Post-Translational Regulation of Inflammasomes
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Role of Vimentin and the NLRP3 Inflammasome in Influenza a Infection
The Role of Vimentin and the NLRP3 Inflammasome in Influenza A Infection A Senior Thesis Presented to The Faculty of the Department of Molecular Biology, Colorado College By Maggie Turner Bachelor of Arts Degree in Molecular Biology April 28, 2017 ________________________ Dr. Olivia Hatton Primary Thesis Advisor __________________________ Dr. Sara Hanson Secondary Thesis Advisor ABSTRACT Infection with Influenza A virus (IAV) continues to cause morbidity and mortality in children across the globe, in part due to the excessive inflammatory response during pathogen clearance. Using a murine model of IAV infection, this study focuses on the role of the innate immune system in IAV infection through the scope of NLRP3 inflammasome protein activation and assembly. We were able to detect the presence of the NLRP3-inflammasome target proteins ASC, Pro-caspase-1, NLRP3, RIG-1, and IL- 1β in both juvenile and adult mice. Notably, we found significantly increased levels of ASC and RIG-1 protein in juveniles compared to adults. This suggests that ASC and RIG-1 are related to the observed excessive inflammatory response upon IAV infection in juveniles. To examine NLRP3-inflammasome assembly, we created multiple mutant constructs of the inflammasome scaffolding protein Vimentin as well as vimentin-/- cells. IL-1β production was greatly inhibited in vimentin-/- cells compared to the wild type upon activation of the NLRP3 inflammasome. The same trend was seen when only the head region of the protein was present. We suggest that the intermediate filament (IF) Vimentin serves as a protein scaffold for inflammasome assembly, and that expression of Vimentin is a necessary checkpoint in the innate immune response. -
Bayesian Hierarchical Modeling of High-Throughput Genomic Data with Applications to Cancer Bioinformatics and Stem Cell Differentiation
BAYESIAN HIERARCHICAL MODELING OF HIGH-THROUGHPUT GENOMIC DATA WITH APPLICATIONS TO CANCER BIOINFORMATICS AND STEM CELL DIFFERENTIATION by Keegan D. Korthauer A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Statistics) at the UNIVERSITY OF WISCONSIN–MADISON 2015 Date of final oral examination: 05/04/15 The dissertation is approved by the following members of the Final Oral Committee: Christina Kendziorski, Professor, Biostatistics and Medical Informatics Michael A. Newton, Professor, Statistics Sunduz Kele¸s,Professor, Biostatistics and Medical Informatics Sijian Wang, Associate Professor, Biostatistics and Medical Informatics Michael N. Gould, Professor, Oncology © Copyright by Keegan D. Korthauer 2015 All Rights Reserved i in memory of my grandparents Ma and Pa FL Grandma and John ii ACKNOWLEDGMENTS First and foremost, I am deeply grateful to my thesis advisor Christina Kendziorski for her invaluable advice, enthusiastic support, and unending patience throughout my time at UW-Madison. She has provided sound wisdom on everything from methodological principles to the intricacies of academic research. I especially appreciate that she has always encouraged me to eke out my own path and I attribute a great deal of credit to her for the successes I have achieved thus far. I also owe special thanks to my committee member Professor Michael Newton, who guided me through one of my first collaborative research experiences and has continued to provide key advice on my thesis research. I am also indebted to the other members of my thesis committee, Professor Sunduz Kele¸s,Professor Sijian Wang, and Professor Michael Gould, whose valuable comments, questions, and suggestions have greatly improved this dissertation. -
Genetic Variant in 3' Untranslated Region of the Mouse Pycard Gene
