Contribución Al Conocimiento De La Parasitofauna De Rana Perezi Seqane, 1885 (Amphibia: Ranidae) De La Provincia De Ávila

Total Page:16

File Type:pdf, Size:1020Kb

Contribución Al Conocimiento De La Parasitofauna De Rana Perezi Seqane, 1885 (Amphibia: Ranidae) De La Provincia De Ávila UNIVERSIDAD COMPLUTENSE DE MADRID FACULTAD DE FARMACIA DEPARTAMENTO DE PARASITOLOGIA TESIS DOCTORAL CONTRIBUCIÓN AL CONOCIMIENTO DE LA PARASITOFAUNA DE RANA PEREZI SEQANE, 1885 (AMPHIBIA: RANIDAE) DE LA PROVINCIA DE ÁVILA M~ Sonsoles Jiménez Sánchez Madrid, Septiembre de 1997 UNIVERSIDAD COMPLUTENSE DE MADRID FACULTAD DE FARMACIA DEPARTAMENTO DE PARASITOLOGÍA CONTRIBUCIÓN AL CONOCIMIENTO DE LA PARASITOFAUNA DE ¡<ANA PEREZI SEOANE, 1885 (AMPHIBIA: RANIDAE) DE LA PROVINCIA DE ÁVILA Memoria que presenta para optar al grado de Doctor en Fannacia la licenciada M~ Sonsoles Jiménez Sánchez. MADRID, SEPTIEMBRE DE 1997 DON ANTONIO R. MARTÍNEZ FERNÁNDEZ, CATEDRÁTICO Y DIRECTOR DEL DEPARTAMENTO DEPARASITOLOGIA DE LA FACULTAD DE FARMACIA DE LA U.C.M. CERTIFICA: Que la Licenciada en Farmacia M3 Sonsoles Jiménez Sánchez, ha realizado, bajo la dirección conjunta de los Profs. Drs. D. Luis Manuel Zapatero Ramos y Difa. Catalina Castaño Fernández, en este Departamento de Parasitología, la Memoria titulada CONTRIBUCIÓN AL CONOCIMIENTO DE LA PARASITOFAUNA DE ¡<ANA PEREZI SEOANE, 1885 (AMPHIBIA: RANIDAE) DE LA PROVINCIA DE AVILA. Y para que así conste, expido y firmo el presente en Madrid, a veintitrés de Septiembre de mil novecientos noventa y siete. ÍNDICE Indice 1. INTRODUCCIÓN .1 1.1. JUSTIFICACIÓN DEL TRABAJO 1 1.2. OBJETIVOS 1 2. REVISIÓN BIBLIOGRÁFICA 3 2.1. DESCRIPCION DEL Á1UÁ GEOGRÁFICA DE DISTRIBUCIÓN DEL HOSPEDADOR 3 2.1.1. SITUACIÓN, EXTENSIÓN YDIVISION 3 2.1.2. OLOGÍA, LITOLOGÍA Y EDAFOLOGIA 4 FISIOGRAFíA, GE 2.1.3. HIDROGRAFíA 4 2.1.4. CLIMATOLOGÍA 5 2.1.5. VEGETACION 5 2.2. REVISIÓN BIBLIOGRAFICA DEL HOSPEDADOR 7 2.2.1. CLASE AMPHIBIA 7 2.2.2. ORDEN ANURA 15 2.2.3. Familia Ran¡dae 19 2.2.4. Subfamilia Ran¡nae 20 2.2.5. Género Rana 20 2.2.6. Especie Ranaperezí 21 2.3. REVISIÓN BIBLIOGRÁFICA DEL VECTOR 25 2.3.1. Familia Glossiphoniidae 25 2.3.1.1. Género Batracobdella 25 2.3.1.1.1. Especie Batracobdella algira 25 2.4. REVISIÓN BIBLIOGRÁFICA DE BACTERIAS 27 2.4.1. Familia Anaplasmataceae 27 2.4.1.1. Género Aegptianella 27 2.4.1.1.1. Especie Aegyptianella bacter!fera 28 2.4.1.1.2. EspecieAeg~ptianellaranarum 29 1 Parasitafauna de Rana perezi 2.5. REVISIÓN BIBLIOGRÁFICA DE PROTOZOOS 30 2.5.1. REVISIÓN BIBLIOGRAFICA DE FLAGELADOS 37 2.5.1.1. Familia Retortamonadidae 39 2.5,1.1.1. Género Retortamonas 40 2.5.1.1.1.1. Especie Retortamonas dobellí 41 2.5.1.1.2. Género Chdomastix 42 2.5.1.1.2.1. Especie Chz.lomastix caulleryi 42 2.5.1.2. Familia Hexamitidae 42 