Biosystems, 10 (1978) 67--89 67 © Elsevier/North-Holland Scientific Publishers Ltd. PROBLEMS in the DEVELOPMENT of an EXPLICIT

Total Page:16

File Type:pdf, Size:1020Kb

Biosystems, 10 (1978) 67--89 67 © Elsevier/North-Holland Scientific Publishers Ltd. PROBLEMS in the DEVELOPMENT of an EXPLICIT BioSystems, 10 (1978) 67--89 67 © Elsevier/North-Holland Scientific Publishers Ltd. PROBLEMS IN THE DEVELOPMENT OF AN EXPLICIT HYPOTHETICAL PHYLOGENY OF THE LOWER EUKARYOTES F.J.R. TAYLOR Department of Botany and Institute of Oceanography, The University of British Columbia, Vancouver, B.C., Canada V6T 1 W5 A semi-explicit arrangement of the lower eukaryotes is provided to serve as a basis for phyletic discussions. No single character is used to determine the position of all the groups. The tree provides no ready separation of protozoa, algae and fungi, groups assigned to these traditional assemblages being considered to be for the most part inextricably interwoven. Photosynthetic forms, whose relationships seem to be more readily discernable, are considered to have given rise repeatedly to nonphotosynthetic forms. The assumption that there are primitive "preflagellar" eukaryotes (red algae, non-flagellated fungi) is adopted. The potential value of mitochondrial features as indicators of broad affinities is emphasised, particularly in determining the probable affinities of non-photosynthetic forms, and this criterion is contra-indicative of a ciliate ancestry for the Metazoa. In the arrangement provided the distributions of chloroplast, mitochondrial and flagellar features match one another well, suggesting their probable co-evolution. 1. Introduction view of the relations of the algae, his "tree" contained numerous, not strictly representa- At the start of a paper of this type it is tional "twigs". Dodge {1974) was even less often appropriate to begin with an apt, but explicit, preferring to comment more on not very serious quotation to set the right taxonomic consequences. Leedale (1974) tone. In this instmace, the only quotation preferred to ignore the details of origin of which sprang readily to mind was "... For most of the numerous lines he recognised in fools rush in where angels fear to tread..." and his "Pteropod" and "Fan" arrangements. so the practice has been temporarily discon- Hanson (1976, 1977) tentatively suggested a tinued. few links in the ancestry of the animal-like There should be little need to explain the protists and lower Metazoans. Margulis value of phylogenetic trees in general, since (1969, 1974), on the other hand, has produced they form the basis of "natural" classifications some explicit arrangements in connection and serve as an aid to perspective for the with her proposals regarding the origin of the neophyte or specialist in another field or eukaryotes. highly detailed sub-branch. However, in order Detailed phyletic arrangements of these to provide relative stability to taxonomy such organisms will undoubtedly produce much trees should not be taken as highly authorita- dispute,but it can be argued that it is a valuable, tive when the state of knowledge is still in an progressive exercise and that it may be early, relatively incomplete stage. It can be pursued occasionally by some who enjoy this argued that to attempt an explicit arrangement "metascience" which, in the words of Stanier at this stage in the knowledge of the lower {1970) "can be considered a relatively harm- eukaryotes ("Protoctists") may be a waste of less habit, like eating peanuts, unless-it time and any resulting trees deceptively assumes the form of an obsession .... ". simplistic. For example, while Christensen This contribution is essentially an extension (1966) sketched some broad features of his of an earlier paper on the determination of 68 probable flagellate phylogeny presented at the knowledge of the degree of importance of the 28th Annual Meeting of the Society of various characters evaluated, and much of this Protozoologists at Corvallis, Oregon (Taylor, type of information is lacking. For example: 1976a). The aim of the previous paper was is the fact that an organism stores an alpha not only to discuss probable relationships but 1,4- rather than a beta 1,3- glucan profound also to reiterate the necessity for the use of or relatively trivial? Is the location of the information from several systems when storage within, or exterior to, a chloroplast of attempting to create such a phylogeny. Four major importance? Are differences in flagella main features were considered in that paper: hairs of major or minor importance? Clearly, mitotic systems, and flagellar, chloroplast and if one knew how many genes were involved mitochondrial structure. On the basis of in such similarities or differences, one might features of these four features it was possible have a more profound insight. But such to produce a "tree" which, although it had information will presumably be a long time various weaknesses, seemed to be a reasonable in coming. reflection of probable relationships or at least It is this lack of information which greatly detailed enough to be a target for criticism hinders attempts to follow two of Hanson's and modification. (1977) three "Rules" for