bioRxiv preprint doi: https://doi.org/10.1101/2021.03.26.437184; this version posted March 26, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 2 3 Title: 4 Genetic Variant in 3’ Untranslated Region of the Mouse Pycard Gene Regulates Inflammasome 5 Activity 6 Running Title: 7 3’UTR SNP in Pycard regulates inflammasome activity 8 Authors: 9 Brian Ritchey1*, Qimin Hai1*, Juying Han1, John Barnard2, Jonathan D. Smith1,3 10 1Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, 11 Cleveland, OH 44195 12 2Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 13 44195 14 3Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western 15 Reserve University, Cleveland, OH 44195 16 *, These authors contributed equally to this study. 17 Address correspondence to Jonathan D. Smith: email [email protected]; ORCID ID 0000-0002-0415-386X; 18 mailing address: Cleveland Clinic, Box NC-10, 9500 Euclid Avenue, Cleveland, OH 44195, USA. 19 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.03.26.437184; this version posted March 26, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 20 Abstract 21 Quantitative trait locus mapping for interleukin-1 release after inflammasome priming and activation 22 was performed on bone marrow-derived macrophages (BMDM) from an AKRxDBA/2 strain intercross. -
ATP-Binding and Hydrolysis in Inflammasome Activation
molecules Review ATP-Binding and Hydrolysis in Inflammasome Activation Christina F. Sandall, Bjoern K. Ziehr and Justin A. MacDonald * Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, 3280 Hospital Drive NW, Calgary, AB T2N 4Z6, Canada; [email protected] (C.F.S.); [email protected] (B.K.Z.) * Correspondence: [email protected]; Tel.: +1-403-210-8433 Academic Editor: Massimo Bertinaria Received: 15 September 2020; Accepted: 3 October 2020; Published: 7 October 2020 Abstract: The prototypical model for NOD-like receptor (NLR) inflammasome assembly includes nucleotide-dependent activation of the NLR downstream of pathogen- or danger-associated molecular pattern (PAMP or DAMP) recognition, followed by nucleation of hetero-oligomeric platforms that lie upstream of inflammatory responses associated with innate immunity. As members of the STAND ATPases, the NLRs are generally thought to share a similar model of ATP-dependent activation and effect. However, recent observations have challenged this paradigm to reveal novel and complex biochemical processes to discern NLRs from other STAND proteins. In this review, we highlight past findings that identify the regulatory importance of conserved ATP-binding and hydrolysis motifs within the nucleotide-binding NACHT domain of NLRs and explore recent breakthroughs that generate connections between NLR protein structure and function. Indeed, newly deposited NLR structures for NLRC4 and NLRP3 have provided unique perspectives on the ATP-dependency of inflammasome activation. Novel molecular dynamic simulations of NLRP3 examined the active site of ADP- and ATP-bound models. The findings support distinctions in nucleotide-binding domain topology with occupancy of ATP or ADP that are in turn disseminated on to the global protein structure. -
A Role for the Nlr Family Members Nlrc4 and Nlrp3 in Astrocytic Inflammasome Activation and Astrogliosis
A ROLE FOR THE NLR FAMILY MEMBERS NLRC4 AND NLRP3 IN ASTROCYTIC INFLAMMASOME ACTIVATION AND ASTROGLIOSIS Leslie C. Freeman A dissertation submitted to the faculty of the University of North Carolina at Chapel Hill in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Curriculum of Genetics and Molecular Biology. Chapel Hill 2016 Approved by: Jenny P. Y. Ting Glenn K. Matsushima Beverly H. Koller Silva S. Markovic-Plese Pauline. Kay Lund ©2016 Leslie C. Freeman ALL RIGHTS RESERVED ii ABSTRACT Leslie C. Freeman: A Role for the NLR Family Members NLRC4 and NLRP3 in Astrocytic Inflammasome Activation and Astrogliosis (Under the direction of Jenny P.Y. Ting) The inflammasome is implicated in many inflammatory diseases but has been primarily studied in the macrophage-myeloid lineage. Here we demonstrate a physiologic role for nucleotide-binding domain, leucine-rich repeat, CARD domain containing 4 (NLRC4) in brain astrocytes. NLRC4 has been primarily studied in the context of gram-negative bacteria, where it is required for the maturation of pro-caspase-1 to active caspase-1. We show the heightened expression of NLRC4 protein in astrocytes in a cuprizone model of neuroinflammation and demyelination as well as human multiple sclerotic brains. Similar to macrophages, NLRC4 in astrocytes is required for inflammasome activation by its known agonist, flagellin. However, NLRC4 in astrocytes also mediate inflammasome activation in response to lysophosphatidylcholine (LPC), an inflammatory molecule associated with neurologic disorders. In addition to NLRC4, astrocytic NLRP3 is required for inflammasome activation by LPC. Two biochemical assays show the interaction of NLRC4 with NLRP3, suggesting the possibility of a NLRC4-NLRP3 co-inflammasome. -