2.5.1.2.1. Subfamilia Hexamitinae 43 2.5.1.2.1.1. Genero Hexamita 43 2.5.1.2.1.1.1. Especie Hexamíta intestínalís 44 2.5.1.2.1.2. Genero Sp¡ronucleus 44 2.5.1.2.1.2.1. Especie Sp¡ronucleus elegans 44 2.5.1.2.1.3. Género Brugerolleta 45 2.5.1.2.1.3.1. Especie Brugerolleta algonquinensis 45 2.5.1.2.2. Subfamilia Giardiinae 45 2.5.1.2.2.1. Género Octomítus 46 2.5.1.2.2.1.1. Especie Octomflus neglectus 46 2.5.1.2.2.2. Género Gíardía 46 2.5.1.2.2.2.1. Especie Giard¡aagílis 47 2.5.1.3. Familia Monoeercomonadidae 48 2.5.1.3.1. Subfamiia Monocercomonadinae 48 2.5.1.3.1.1. Género Monocercomonas 49 2.5.1.3.1.1. 1. Especie Monocercomonas maculatus 50 2.5.1.4. Familia Trichomonadidae 50 2.5.1.4.1. Subfamiia Trichomonadinae 51 2.5.1.4.1.1. Género Trichomitus 52 2.5.1.4.1.1.1. Especie Trichomnítus batrachorum 53 2.5.1.4.1.2. Género Tetratrichomonas 54 2.5.1.4.1.2. Especie Tetratrichomonasprowazeki 55 2.5.1.5. Familia Trypanosomat¡dae 55 2.5.1.5.1. Género Trypanosoma 56 2.5.1.5.1.1. Especie Trypanosoma rotatorium 57 2.5.1.5.1.2. Especie Trypanosomaloricatum 58 2.5.1.6. Incertaesedis 58 2.5.1.6.1. Género Rbizomastix 58 II Indice 2.5.2. REVISIÓN BIBLIOGRÁnCA DE OPALINIDOS 59 2.5,2.1. Familia Opalinidae 60 2.5.2.1.1. Género Opalina 65 2.5.2.1.1.1. Especie Opalina ranarum 66 2.5.2.1.1.2. Especie Opalina obtrigona 67 2.5.2.1.2. Género Cepedea 67 2.5.2.1.2.1. Especie Cepedea dimidiata 68 2.5.3. REVISIÓN BIBLIOGRÁFICA DE AMERAS 69 2.5.3.1. Familia Entamoebidae 74 2.5.3.1.1. Género Entamoeba 74 2.5.3.1.1.1. Especie Entamoeba ranarum 75 2.5.3.2. Familia Hartmannellidae 75 2.5.3.2.1. Género Hartmannella 76 2.5.3.2.1.1. Especie Hartmannella vernqfonnis 76 2.5.3.3. Familia Acantbamoebidae 77 2.5.3.3.1. GéneroAcanthamoeba 77 2.5.3.4. Familia Vahlkampfiidae 78 2.5.3.4.1. Género Vahlkampfia 78 2.5.3.4.2. Género Naegleria 79 2.5.4. REVISIÓN BIBLIOGRÁFICA DE ESPOROZOOS 80 2.5.4.1. Familia E¡meriidae 85 2.5.4.1.1. Género Eimeria 85 2.5.4.1.1.1. Especie Eimeriaprevoti 86 2.5.4.2. Familia Lankesterellidae 87 2.5.4.2.1. Género Lankesterella 87 2.5.4.2.1.1. Especie Lankestere¡la minima 88 2.5.4.3. Familia Dact¡losomatidae 89 2.5.4.3.1. Género Dac!ylosoma 89 2.5.4.3.1.1. Especie Dactylosoma ranarum 90 2.5.5. REVISIÓN BIBLIOGRAFICA DE CILIADOS 91 2.5.5.1. Familia Nyctotheridae 95 2.5.5.1.1. Género Nyctotheroides 96 2.5.5.1.1. Especie Nyctothero¡des cordiformis 96 m Parasitofauna de Rana perezi 2.5.5.2. Familia Balantidiidae 97 2.5.5.2.1. Género Balantidium 98 2 5.5.2.1. 