phylogenetic When such an exercise is undertaken analysis, namely the consideration of the it is at first easy to view it as if it were an "total biology" of the organism in question, assembly-disassembly puzzle consisting of and the use of arguments based on probably numerous, oddly-shaped pieces which, when selective advantages to account for trans- the right sequence is found, will all fit together formations with time. For example, arguments neatly into a whole form. The problem at for the selective "advantage" or losses of first seems to be largely one of arrangement structure, and particularly the loss of photo- and sequences: when the right combination is synthesis, often seem excessively contrived. discovered, all the groups should form a The loss of mitochondria by protists living in structure with no incongruities. Only a brief low oxygen environments, such as the gut, experience should be required to reveal that seems reasonable as long as there is an ade- this is not where the main problem lies. quate alternative energy-producing system. Even though protists show many features Hanson notes the paradoxical side-by~ide which make them rather different from existence of highly reduced and highly elabor- metazoans and metaphytes (a fact which is ate flagellated forms in the insect hindgut. often overlooked in general biological discus- On the other hand a good reason for sions), nevertheless, they also show many increased phylogenetic study of the protists features, such as parallelism and convergent at this time is the wealth of ultrastructural evolution, which are likely to confuse the material which has become available since, would-be phylogenetic tree-maker (see for example, Pitelka's (1963) review of Hanson, 1976, 1977, for lengthy discussions protozoan ultrastructure. Ultmstructuml of this subject). Furthermore, much of the information is an invaluable aid to the deter- data can be confusing due to misinterpretation, mination of structural homologies in the wrong attribution to group, and variability protists, clearly indicating the original nature in features formerly thought to be conserva- of such curiosities as "parabasal bodies" and tive. "archoplasmic spheres" (golgi derivatives) and When all these features are considered, it is the "melanosome" of the dinoflagellate not surprising that almost any phyletic ocellus (a modified chloroplast). Processes arrangement is going to contain apparent such as mitosis have been much more accurate- inconsistencies. The evaluation of similarities ly described, and representatives of most and differences between groups requires some groups, including the rare and obscure, have 69 now been studied with electron microscopy. 2. Limitations of the fossil record It is time, therefore, to see if the application of this new information is useful for phyletic If any fossil record exists it should obvious- purposes. ly be consulted first in any such enterprise. It Qu arternar~ CENOZOIC Tertiary III " I C~otaoeous MESOZOIC Jurassic mm I Triassie iII .,m" ii ,,o Permian I if"~,-~mm I m Carboniferous Devon ian PALEOZOIC l *: °smm •Silurtan Or doyle :la n m ,-, mm '-1 Cambri au m: oOOo ml cmm ..~ .o B ITTE R SPRINGS ![' o- i': ° ,-- ~ Si nian •-- m - -- ~ ,~ o ,.,'---'=.,.. Isoo. --.--~'-~ - c ..... "--'=--= ~ E~ Proterozoio I ~ o,,o ? ? ? ? GUNFLINT 1 ~ ; t,.oo to e. o Gh. Aroheazt -zo 2 700 ra Catarahean Earth's crust 4500 Fig. 1. Minimal ranges for microfossil groups, compiled from various sources (e,g., Loeblich Jr., 1974; Sarjeant, 1974). The earliest widely acceptable eukaryotes occur in the Bitter Springs Formation 900 million years ago, MYA), but apparent budding in Huroniospora from the Gunflint Iron Formation (1900 MYA) has led to suggestions that it is a fungus (Darby, 1974) or red alga (Tappan, 1976). Eosphaera from the same formation has been attributed to the red algae (Tappan, 1976) or the volvocalean green algae (Kazmierczak, 1976). These differ- ing interpretations wel] illustrate the problems involved in assigning these early microfossils to extant groups. 70 may be surprising to some that there is a rich claim that euglenoids evolved only in the protist fossil record with probable eukaryotic Quaternary or Tertiary because their fossil unicells extending into the late Precambrian record is minimal, or that cryptomonads and (Fig. 1). The debate over the earliest eukar- many zooflagellates arose yesterday (no yotes (see for example the papers by Knoll record at all), or that non-loricate ciliates and Barghoorn, 1975; and Schopf and Zeller arose recently from loricate forms (tintinnids, Oehler, 1976), need not concern us here. their presumed fossils being known as "cal- However, assuming that these early fossils pionellids") because only the latter have a were eukaryotic, the problem of determining fossil record. to which group they might belong illustrates Even where skeletal structures exist there the limitations that are imposed upon the may be conditions under which they will not usefulness of the fossil record. Most of these be preserved in the sediments. For example, very early fossils are organic-walled spheres the calcareous plates (coccoliths) of the with little or no surface ornamentation.