Inflammasome Adaptor ASC Suppresses Apoptosis of Gastric Cancer Cells by an IL-18 Mediated Inflammation-Independent Mechanism
Author Manuscript Published OnlineFirst on December 27, 2017; DOI: 10.1158/0008-5472.CAN-17-1887 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. Inflammasome adaptor ASC suppresses apoptosis of gastric cancer cells by an IL-18 mediated inflammation-independent mechanism Virginie Deswaerte1,2,*, Paul Nguyen3,4,*, Alison West1,2, Alison F. Browning1,2, Liang Yu1,2, Saleela M. Ruwanpura1,2, Jesse Balic1,2, Thaleia Livis1,2, Charlotte Girard5, Adele Preaudet3,4, Hiroko Oshima6, Ka Yee Fung3,4, Hazel Tye1,2, Meri Najdovska1,2, Matthias Ernst7, Masanobu Oshima6, Cem Gabay5, Tracy Putoczki3,4, and Brendan J. Jenkins1,2 1Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia; 2Department of Molecular Translational Science, School of Clinical Sciences, Monash University, Clayton, Victoria, Australia; 3Inflammation Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; 4Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia; 5Division of Rheumatology, University Hospital of Geneva, and Department of Pathology and Immunology, University of Geneva School of Medicine, Geneva, Switzerland; 6Division of Genetics, Cancer Research Institute, Kanazawa University, Kanazawa, Japan; 7Olivia Newton-John Cancer Research Institute, La Trobe University School of Cancer Medicine, Heidelberg, Victoria, Australia. *These authors contributed equally. Running title: ASC inflammasomes promote gastric cancer via IL-18 Keywords: apoptosis, ASC, gastric cancer, IL-18, inflammasomes. 1 Downloaded from cancerres.aacrjournals.org on September 25, 2021. © 2017 American Association for Cancer Research. Author Manuscript Published OnlineFirst on December 27, 2017; DOI: 10.1158/0008-5472.CAN-17-1887 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. -
Dysregulation of Escherichia Coli Α-Hemolysin Expression Alters The
Dysregulation of Escherichia coli α-hemolysin PNAS PLUS expression alters the course of acute and persistent urinary tract infection Kanna Nagamatsua, Thomas J. Hannanb, Randi L. Guestc, Maria Kostakiotia,1, Maria Hadjifrangiskoua,d, Jana Binkleya, Karen Dodsona, Tracy L. Raivioc, and Scott J. Hultgrena,e,2 Departments of aMolecular Microbiology and Microbial Pathogenesis and bPathology and Immunology, eCenter for Women’s Infections Disease Research, Washington University School of Medicine, St. Louis, MO 63110; cDepartment of Biological Sciences, University of Alberta, Edmonton, AB, Canada T6G 2E9; and dDepartment of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232 Contributed by Scott J. Hultgren, January 14, 2015 (sent for review September 10, 2014) Urinary tract infections (UTIs) are among the most common bacterial previously shown to be dependent upon the function of Caspases infections, causing considerable morbidity in females. Infection is (4), the specific host and bacterial factors that modulate bladder highly recurrent despite appropriate antibiotic treatment. Uropa- cell death and exfoliation during the course of a UTI remain thogenic Escherichia coli (UPEC), the most common causative agent poorly understood. of UTIs, invades bladder epithelial cells (BECs) and develops into Approximately 40–50% of E. coli isolated from patients with clonal intracellular bacterial communities (IBCs). Upon maturation, a UTI encodes a secreted pore-forming toxin known as α-hemolysin IBCs disperse, with bacteria spreading to neighboring BECs to repeat (HlyA) (9). Expression of HlyA in UPEC has been previously im- this cycle. This process allows UPEC to gain a foothold in the face of plicated in urothelial cell toxicity in vitro (10, 11) and increased innate defense mechanisms, including micturition, epithelial exfoli- urothelial damage in vivo (12). -
