST FUNGI IN IRELAND PAUL DOWDING and LOUIS SMITH COFORD, National Council for Forest Research and Development Arena House Arena Road Sandyford Dublin 18 Ireland Tel: + 353 1 2130725 Fax: + 353 1 2130611 © COFORD 2008 First published in 2008 by COFORD, National Council for Forest Research and Development, Dublin, Ireland. All rights reserved. No part of this publication may be reproduced, or stored in a retrieval system or transmitted in any form or by any means, electronic, electrostatic, magnetic tape, mechanical, photocopying recording or otherwise, without prior permission in writing from COFORD. All photographs and illustrations are the copyright of the authors unless otherwise indicated. ISBN 1 902696 62 X Title: Forest fungi in Ireland. Authors: Paul Dowding and Louis Smith Citation: Dowding, P. and Smith, L. 2008. Forest fungi in Ireland. COFORD, Dublin. The views and opinions expressed in this publication belong to the authors alone and do not necessarily reflect those of COFORD. i CONTENTS Foreword..................................................................................................................v Réamhfhocal...........................................................................................................vi Preface ....................................................................................................................vii Réamhrá................................................................................................................viii Acknowledgements...............................................................................................ix
    [Show full text]
  • Fungal Diversity in the Mediterranean Area
    Fungal Diversity in the Mediterranean Area • Giuseppe Venturella Fungal Diversity in the Mediterranean Area Edited by Giuseppe Venturella Printed Edition of the Special Issue Published in Diversity www.mdpi.com/journal/diversity Fungal Diversity in the Mediterranean Area Fungal Diversity in the Mediterranean Area Editor Giuseppe Venturella MDPI • Basel • Beijing • Wuhan • Barcelona • Belgrade • Manchester • Tokyo • Cluj • Tianjin Editor Giuseppe Venturella University of Palermo Italy Editorial Office MDPI St. Alban-Anlage 66 4052 Basel, Switzerland This is a reprint of articles from the Special Issue published online in the open access journal Diversity (ISSN 1424-2818) (available at: https://www.mdpi.com/journal/diversity/special issues/ fungal diversity). For citation purposes, cite each article independently as indicated on the article page online and as indicated below: LastName, A.A.; LastName, B.B.; LastName, C.C. Article Title. Journal Name Year, Article Number, Page Range. ISBN 978-3-03936-978-2 (Hbk) ISBN 978-3-03936-979-9 (PDF) c 2020 by the authors. Articles in this book are Open Access and distributed under the Creative Commons Attribution (CC BY) license, which allows users to download, copy and build upon published articles, as long as the author and publisher are properly credited, which ensures maximum dissemination and a wider impact of our publications. The book as a whole is distributed by MDPI under the terms and conditions of the Creative Commons license CC BY-NC-ND. Contents About the Editor .............................................. vii Giuseppe Venturella Fungal Diversity in the Mediterranean Area Reprinted from: Diversity 2020, 12, 253, doi:10.3390/d12060253 .................... 1 Elias Polemis, Vassiliki Fryssouli, Vassileios Daskalopoulos and Georgios I.
    [Show full text]
  • Fungi of the Fortuna Forest Reserve: Taxonomy and Ecology with Emphasis on Ectomycorrhizal Communities
    bioRxiv preprint doi: https://doi.org/10.1101/2020.04.16.045724; this version posted April 18, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. Fungi of the Fortuna Forest Reserve: Taxonomy and ecology with emphasis on ectomycorrhizal communities Adriana Corrales1 and Clark L. Ovrebo2 1 Department of Biology, Faculty of Natural Sciences, Universidad del Rosario. Bogota, 111221, Colombia. 2 Department of Biology, University of Central Oklahoma. Edmond, OK. USA. ABSTRACT Panamanian montane forests harbor a high diversity of fungi, particularly of ectomycorrhizal (ECM) fungi, however their taxonomy and diversity patterns remain for the most part unexplored. Here we present state of the art fungal taxonomy and diversity patterns at Fortuna Forest Reserve based on morphological and molecular identification of over 1,000 fruiting body collections of macromycetes made over a period of five years. We compare these new results with previously published work based on environmental sampling of Oreomunnea mexicana root tips. We compiled a preliminary list of species and report 22 new genera and 29 new fungal species for Panama. Based on fruiting body collection data we compare the species composition of ECM fungal communities associated with Oreomunnea stands across sites differing in soil fertility and amount of rainfall. We also examine the effect of a long-term nitrogen addition treatment on the fruiting body production of ECM fungi. Finally, we discuss the biogeographic importance of Panama collections which fill in the knowledge gap of ECM fungal records between Costa Rica and Colombia.