Recommended publications
  • Broadly Sampled Multigene Analyses Yield a Well-Resolved Eukaryotic Tree of Life
    Smith ScholarWorks Biological Sciences: Faculty Publications Biological Sciences 10-1-2010 Broadly Sampled Multigene Analyses Yield a Well-Resolved Eukaryotic Tree of Life Laura Wegener Parfrey University of Massachusetts Amherst Jessica Grant Smith College Yonas I. Tekle Smith College Erica Lasek-Nesselquist Marine Biological Laboratory Hilary G. Morrison Marine Biological Laboratory See next page for additional authors Follow this and additional works at: https://scholarworks.smith.edu/bio_facpubs Part of the Biology Commons Recommended Citation Parfrey, Laura Wegener; Grant, Jessica; Tekle, Yonas I.; Lasek-Nesselquist, Erica; Morrison, Hilary G.; Sogin, Mitchell L.; Patterson, David J.; and Katz, Laura A., "Broadly Sampled Multigene Analyses Yield a Well-Resolved Eukaryotic Tree of Life" (2010). Biological Sciences: Faculty Publications, Smith College, Northampton, MA. https://scholarworks.smith.edu/bio_facpubs/126 This Article has been accepted for inclusion in Biological Sciences: Faculty Publications by an authorized administrator of Smith ScholarWorks. For more information, please contact [email protected] Authors Laura Wegener Parfrey, Jessica Grant, Yonas I. Tekle, Erica Lasek-Nesselquist, Hilary G. Morrison, Mitchell L. Sogin, David J. Patterson, and Laura A. Katz This article is available at Smith ScholarWorks: https://scholarworks.smith.edu/bio_facpubs/126 Syst. Biol. 59(5):518–533, 2010 c The Author(s) 2010. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. All rights reserved. For Permissions, please email: [email protected] DOI:10.1093/sysbio/syq037 Advance Access publication on July 23, 2010 Broadly Sampled Multigene Analyses Yield a Well-Resolved Eukaryotic Tree of Life LAURA WEGENER PARFREY1,JESSICA GRANT2,YONAS I. TEKLE2,6,ERICA LASEK-NESSELQUIST3,4, 3 3 5 1,2, HILARY G.
    [Show full text]
  • The Oxymonad Genome Displays Canonical Eukaryotic Complexity in the Absence of a Mitochondrion Anna Karnkowska,*,1,2 Sebastian C
    The Oxymonad Genome Displays Canonical Eukaryotic Complexity in the Absence of a Mitochondrion Anna Karnkowska,*,1,2 Sebastian C. Treitli,1 Ondrej Brzon, 1 Lukas Novak,1 Vojtech Vacek,1 Petr Soukal,1 Lael D. Barlow,3 Emily K. Herman,3 Shweta V. Pipaliya,3 TomasPanek,4 David Zihala, 4 Romana Petrzelkova,4 Anzhelika Butenko,4 Laura Eme,5,6 Courtney W. Stairs,5,6 Andrew J. Roger,5 Marek Elias,4,7 Joel B. Dacks,3 and Vladimır Hampl*,1 1Department of Parasitology, BIOCEV, Faculty of Science, Charles University, Vestec, Czech Republic 2Department of Molecular Phylogenetics and Evolution, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland 3Division of Infectious Disease, Department of Medicine, University of Alberta, Edmonton, Canada 4Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic Downloaded from https://academic.oup.com/mbe/article-abstract/36/10/2292/5525708 by guest on 13 January 2020 5Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Canada 6Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden 7Institute of Environmental Technologies, Faculty of Science, University of Ostrava, Ostrava, Czech Republic *Corresponding authors: E-mails: [email protected]; [email protected]. Associate editor: Fabia Ursula Battistuzzi Abstract The discovery that the protist Monocercomonoides exilis completely lacks mitochondria demonstrates that these organ- elles are not absolutely essential to eukaryotic cells. However, the degree to which the metabolism and cellular systems of this organism have adapted to the loss of mitochondria is unknown. Here, we report an extensive analysis of the M.