Cutting Edge: Critical Role for PYCARD/ASC in the Development of Experimental Autoimmune Encephalomyelitis This Information Is Current As of September 26, 2021
Cutting Edge: Critical Role for PYCARD/ASC in the Development of Experimental Autoimmune Encephalomyelitis This information is current as of September 26, 2021. Patrick J. Shaw, John R. Lukens, Samir Burns, Hongbo Chi, Maureen A. McGargill and Thirumala-Devi Kanneganti J Immunol 2010; 184:4610-4614; Prepublished online 5 April 2010; doi: 10.4049/jimmunol.1000217 Downloaded from http://www.jimmunol.org/content/184/9/4610 Supplementary http://www.jimmunol.org/content/suppl/2010/04/06/jimmunol.100021 http://www.jimmunol.org/ Material 7.DC1 References This article cites 20 articles, 3 of which you can access for free at: http://www.jimmunol.org/content/184/9/4610.full#ref-list-1 Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision by guest on September 26, 2021 • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2010 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. Cutting Edge: Critical Role for PYCARD/ASC in the Development of Experimental Autoimmune Encephalomyelitis Patrick J. Shaw, John R. -
The NLRP3 and NLRP1 Inflammasomes Are Activated In
Saresella et al. Molecular Neurodegeneration (2016) 11:23 DOI 10.1186/s13024-016-0088-1 RESEARCHARTICLE Open Access The NLRP3 and NLRP1 inflammasomes are activated in Alzheimer’s disease Marina Saresella1*†, Francesca La Rosa1†, Federica Piancone1, Martina Zoppis1, Ivana Marventano1, Elena Calabrese1, Veronica Rainone2, Raffaello Nemni1,3, Roberta Mancuso1 and Mario Clerici1,3 Abstract Background: Interleukin-1 beta (IL-1β) and its key regulator, the inflammasome, are suspected to play a role in the neuroinflammation observed in Alzheimer’s disease (AD); no conclusive data are nevertheless available in AD patients. Results: mRNA for inflammasome components (NLRP1, NLRP3, PYCARD, caspase 1, 5 and 8) and downstream effectors (IL-1β, IL-18) was up-regulated in severe and MILD AD. Monocytes co-expressing NLRP3 with caspase 1 or caspase 8 were significantly increased in severe AD alone, whereas those co-expressing NLRP1 and NLRP3 with PYCARD were augmented in both severe and MILD AD. Activation of the NLRP1 and NLRP3 inflammasomes in AD was confirmed by confocal microscopy proteins co-localization and by the significantly higher amounts of the pro-inflammatory cytokines IL-1β and IL-18 being produced by monocytes. In MCI, the expression of NLRP3, but not the one of PYCARD or caspase 1 was increased, indicating that functional inflammasomes are not assembled in these individuals: this was confirmed by lack of co-localization and of proinflammatory cytokines production. Conclusions: The activation of at least two different inflammasome complexes -
Product Information Sheet for NR-20721
Product Information Sheet for NR-20721 Monoclonal Anti-Human NLRP4 (NALP4), be stored at -20°C or colder immediately upon arrival. Freeze-thaw cycles should be avoided. Clone U54.M.hNALP4.8 (produced in vitro) Functional Activity: Catalog No. NR-20721 NR-20721 reacts with human NLRP4 in ELISA and western blot assays. See Certificate of Analysis for details. The For research use only. Not for human use. antibody is also reported to function in immunoprecipitation.1 Contributor: Citation: Richard J. Ulevitch, Ph.D., and Luc Teyton, M.D., Ph.D., Acknowledgment for publications should read “The following Department of Immunology and Microbial Science, The reagent was obtained through BEI Resources, NIAID, NIH: Scripps Research Institute, La Jolla, CA, USA` Monoclonal Anti-Human NLRP4 (NALP4), Clone U54.M.hNALP4.8 (produced in vitro), NR-20721.” Manufacturer: BEI Resources Biosafety Level: 1 Appropriate safety procedures should always be used with Product Description: this material. Laboratory safety is discussed in the following Antibody Class: IgG1κ publication: U.S. Department of Health and Human Services, Mouse monoclonal antibody prepared against the human Public Health Service, Centers for Disease Control and NLRP4 protein (also known as NALP4) was purified from Prevention, and National Institutes of Health. Biosafety in clone U54.M.hNALP4.8 hybridoma supernatant by protein G Microbiological and Biomedical Laboratories. 5th ed. affinity chromatography. The B cell hybridoma was Washington, DC: U.S. Government Printing Office, 2009; see generated by the fusion of P3X63Ag8.653 mouse myeloma www.cdc.gov/biosafety/publications/bmbl5/index.htm. cells with splenocytes from mice immunized by intraperitoneal injection with a truncated recombinant form of Disclaimers: the human NLRP4 protein containing the pyrin domain.1 You are authorized to use this product for research use only. -