    [Show full text]
  • Multigene Phylogeny and Morphology Reveal a New Species, Ophiocordyceps Vespulae, from Jilin Province, China
    Phytotaxa 478 (1): 033–048 ISSN 1179-3155 (print edition) https://www.mapress.com/j/pt/ PHYTOTAXA Copyright © 2021 Magnolia Press Article ISSN 1179-3163 (online edition) https://doi.org/10.11646/phytotaxa.478.1.2 Multigene phylogeny and morphology reveal a new species, Ophiocordyceps vespulae, from Jilin Province, China FENG-YAO LONG1, 2, 6, LI-WU QIN3, 7, YUAN-PIN XIAO2, 4, 8, KEVIN D. HYDE4, 9, SHAO-XIAN WANG3, 10* & TING-CHI WEN1, 2, 5, 11* 1 School of Pharmacy, Guizhou University, Guiyang 550025, Guizhou, China. 2 The Engineering Research Center of Southwest Bio-Pharmaceutical Resources, Ministry of Education, Guizhou University, Guiyang 550025, Guizhou, China. 3 Changbai Mountain Academy of Sciences, Jilin Provincial Joint Key Laboratory of Changbai Mountains Biocoenosis & Biodiversity, Erdaobaihe 133613, Jilin, China. 4 Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand. 5Mushroom Research Institute,Guizhou University,Guiyang,550025,China 6 [email protected]; https://orcid.org/0000-0002-5818-694X 7 [email protected]; https://orcid.org/0000-0002-5586-2885 8 [email protected]; https://orcid.org/0000-0003-1730-3545 9 [email protected]; https://orcid.org/0000-0002-2191-0762 10 [email protected]; https://orcid.org/0000-0002-0921-1790 11 [email protected]; https://orcid.org/0000-0003-1744-5869 *Corresponding author Abstract Ophiocordyceps is entomopathogenic and is the best studied genus in Ophiocordycipitaceae. Members of Ophiocordyceps and ants form sophisticated interactions. However, taxonomy and evolutionary relationships of this group of pathogens remain unclear. During a survey in Changbai Mountains, Jiling Province, China, a new entomogenous species, Ophiocordyceps vespulae sp.
    [Show full text]
  • A Dichotomous Key for the Identification of the Cockroach Fauna (Insecta: Blattaria) of Florida
    Species Identification - Cockroaches of Florida 1 A Dichotomous Key for the Identification of the Cockroach fauna (Insecta: Blattaria) of Florida Insect Classification Exercise Department of Entomology and Nematology University of Florida, Gainesville 32611 Abstract: Students used available literature and specimens to produce a dichotomous key to species of cockroaches recorded from Florida. This exercise introduced students to techniques used in studying a group of insects, in this case Blattaria, to produce a regional species key. Producing a guide to a group of insects as a class exercise has proven useful both as a teaching tool and as a method to generate information for the public. Key Words: Blattaria, Florida, Blatta, Eurycotis, Periplaneta, Arenivaga, Compsodes, Holocompsa, Myrmecoblatta, Blatella, Cariblatta, Chorisoneura, Euthlastoblatta, Ischnoptera,Latiblatta, Neoblatella, Parcoblatta, Plectoptera, Supella, Symploce,Blaberus, Epilampra, Hemiblabera, Nauphoeta, Panchlora, Phoetalia, Pycnoscelis, Rhyparobia, distributions, systematics, education, teaching, techniques. Identification of cockroaches is limited here to adults. A major source of confusion is the recogni- tion of adults from nymphs (Figs. 1, 2). There are subjective differences, as well as morphological differences. Immature cockroaches are known as nymphs. Nymphs closely resemble adults except nymphs are generally smaller and lack wings and genital openings or copulatory appendages at the tip of their abdomen. Many species, however, have wingless adult females. Nymphs of these may be recognized by their shorter, relatively broad cerci and lack of external genitalia. Male cockroaches possess styli in addition to paired cerci. Styli arise from the subgenital plate and are generally con- spicuous, but may also be reduced in some species. Styli are absent in adult females and nymphs.