1. Especie Balantidium duodení 99 2.5.5.2.1.2. Especie Balantid¡um entozoon 99 2.5.5.2.1.3. Especie Balantidium elongarum 100 2.5.5.3. Familia Trichodinidae 100 2.5.5.3.1. Género Trichodina 101 2.5.5.3.1.1. Especie Tr¡chod¡naranae 102 2.5.6. REVISIÓN BIBLIOGRÁFICA DE BLASTOCISTIS 103 2.5.6.1. Familia Blastocystidae 105 2.5.6.1.1. Género Blastocystis 105 2.6. REVISION BIBLIOGRÁFICA DE TREMATODOS 108 2.6.1. Familia Paramphistom¡dae 109 2.6.1.1. Subfamilia Diplodíscinae 109 2.6.1.1.1. Género Opisthodiscus 110 2.6.1.1 1.1. Especie Opisthodiscus nigrivasis 110 2.6.2. Familia Plagiorchiidae 111 2.6.2.1. Subfamilia Haematoloech¡nae 113 2.6.2.1.1. Género Haematoloechus 114 2.6 2 11.1. Especie Haematoloech-us variegatus 114 26.2.2 Subfamilia Cephalogoniminae 115 26.22.1. Género Cephalogonimus 116 2.6.2.2.1.1. Especie Cephalogonimus retusus 116 2.6.3. Familia Gorgodcridae 117 26.3.1 Género Gorgodera 118 2631.1. Especie Gorgoderaamplicava 118 2.6 3 2. Género Gorgoderma 119 2.6.3.2.1. Especie Gorgoderina vitelliloba 120 2.6.4. Familia Telorchiidae 120 2.6 4 1 Subfamiia Opisthioglypbinae 121 2.6 4 11. Género Opisthioglyphe 122 2.6.4.1.1. Especie Opisthioglyphe endoloba 122 Iv Indice 2.7. REVISIóN BIBLIOGRÁFICA DE NEMATODOS 124 2.7.1. Familia Cosmocerc¡dae 125 2.7.1.1. Subfamilia Cosmocercinse 126 2.7.1.1.1. Género Cosmocerca 127 2.7.1.1.1.1. Especie Cosmocerca ornata 127 2,7.2. Familia Rhabdiasidae 129 2.7.2.1. Género Rhabdias 129 2.7.2.1. Especie Rizabdias bufonis 131 2.7.3. Familia Onchocercidae 132 2.7.3.1. Subfaniilia ícusiell¡nae 133 2.7.3.1.1. Género Icosiella 134 2.7.3.1.1.1. Especie Icosiella neglecta 134 2.7.4. Familia Trichuridae 136 2.7.4.1. Subfamiia Capillariinae 136 2.7.4.1.1. Género CapuJaría 139 2.7.4.1. 1. Especie Capillaria costacruzí 140 3. MATERIAL Y MÉTODOS 141 3.1. HOSPEDADOR 141 3.1.1. Capturaytransporte 141 3.1.2. Mantenimiento en el laboratorio 142 3.2. MATERIAL DE LABORATORIO 142 3.3. TECNICAS PABASITOLÓGICAS 142 3.3.1. Necropsia y recogida del material 142 3.3.2. Estudio de los protozoos 143 3.3.2.1. Observaciones en fresco 143 3.3.2.2. Técnicas de tinción 143 3.3.2.3. Técnicas de cultivo 145 3.3.3. Estudio de los trematodos 147 3.3.3.1. Recogida de trematodos 147 3.3.3.2. Fijación y conservacton 147 3.3.3.3. Tinciónymontaje 147 3.3.4. Estudio de los nematodos 148 3.3.4.1. Recogida de trematodos 148 3.3.4.2. Fijación y conservacion 148 3.3.4.3. Aclarado y montaje 148 3.4. MEDICIONES Y CALIBRADO 149 3.5. ANALISIS ESTADÍSTICO 150 y Parasitafauna de Reina perezz 4. RESULTADOS Y DISCUSIÓN 151 4.1. RESULTADOS Y DISCLISION DE BACTERIAS 153 4.1.1. GENERALIDADES 153 4.1.2. DESCRIPCIÓN DE LAS BACTERIAS ENCONTRADAS 155 4.1.2.1. Aegyptianella bacterifera 155 4.1.2.2. Aegyptianellaranarum 156 4.2. RESULTADOS Y DISCUSIÓN DE PROTOZOOS 158 4.2.1. GENERALIDADES 158 4.2.2. DESCRIPCIÓN DE LOS PROTOZOOS ENCONTRADOS 162 4.2.2.1. Retortamonas dobellí 162 4.2.2.2. Chílomastix caulleryi 164 4.2.2.3. Hexamíta íntest¡nahs 166 4.2.2.4. Spironucleuselegans 167 4 2.2.5. Brugerolleia algonquinensis 168 4.2.2.6. Octomitus neglectus 170 4.2.2.7.