NOD-Like Receptors (Nlrs) and Inflammasomes
International Edition www.adipogen.com NOD-like Receptors (NLRs) and Inflammasomes In mammals, germ-line encoded pattern recognition receptors (PRRs) detect the presence of pathogens through recognition of pathogen-associated molecular patterns (PAMPs) or endogenous danger signals through the sensing of danger-associated molecular patterns (DAMPs). The innate immune system comprises several classes of PRRs that allow the early detection of pathogens at the site of infection. The membrane-bound toll-like receptors (TLRs) and C-type lectin receptors (CTRs) detect PAMPs in extracellular milieu and endo- somal compartments. TRLs and CTRs cooperate with PRRs sensing the presence of cytosolic nucleic acids, like RNA-sensing RIG-I (retinoic acid-inducible gene I)-like receptors (RLRs; RLHs) or DNA-sensing AIM2, among others. Another set of intracellular sensing PRRs are the NOD-like receptors (NLRs; nucleotide-binding domain leucine-rich repeat containing receptors), which not only recognize PAMPs but also DAMPs. PAMPs FUNGI/PROTOZOA BACTERIA VIRUSES MOLECULES C. albicans A. hydrophila Adenovirus Bacillus anthracis lethal Plasmodium B. brevis Encephalomyo- toxin (LeTx) S. cerevisiae E. coli carditis virus Bacterial pore-forming L. monocytogenes Herpes simplex virus toxins L. pneumophila Influenza virus Cytosolic dsDNA N. gonorrhoeae Sendai virus P. aeruginosa Cytosolic flagellin S. aureus MDP S. flexneri meso-DAP S. hygroscopicus S. typhimurium DAMPs MOLECULES PARTICLES OTHERS DNA Uric acid UVB Extracellular ATP CPPD Mutations R837 Asbestos Cytosolic dsDNA Irritants Silica Glucose Alum Hyaluronan Amyloid-b Hemozoin Nanoparticles FIGURE 1: Overview on PAMPs and DAMPs recognized by NLRs. NOD-like Receptors [NLRs] The intracellular NLRs organize signaling complexes such as inflammasomes and NOD signalosomes. -
NLRP10 Enhances Shigellainduced Proinflammatory Responses
Cellular Microbiology (2012) doi:10.1111/j.1462-5822.2012.01822.x NLRP10 enhances Shigella-induced pro-inflammatory responses Katja Lautz,1 Anna Damm,1 Maureen Menning,1 Introduction Julia Wenger,2 Alexander C. Adam,3 Paola Zigrino,4 Elisabeth Kremmer5 and Thomas A. Kufer1* The innate immune system is the first line of defence 1Institute for Medical Microbiology, Immunology and against invading pathogens in mammals. By gaining Hygiene, University of Cologne, Cologne, Germany. access to the cellular cytoplasm, some bacteria and 2Department of Molecular Biology, University of viruses adopted to escape host innate immune surveil- Salzburg, Salzburg, Austria. lance by membrane standing pattern-recognition recep- 3Department of Pathology, University of Cologne, tors (PRRs) such as the Toll-like receptor family. To cope Cologne, Germany. with such intracellular residing pathogens, the host has 4Department of Dermatology, University of Cologne, evolved sophisticated detection systems. In particular Cologne, Germany. members of the nucleotide-binding domain leucine-rich 5Helmholtz Zentrum München, Institute of Molecular repeat containing family (NLR) have been shown to sense Immunology, Munich, Germany. such invasive bacteria and viruses. NLRs are a heteroge- neous class of 23 AAA+ ATPases in humans, which are characterized by a tripartite structural organization com- Summary prising an effector domain, a STAND type ATPase domain Members of the NLR family evolved as intracellular (called NACHT domain) and a series of leucine-rich sensors for bacterial and viral infection. However, repeats (LRRs) at the carboxyl-terminus (Fritz et al., our knowledge on the implication of most of the 2006; Schroder and Tschopp, 2010). NLRs are classified human NLR proteins in innate immune responses based on the nature of their amino-terminal effector still remains fragmentary.