    [Show full text]
  • AR TICLE a Phylogenetically-Based Nomenclature for Cordycipitaceae
    IMA FUNGUS · 8(2): 335–353 (2017) doi:10.5598/imafungus.2017.08.02.08 A phylogenetically-based nomenclature for Cordycipitaceae (Hypocreales) ARTICLE Ryan M. Kepler1, J. Jennifer Luangsa-ard2, Nigel L. Hywel-Jones3, C. Alisha Quandt4, Gi-Ho Sung5, Stephen A. Rehner6, M. Catherine Aime7, Terry W. Henkel8, Tatiana Sanjuan9, Rasoul Zare10, Mingjun Chen11, Zhengzhi Li3, Amy Y. Rossman12, Joseph W. Spatafora12, and Bhushan Shrestha13 1USDA-ARS, Sustainable Agriculture Systems Laboratory, Beltsville, MD 20705, USA; corresponding author e-mail: [email protected] 2Microbe Interaction and Ecology Laboratory, BIOTEC, National Science and Technology Development Agency, 113 Thailand Science Park, Phahonyothin Rd, Klong Neung, Klong Luang, Pathum Thani, 12120 Thailand 3Zhejiang BioAsia Institute of Life Sciences, 1938 Xinqun Road, Economic and Technological Development Zone, Pinghu, Zhejiang, 314200 China 4Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48104, USA 5Institute for Bio-Medical Convergence, International St Mary’s Hospital and College of Medicine, Catholic Kwandong University, Incheon 22711, Korea 6USDA-ARS, Mycology and Nematology Genetic Diversity and Biology Laboratory, Beltsville, MD 20705, USA 7Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA 8Department of Biological Sciences, Humboldt State University, Arcata, CA, 95521, USA 9Laboratorio de Taxonomía y Ecología de Hongos, Universidad de Antioquia, calle 67 No. 53 – 108, A.A. 1226, Medellin, Colombia
    [Show full text]
  • Technological Advances to Address Current Issues in Entomology: 2020 Student Debates
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Entomology papers Museum, University of Nebraska State 2-28-2021 Technological Advances to Address Current Issues in Entomology: 2020 Student Debates Lina Bernaola Louisiana State University at Baton Rouge Molly Darlington University of Nebraska—Lincoln, [email protected] Kadie Britt Virginia Polytechnic Institute and State University Patricia Prade University of Florida Morgan Roth Virginia Polytechnic Institute and State University See next page for additional authors Follow this and additional works at: https://digitalcommons.unl.edu/entomologypapers Bernaola, Lina; Darlington, Molly; Britt, Kadie; Prade, Patricia; Roth, Morgan; Pekarcik, Adrian; Boone, Michelle; Ricke, Dylan; Tran, Anh; King, Joanie; Carruthers, Kelly; Thompson, Morgan; Ternest, John J.; Anderson, Sarah E.; Gula, Scott W.; Hauri, Kayleigh C.; Pecenka, Jacob R.; Grover, Sajjan; Puri, Heena; and Vakil, Surabhi Gupta, "Technological Advances to Address Current Issues in Entomology: 2020 Student Debates" (2021). Entomology papers. 171. https://digitalcommons.unl.edu/entomologypapers/171 This Article is brought to you for free and open access by the Museum, University of Nebraska State at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Entomology papers by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Authors Lina Bernaola, Molly Darlington, Kadie Britt, Patricia Prade, Morgan Roth, Adrian Pekarcik, Michelle
    [Show full text]
  • Thesis (PDF, 13.51MB)
    Insects and their endosymbionts: phylogenetics and evolutionary rates Daej A Kh A M Arab The University of Sydney Faculty of Science 2021 A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy Authorship contribution statement During my doctoral candidature I published as first-author or co-author three stand-alone papers in peer-reviewed, internationally recognised journals. These publications form the three research chapters of this thesis in accordance with The University of Sydney’s policy for doctoral theses. These chapters are linked by the use of the latest phylogenetic and molecular evolutionary techniques for analysing obligate mutualistic endosymbionts and their host mitochondrial genomes to shed light on the evolutionary history of the two partners. Therefore, there is inevitably some repetition between chapters, as they share common themes. In the general introduction and discussion, I use the singular “I” as I am the sole author of these chapters. All other chapters are co-authored and therefore the plural “we” is used, including appendices belonging to these chapters. Part of chapter 2 has been published as: Bourguignon, T., Tang, Q., Ho, S.Y., Juna, F., Wang, Z., Arab, D.A., Cameron, S.L., Walker, J., Rentz, D., Evans, T.A. and Lo, N., 2018. Transoceanic dispersal and plate tectonics shaped global cockroach distributions: evidence from mitochondrial phylogenomics. Molecular Biology and Evolution, 35(4), pp.970-983. The chapter was reformatted to include additional data and analyses that I undertook towards this paper. My role was in the paper was to sequence samples, assemble mitochondrial genomes, perform phylogenetic analyses, and contribute to the writing of the manuscript.
    [Show full text]