Recommended publications
  • Systema Naturae∗
    Systema Naturae∗ c Alexey B. Shipunov v. 5.802 (June 29, 2008) 7 Regnum Monera [ Bacillus ] /Bacteria Subregnum Bacteria [ 6:8Bacillus ]1 Superphylum Posibacteria [ 6:2Bacillus ] stat.m. Phylum 1. Firmicutes [ 6Bacillus ]2 Classis 1(1). Thermotogae [ 5Thermotoga ] i.s. 2(2). Mollicutes [ 5Mycoplasma ] 3(3). Clostridia [ 5Clostridium ]3 4(4). Bacilli [ 5Bacillus ] 5(5). Symbiobacteres [ 5Symbiobacterium ] Phylum 2. Actinobacteria [ 6Actynomyces ] Classis 1(6). Actinobacteres [ 5Actinomyces ] Phylum 3. Hadobacteria [ 6Deinococcus ] sed.m. Classis 1(7). Hadobacteres [ 5Deinococcus ]4 Superphylum Negibacteria [ 6:2Rhodospirillum ] stat.m. Phylum 4. Chlorobacteria [ 6Chloroflexus ]5 Classis 1(8). Ktedonobacteres [ 5Ktedonobacter ] sed.m. 2(9). Thermomicrobia [ 5Thermomicrobium ] 3(10). Chloroflexi [ 5Chloroflexus ] ∗Only recent taxa. Viruses are not included. Abbreviations and signs: sed.m. (sedis mutabilis); stat.m. (status mutabilis): s., aut i. (superior, aut interior); i.s. (incertae sedis); sed.p. (sedis possibilis); s.str. (sensu stricto); s.l. (sensu lato); incl. (inclusum); excl. (exclusum); \quotes" for environmental groups; * (asterisk) for paraphyletic taxa; / (slash) at margins for major clades (\domains"). 1Incl. \Nanobacteria" i.s. et dubitativa, \OP11 group" i.s. 2Incl. \TM7" i.s., \OP9", \OP10". 3Incl. Dictyoglomi sed.m., Fusobacteria, Thermolithobacteria. 4= Deinococcus{Thermus. 5Incl. Thermobaculum i.s. 1 4(11). Dehalococcoidetes [ 5Dehalococcoides ] 5(12). Anaerolineae [ 5Anaerolinea ]6 Phylum 5. Cyanobacteria [ 6Nostoc ] Classis 1(13). Gloeobacteres [ 5Gloeobacter ] 2(14). Chroobacteres [ 5Chroococcus ]7 3(15). Hormogoneae [ 5Nostoc ] Phylum 6. Bacteroidobacteria [ 6Bacteroides ]8 Classis 1(16). Fibrobacteres [ 5Fibrobacter ] 2(17). Chlorobi [ 5Chlorobium ] 3(18). Salinibacteres [ 5Salinibacter ] 4(19). Bacteroidetes [ 5Bacteroides ]9 Phylum 7. Spirobacteria [ 6Spirochaeta ] Classis 1(20). Spirochaetes [ 5Spirochaeta ] s.l.10 Phylum 8. Planctobacteria [ 6Planctomyces ]11 Classis 1(21).
    [Show full text]
  • University of Oklahoma
    UNIVERSITY OF OKLAHOMA GRADUATE COLLEGE MACRONUTRIENTS SHAPE MICROBIAL COMMUNITIES, GENE EXPRESSION AND PROTEIN EVOLUTION A DISSERTATION SUBMITTED TO THE GRADUATE FACULTY in partial fulfillment of the requirements for the Degree of DOCTOR OF PHILOSOPHY By JOSHUA THOMAS COOPER Norman, Oklahoma 2017 MACRONUTRIENTS SHAPE MICROBIAL COMMUNITIES, GENE EXPRESSION AND PROTEIN EVOLUTION A DISSERTATION APPROVED FOR THE DEPARTMENT OF MICROBIOLOGY AND PLANT BIOLOGY BY ______________________________ Dr. Boris Wawrik, Chair ______________________________ Dr. J. Phil Gibson ______________________________ Dr. Anne K. Dunn ______________________________ Dr. John Paul Masly ______________________________ Dr. K. David Hambright ii © Copyright by JOSHUA THOMAS COOPER 2017 All Rights Reserved. iii Acknowledgments I would like to thank my two advisors Dr. Boris Wawrik and Dr. J. Phil Gibson for helping me become a better scientist and better educator. I would also like to thank my committee members Dr. Anne K. Dunn, Dr. K. David Hambright, and Dr. J.P. Masly for providing valuable inputs that lead me to carefully consider my research questions. I would also like to thank Dr. J.P. Masly for the opportunity to coauthor a book chapter on the speciation of diatoms. It is still such a privilege that you believed in me and my crazy diatom ideas to form a concise chapter in addition to learn your style of writing has been a benefit to my professional development. I’m also thankful for my first undergraduate research mentor, Dr. Miriam Steinitz-Kannan, now retired from Northern Kentucky University, who was the first to show the amazing wonders of pond scum. Who knew that studying diatoms and algae as an undergraduate would lead me all the way to a Ph.D.