    [Show full text]
  • Novel Lineages of Oxymonad Flagellates from the Termite Porotermes Adamsoni (Stolotermitidae): the Genera Oxynympha and Termitim
    Protist, Vol. 170, 125683, December 2019 http://www.elsevier.de/protis Published online date 21 October 2019 ORIGINAL PAPER Novel Lineages of Oxymonad Flagellates from the Termite Porotermes adamsoni (Stolotermitidae): the Genera Oxynympha and Termitimonas a,1 b a c b,1 Renate Radek , Katja Meuser , Samet Altinay , Nathan Lo , and Andreas Brune a Evolutionary Biology, Institute for Biology/Zoology, Freie Universität Berlin, 14195 Berlin, Germany b Research Group Insect Gut Microbiology and Symbiosis, Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany c School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia Submitted January 21, 2019; Accepted October 9, 2019 Monitoring Editor: Alastair Simpson The symbiotic gut flagellates of lower termites form host-specific consortia composed of Parabasalia and Oxymonadida. The analysis of their coevolution with termites is hampered by a lack of informa- tion, particularly on the flagellates colonizing the basal host lineages. To date, there are no reports on the presence of oxymonads in termites of the family Stolotermitidae. We discovered three novel, deep-branching lineages of oxymonads in a member of this family, the damp-wood termite Porotermes adamsoni. One tiny species (6–10 ␮m), Termitimonas travisi, morphologically resembles members of the genus Monocercomonoides, but its SSU rRNA genes are highly dissimilar to recently published sequences of Polymastigidae from cockroaches and vertebrates. A second small species (9–13 ␮m), Oxynympha loricata, has a slight phylogenetic affinity to members of the Saccinobaculidae, which are found exclusively in wood-feeding cockroaches of the genus Cryptocercus, the closest relatives of termites, but shows a combination of morphological features that is unprecedented in any oxymonad family.
    [Show full text]
  • The Amoeboid Parabasalid Flagellate Gigantomonas Herculeaof
    Acta Protozool. (2005) 44: 189 - 199 The Amoeboid Parabasalid Flagellate Gigantomonas herculea of the African Termite Hodotermes mossambicus Reinvestigated Using Immunological and Ultrastructural Techniques Guy BRUGEROLLE Biologie des Protistes, UMR 6023, CNRS and Université Blaise Pascal de Clermont-Ferrand, Aubière Cedex, France Summary. The amoeboid form of Gigantomonas herculea (Dogiel 1916, Kirby 1946), a symbiotic flagellate of the grass-eating subterranean termite Hodotermes mossambicus from East Africa, is observed by light, immunofluorescence and transmission electron microscopy. Amoeboid cells display a hyaline margin and a central granular area containing the nucleus, the internalized flagellar apparatus, and organelles such as Golgi bodies, hydrogenosomes, and food vacuoles with bacteria or wood particles. Immunofluorescence microscopy using monoclonal antibodies raised against Trichomonas vaginalis cytoskeleton, such as the anti-tubulin IG10, reveals the three long anteriorly-directed flagella, and the axostyle folded into the cytoplasm. A second antibody, 4E5, decorates the conspicuous crescent-shaped structure or cresta bordered by the adhering recurrent flagellum. Transmission electron micrographs show a microfibrillar network in the cytoplasmic margin and internal bundles of microfilaments similar to those of lobose amoebae that are indicative of cytoplasmic streaming. They also confirm the internalization of the flagella. The arrangement of basal bodies and fibre appendages, and the axostyle composed of a rolled sheet of microtubules are very close to that of the devescovinids Foaina and Devescovina. The very large microfibrillar cresta supporting an enlarged recurrent flagellum resembles that of Macrotrichomonas. The parabasal apparatus attached to the basal bodies is small in comparison to the cell size; this is probably related to the presence of many Golgi bodies supported by a striated fibre that are spread throughout the central cytoplasm in a similar way to Placojoenia and Mixotricha.