    [Show full text]
  • 3.2.2 Diplomonad (Hexamitid) Flagellates - 1
    3.2.2 Diplomonad (Hexamitid) Flagellates - 1 3.2.2 Diplomonad (Hexamitid) Flagellates: Diplomonadiasis, Hexamitosis, Spironucleosis Sarah L. Poynton Department of Comparative Medicine Johns Hopkins University School of Medicine 1-127 Jefferson Building, Johns Hopkins Hospital 600 North Wolfe Street Baltimore, MD 21287 410/502-5065 fax: 443/287-2954 [email protected] [email protected] A. Name of Disease and Etiological Agent Diplomonadiasis or hexamitosis is infection by diplomonad flagellates (Order Diplomonadida, suborder Diplomonadina, Family Hexamitidae). If the exact genus is known, the infections may be reported as hexamitiasis (Hexamita), octomitosis (Octomitus), or spironucleosis (Spironucleus); of these, probably only the latter is applicable to fish (see below). Infections may be reported as localized (commonly in the intestine, and possibly also including “hole-in-the head disease” of cichlids (Paull and Matthews 2001), or disseminated or systemic (Ferguson and Moccia 1980; Kent et al. 1992; Poppe et al. 1992; Sterud et al. 1998). Light microscopy studies have reported three genera from fish - namely Hexamita, Octomitus, and Spironucleus. However, transmission electron microscopy (TEM) is needed to confirm genus (Poynton and Sterud 2002), and light microscopy studies are therefore taxonomically unreliable. If TEM is not available, the organisms should be recorded as diplomonad or hexamitid flagellates. All recent comprehensive ultrastructural studies show only the genus Spironucleus infecting fish, and it is probable that this is the genus to which all diplomonads from fish belong (Poynton and Sterud 2002). Some 15 to 20 species of diplomonads have been reported from fish (Poynton and Sterud 2002). However, most descriptions do not include comprehensive surface and internal ultrastructure and thus are incomplete.
    [Show full text]
  • 7Fa228ee469dc6254b4b09b017
    GBE Multigenomic Delineation of Plasmodium Species of the Laverania Subgenus Infecting Wild-Living Chimpanzees and Gorillas Weimin Liu1, Sesh A. Sundararaman1,2, Dorothy E. Loy1,2, Gerald H. Learn1,YingyingLi1, Lindsey J. Plenderleith3, Jean-Bosco N. Ndjango4, Sheri Speede5,RebecaAtencia6,DebbyCox6,7, George M. Shaw1,2, Ahidjo Ayouba8, Martine Peeters8,JulianC.Rayner9, Beatrice H. Hahn1,2,and Paul M. Sharp3,* 1Department of Medicine, Perelman School of Medicine, University of Pennsylvania 2Department of Microbiology, Perelman School of Medicine, University of Pennsylvania 3Institute of Evolutionary Biology, and Centre for Immunity, Infection and Evolution, University of Edinburgh, United Kingdom 4Faculty of Sciences, University of Kisangani, Democratic Republic of the Congo 5Sanaga-Yong Chimpanzee Rescue Center, IDA-Africa, Portland, Oregon 6Tchimpounga Chimpanzee Rehabilitation Center, Pointe-Noire, Republic of the Congo 7Africa Programmes, Jane Goodall Institute, Vienna, Virginia 8UMI 233, Institut de Recherche pour le De´veloppement (IRD), INSERM U1175, and University of Montpellier, France 9Malaria Programme, Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK *Corresponding author: E-mail: [email protected]. Accepted: May 24, 2016 Data deposition: This project has been deposited at NCBI GenBank under the accession numbers listed in supplementary table S5, Supplementary Material online. Abstract Plasmodium falciparum, the major cause of malaria morbidity and mortality worldwide, is only distantly related
    [Show full text]
  • Cyprinus Carpio
    Cyprinus carpio Investigation of infection by some Endo- parasitic Protozoa species in common carp ( Cyprinus carpio ) in AL-Sinn fishfarm 2014 Cyprinus carpio Investigation of infection by some Endo- parasitic Protozoa species in common carp ( Cyprinus carpio ) in AL-Sinn fishfarm 2014 I IV V VI VII 2 1 3 2 3 3 4 4 4 1 4 4 1 1 4 2 4 6 6 1 2 4 6 6 7 8 8 10 12 14 15 15 16 2 2 4 I 16 16 16 17 17 18 18 19 19 19 Hexamitosis 3 2 4 19 19 20 20 21 21 21 1 3 4 22 23 2 3 4 26 5 26 1 5 27 2 5 28 3 5 29 4 5 29 1 4 5 29 2 4 5 33 3 4 5 II 34 4 4 5 34 5 4 5 36 6 36 1 6 42 2 6 42 Hexamitosis 3 6 43 7 44 8 44 9 49 10 49 1 10 51 2 10 III 5 1 Oocyst 7 2 15 3 11 Merozoites 4 12 5 12 6 13 7 14 8 15 9 Trypanosoma 1 18 10 Trypanoplasma 2 19 11 21 Hexamita 12 23 Hexamita 13 A 28 14 B 30 Cyprinus carpio carpio 15 31 16 33 17 34 18 34 19 35 20 35 21 36 22 IV 40 Goussia carpelli 23 40 Macrogametocyte 24 41 Merozoites 25 37 1 Goussia carpelli 39 2 Goussia 41 3 carpelli Goussia 42 carpelli 4 43 5 Goussia 44 carpelli 6 V Goussia Trypanosoma Trypanoplasma borreli Goussia subepithelialis carpelli Hexamita intestinalis danilewskyi Hexamitosis 200 2013 / 5 / 14 2012 / 6 / 6 Goussia carpelli Goussia subepithelials Nodular Coccidiosis Macrogametocytes Merozoites 3 Goussia carpelli 5.4 1.6 17.6 95.84 17.5 16 Trypanosoma Trypanoplasma borreli Hexamita intestinalis danilewskyi VI Abstract This study aimed at investigating the infection of cultured common carp ( Cyprinus carpio L.
    [Show full text]
  • A Wide Diversity of Previously Undetected Freeliving
    Environmental Microbiology (2010) 12(10), 2700–2710 doi:10.1111/j.1462-2920.2010.02239.x A wide diversity of previously undetected free-living relatives of diplomonads isolated from marine/saline habitatsemi_2239 2700..2710 Martin Kolisko,1 Jeffrey D. Silberman,2 Kipferlia n. gen. The remaining isolates include rep- Ivan Cepicka,3 Naoji Yubuki,4† Kiyotaka Takishita,5 resentatives of three other lineages that likely repre- Akinori Yabuki,4 Brian S. Leander,6 Isao Inouye,4 sent additional undescribed genera (at least). Small- Yuji Inagaki,7 Andrew J. Roger8 and subunit ribosomal RNA gene phylogenies show that Alastair G. B. Simpson1* CLOs form a cloud of six major clades basal to the Departments of 1Biology and 8Biochemistry and diplomonad-retortamonad grouping (i.e. each of the Molecular Biology, Dalhousie University, Halifax, Nova six CLO clades is potentially as phylogenetically Scotia, Canada. distinct as diplomonads and retortamonads). CLOs 2Department of Biological Sciences, University of will be valuable for tracing the evolution of Arkansas, Fayetteville, AR, USA. diplomonad cellular features, for example, their 3Department of Zoology, Faculty of Science, Charles extremely reduced mitochondrial organelles. It is University in Prague, Prague, Czech Republic. striking that the majority of CLO diversity was unde- 4Institute of Biological Sciences, Graduate School of Life tected by previous light microscopy surveys and and Environmental Sciences and 7Center for environmental PCR studies, even though they inhabit Computational Sciences and Institute of Biological a commonly sampled environment. There is no Sciences, University of Tsukuba, Tsukuba, Ibaraki, reason to assume this is a unique situation – it is Japan. likely that undersampling at the level of major lin- 5Japan Agency for Marine-Earth Science and eages is still widespread for protists.
    [Show full text]
  • Biosystems, 10 (1978) 67--89 67 © Elsevier/North-Holland Scientific Publishers Ltd. PROBLEMS in the DEVELOPMENT of an EXPLICIT
    BioSystems, 10 (1978) 67--89 67 © Elsevier/North-Holland Scientific Publishers Ltd. PROBLEMS IN THE DEVELOPMENT OF AN EXPLICIT HYPOTHETICAL PHYLOGENY OF THE LOWER EUKARYOTES F.J.R. TAYLOR Department of Botany and Institute of Oceanography, The University of British Columbia, Vancouver, B.C., Canada V6T 1 W5 A semi-explicit arrangement of the lower eukaryotes is provided to serve as a basis for phyletic discussions. No single character is used to determine the position of all the groups. The tree provides no ready separation of protozoa, algae and fungi, groups assigned to these traditional assemblages being considered to be for the most part inextricably interwoven. Photosynthetic forms, whose relationships seem to be more readily discernable, are considered to have given rise repeatedly to nonphotosynthetic forms. The assumption that there are primitive "preflagellar" eukaryotes (red algae, non-flagellated fungi) is adopted. The potential value of mitochondrial features as indicators of broad affinities is emphasised, particularly in determining the probable affinities of non-photosynthetic forms, and this criterion is contra-indicative of a ciliate ancestry for the Metazoa. In the arrangement provided the distributions of chloroplast, mitochondrial and flagellar features match one another well, suggesting their probable co-evolution. 1. Introduction view of the relations of the algae, his "tree" contained numerous, not strictly representa- At the start of a paper of this type it is tional "twigs". Dodge {1974) was even less often appropriate to begin with an apt, but explicit, preferring to comment more on not very serious quotation to set the right taxonomic consequences. Leedale (1974) tone. In this instmace, the only quotation preferred to ignore the details of origin of which sprang readily to mind was "..