    [Show full text]
  • Author's Manuscript (764.7Kb)
    1 BROADLY SAMPLED TREE OF EUKARYOTIC LIFE Broadly Sampled Multigene Analyses Yield a Well-resolved Eukaryotic Tree of Life Laura Wegener Parfrey1†, Jessica Grant2†, Yonas I. Tekle2,6, Erica Lasek-Nesselquist3,4, Hilary G. Morrison3, Mitchell L. Sogin3, David J. Patterson5, Laura A. Katz1,2,* 1Program in Organismic and Evolutionary Biology, University of Massachusetts, 611 North Pleasant Street, Amherst, Massachusetts 01003, USA 2Department of Biological Sciences, Smith College, 44 College Lane, Northampton, Massachusetts 01063, USA 3Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, 7 MBL Street, Woods Hole, Massachusetts 02543, USA 4Department of Ecology and Evolutionary Biology, Brown University, 80 Waterman Street, Providence, Rhode Island 02912, USA 5Biodiversity Informatics Group, Marine Biological Laboratory, 7 MBL Street, Woods Hole, Massachusetts 02543, USA 6Current address: Department of Epidemiology and Public Health, Yale University School of Medicine, New Haven, Connecticut 06520, USA †These authors contributed equally *Corresponding author: L.A.K - [email protected] Phone: 413-585-3825, Fax: 413-585-3786 Keywords: Microbial eukaryotes, supergroups, taxon sampling, Rhizaria, systematic error, Excavata 2 An accurate reconstruction of the eukaryotic tree of life is essential to identify the innovations underlying the diversity of microbial and macroscopic (e.g. plants and animals) eukaryotes. Previous work has divided eukaryotic diversity into a small number of high-level ‘supergroups’, many of which receive strong support in phylogenomic analyses. However, the abundance of data in phylogenomic analyses can lead to highly supported but incorrect relationships due to systematic phylogenetic error. Further, the paucity of major eukaryotic lineages (19 or fewer) included in these genomic studies may exaggerate systematic error and reduces power to evaluate hypotheses.
    [Show full text]
  • Phylogenetic Position of Karotomorpha and Paraphyly of Proteromonadidae
    Molecular Phylogenetics and Evolution 43 (2007) 1167–1170 www.elsevier.com/locate/ympev Short communication Phylogenetic position of Karotomorpha and paraphyly of Proteromonadidae Martin Kostka a,¤, Ivan Cepicka b, Vladimir Hampl a, Jaroslav Flegr a a Department of Parasitology, Faculty of Science, Charles University, Vinicna 7, 128 44 Prague, Czech Republic b Department of Zoology, Faculty of Science, Charles University, Vinicna 7, 128 44 Prague, Czech Republic Received 9 May 2006; revised 17 October 2006; accepted 2 November 2006 Available online 17 November 2006 1. Introduction tional region is alike that of proteromonadids as well, double transitional helix is present. These similarities led Patterson The taxon Slopalinida (Patterson, 1985) comprises two (1985) to unite the two families in the order Slopalinida and families of anaerobic protists living as commensals in the to postulate the paraphyly of the family Proteromonadidae intestine of vertebrates. The proteromonadids are small (Karotomorpha being closer to the opalinids). The ultrastruc- Xagellates (ca. 15 m) with one nucleus, a single large mito- ture of Xagellar transition region and proposed homology chondrion with tubular cristae, Golgi apparatus and a Wbril- between the somatonemes of Proteromonas and mastigo- lar rhizoplast connecting the basal bodies and nucleus nemes of heterokont Xagellates led him further to conclude (Brugerolle and Mignot, 1989). The number of Xagella diVers that the slopalinids are relatives of the heterokont algae, in between the two genera belonging to the family: Protero- other words that they belong among stramenopiles. Phyloge- monas, the commensal of urodelans, lizards, and rodents, has netic analysis of Silberman et al. (1996) not only conWrmed two Xagella, whereas Karotomorpha, the commensal of frogs that Proteromonas is a stramenopile, but also showed that its and other amphibians, has four Xagella.