    [Show full text]
  • Plasmodium Falciparum Is Not As Lonely As Previously Considered
    AUTOPHAGIC PUNCTUM ARTICLE ADDENDUM Virulence 2:1, 71-76; January/February 2011; © 2011 Landes Bioscience Plasmodium falciparum is not as lonely as previously considered Franck Prugnolle,1,* Francisco Ayala,2 Benjamin Ollomo,3 Céline Arnathau,1 Patrick Durand1 and François Renaud1,* 1Laboratoire MIVEGEC; UM1-CNRS 5290-IRD 224, IRD Montpellier, France; 2Department of Ecology and Evolutionary Biology; University of California; Irvine, CA USA; 3Centre International de Recherches Médicales de Franceville; Franceville, Gabon ntil very recently, only one species The identification of Plasmodium spe- U(P. reichenowi) was known to be a cies circulating in great apes in Africa phylogenetic sister lineage of P. falciparum, was primarily done during the first half the main malignant agent of human of the twentieth century, on the basis of malaria. In 2009 and 2010, new studies morphological features.1 This approach have revealed the existence of several new has several limitations.4 First, phenotypic phylogenetic species related to this deadly plasticity can lead to incorrect identifica- parasite and infecting chimpanzees and tions. Second, morphological keys are gorillas in Africa. These discoveries invite often effective only for a particular life us to explore a whole set of new questions, stage which cannot always be observed which we briefly do in this article. or is difficult to be. Finally, and perhaps most important, this approach overlooks The Plasmodium species infecting morphologically cryptic taxa. These limi- humans and non-human primates cluster tations, together with the difficulty to into two distinct phylogenetic lineages collect and manipulate great apes, were (Fig. 1). One of these lineages (in yellow certainly, at least in part, responsible for in Fig.
    [Show full text]
  • Protist Phylogeny and the High-Level Classification of Protozoa
    Europ. J. Protistol. 39, 338–348 (2003) © Urban & Fischer Verlag http://www.urbanfischer.de/journals/ejp Protist phylogeny and the high-level classification of Protozoa Thomas Cavalier-Smith Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK; E-mail: [email protected] Received 1 September 2003; 29 September 2003. Accepted: 29 September 2003 Protist large-scale phylogeny is briefly reviewed and a revised higher classification of the kingdom Pro- tozoa into 11 phyla presented. Complementary gene fusions reveal a fundamental bifurcation among eu- karyotes between two major clades: the ancestrally uniciliate (often unicentriolar) unikonts and the an- cestrally biciliate bikonts, which undergo ciliary transformation by converting a younger anterior cilium into a dissimilar older posterior cilium. Unikonts comprise the ancestrally unikont protozoan phylum Amoebozoa and the opisthokonts (kingdom Animalia, phylum Choanozoa, their sisters or ancestors; and kingdom Fungi). They share a derived triple-gene fusion, absent from bikonts. Bikonts contrastingly share a derived gene fusion between dihydrofolate reductase and thymidylate synthase and include plants and all other protists, comprising the protozoan infrakingdoms Rhizaria [phyla Cercozoa and Re- taria (Radiozoa, Foraminifera)] and Excavata (phyla Loukozoa, Metamonada, Euglenozoa, Percolozoa), plus the kingdom Plantae [Viridaeplantae, Rhodophyta (sisters); Glaucophyta], the chromalveolate clade, and the protozoan phylum Apusozoa (Thecomonadea, Diphylleida). Chromalveolates comprise kingdom Chromista (Cryptista, Heterokonta, Haptophyta) and the protozoan infrakingdom Alveolata [phyla Cilio- phora and Miozoa (= Protalveolata, Dinozoa, Apicomplexa)], which diverged from a common ancestor that enslaved a red alga and evolved novel plastid protein-targeting machinery via the host rough ER and the enslaved algal plasma membrane (periplastid membrane).
    [Show full text]
  • The Nuclear 18S Ribosomal Dnas of Avian Haemosporidian Parasites Josef Harl1, Tanja Himmel1, Gediminas Valkiūnas2 and Herbert Weissenböck1*
    Harl et al. Malar J (2019) 18:305 https://doi.org/10.1186/s12936-019-2940-6 Malaria Journal RESEARCH Open Access The nuclear 18S ribosomal DNAs of avian haemosporidian parasites Josef Harl1, Tanja Himmel1, Gediminas Valkiūnas2 and Herbert Weissenböck1* Abstract Background: Plasmodium species feature only four to eight nuclear ribosomal units on diferent chromosomes, which are assumed to evolve independently according to a birth-and-death model, in which new variants origi- nate by duplication and others are deleted throughout time. Moreover, distinct ribosomal units were shown to be expressed during diferent developmental stages in the vertebrate and mosquito hosts. Here, the 18S rDNA sequences of 32 species of avian haemosporidian parasites are reported and compared to those of simian and rodent Plasmodium species. Methods: Almost the entire 18S rDNAs of avian haemosporidians belonging to the genera Plasmodium (7), Haemo- proteus (9), and Leucocytozoon (16) were obtained by PCR, molecular cloning, and sequencing ten clones each. Phy- logenetic trees were calculated and sequence patterns were analysed and compared to those of simian and rodent malaria species. A section of the mitochondrial CytB was also sequenced. Results: Sequence patterns in most avian Plasmodium species were similar to those in the mammalian parasites with most species featuring two distinct 18S rDNA sequence clusters. Distinct 18S variants were also found in Haemopro- teus tartakovskyi and the three Leucocytozoon species, whereas the other species featured sets of similar haplotypes. The 18S rDNA GC-contents of the Leucocytozoon toddi complex and the subgenus Parahaemoproteus were extremely high with 49.3% and 44.9%, respectively.
    [Show full text]
  • The Revised Classification of Eukaryotes
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/231610049 The Revised Classification of Eukaryotes Article in Journal of Eukaryotic Microbiology · September 2012 DOI: 10.1111/j.1550-7408.2012.00644.x · Source: PubMed CITATIONS READS 961 2,825 25 authors, including: Sina M Adl Alastair Simpson University of Saskatchewan Dalhousie University 118 PUBLICATIONS 8,522 CITATIONS 264 PUBLICATIONS 10,739 CITATIONS SEE PROFILE SEE PROFILE Christopher E Lane David Bass University of Rhode Island Natural History Museum, London 82 PUBLICATIONS 6,233 CITATIONS 464 PUBLICATIONS 7,765 CITATIONS SEE PROFILE SEE PROFILE Some of the authors of this publication are also working on these related projects: Biodiversity and ecology of soil taste amoeba View project Predator control of diversity View project All content following this page was uploaded by Smirnov Alexey on 25 October 2017. The user has requested enhancement of the downloaded file. The Journal of Published by the International Society of Eukaryotic Microbiology Protistologists J. Eukaryot. Microbiol., 59(5), 2012 pp. 429–493 © 2012 The Author(s) Journal of Eukaryotic Microbiology © 2012 International Society of Protistologists DOI: 10.1111/j.1550-7408.2012.00644.x The Revised Classification of Eukaryotes SINA M. ADL,a,b ALASTAIR G. B. SIMPSON,b CHRISTOPHER E. LANE,c JULIUS LUKESˇ,d DAVID BASS,e SAMUEL S. BOWSER,f MATTHEW W. BROWN,g FABIEN BURKI,h MICAH DUNTHORN,i VLADIMIR HAMPL,j AARON HEISS,b MONA HOPPENRATH,k ENRIQUE LARA,l LINE LE GALL,m DENIS H. LYNN,n,1 HILARY MCMANUS,o EDWARD A. D.
    [Show full text]
  • Trichonympha Cf
    MOLECULAR PHYLOGENETICS OF TRICHONYMPHA CF. COLLARIS AND A PUTATIVE PYRSONYMPHID: THE RELEVANCE TO THE ORIGIN OF SEX by JOEL BRYAN DACKS B.Sc. The University of Alberta, 1995 A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER'S OF SCIENCE in THE FACULTY OF GRADUATE STUDIES (Department of Zoology) We accept this thesis as conforming to the required standard THE UNIVERSITY OF BRITISH COLUMBIA April 1998 © Joel Bryan Dacks, 1998 In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the head of my department or by his or her representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission. Department of ~2—oc)^Oa^ The University of British Columbia Vancouver, Canada Date {X^ZY Z- V. /^P DE-6 (2/88) Abstract Why sex evolved is one of the central questions in evolutionary genetics. To address this question I have undertaken a molecular phylogenetic study of two candidate lineages to determine the first sexual line. In my thesis the hypermastigotes are confirmed as closely related to the trichomonads in the phylum Parabasalia and found to be more deeply divergent than a putative pyrsonymphid. This means that the Parabasalia are the first sexual lineage. From this I go on to infer that the ancestral sexual cycle included facultative sex.
    [Show full text]