    [Show full text]
  • Revealing the Metabolic Capacity of Streblomastix Strix and Its Bacterial Symbionts Using Single- Cell Metagenomics
    Revealing the metabolic capacity of Streblomastix strix and its bacterial symbionts using single- cell metagenomics Sebastian C. Treitlia, Martin Koliskob, Filip Husníkc, Patrick J. Keelingc, and Vladimír Hampla,1 aDepartment of Parasitology, Faculty of Science, Charles University, BIOCEV, 252 42 Vestec, Czech Republic; bInstitute of Parasitology, Biology Centre, Czech Academy of Sciences, 370 05 Cˇeské Budeˇ jovice, Czech Republic; and cDepartment of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada Edited by Nancy A. Moran, University of Texas at Austin, Austin, TX, and approved August 14, 2019 (received for review June 26, 2019) Lower termites harbor in their hindgut complex microbial commu- Besides partial ribosomal (r)RNA genes used for diversity studies, nities that are involved in the digestion of cellulose. Among these are there are almost no molecular or biochemical data available for protists, which are usually associated with specific bacterial symbi- any of these protists. Early studies showed that Trichomitopsis onts found on their surface or inside their cells. While these form the termopsidis and several Trichonympha species, from the hindgut of foundations of a classic system in symbiosis research, we still know Zootermopsis (13–16), have the capacity to degrade cellulose (17, little about the functional basis for most of these relationships. Here, 18), but for other flagellates, including all oxymonads, the in- we describe the complex functional relationship between one pro- volvement in cellulose digestion remains unclear. Recent results tist, the oxymonad Streblomastix strix, and its ectosymbiotic bacte- have shown that the bacterial symbionts of oxymonads have the rial community using single-cell genomics.
    [Show full text]
  • Phylogenomic Analyses Support the Monophyly of Excavata and Resolve Relationships Among Eukaryotic ‘‘Supergroups’’
    Phylogenomic analyses support the monophyly of Excavata and resolve relationships among eukaryotic ‘‘supergroups’’ Vladimir Hampla,b,c, Laura Huga, Jessica W. Leigha, Joel B. Dacksd,e, B. Franz Langf, Alastair G. B. Simpsonb, and Andrew J. Rogera,1 aDepartment of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, Canada B3H 1X5; bDepartment of Biology, Dalhousie University, Halifax, NS, Canada B3H 4J1; cDepartment of Parasitology, Faculty of Science, Charles University, 128 44 Prague, Czech Republic; dDepartment of Pathology, University of Cambridge, Cambridge CB2 1QP, United Kingdom; eDepartment of Cell Biology, University of Alberta, Edmonton, AB, Canada T6G 2H7; and fDepartement de Biochimie, Universite´de Montre´al, Montre´al, QC, Canada H3T 1J4 Edited by Jeffrey D. Palmer, Indiana University, Bloomington, IN, and approved January 22, 2009 (received for review August 12, 2008) Nearly all of eukaryotic diversity has been classified into 6 strong support for an incorrect phylogeny (16, 19, 24). Some recent suprakingdom-level groups (supergroups) based on molecular and analyses employ objective data filtering approaches that isolate and morphological/cell-biological evidence; these are Opisthokonta, remove the sites or taxa that contribute most to these systematic Amoebozoa, Archaeplastida, Rhizaria, Chromalveolata, and Exca- errors (19, 24). vata. However, molecular phylogeny has not provided clear evi- The prevailing model of eukaryotic phylogeny posits 6 major dence that either Chromalveolata or Excavata is monophyletic, nor supergroups (25–28): Opisthokonta, Amoebozoa, Archaeplastida, has it resolved the relationships among the supergroups. To Rhizaria, Chromalveolata, and Excavata. With some caveats, solid establish the affinities of Excavata, which contains parasites of molecular phylogenetic evidence supports the monophyly of each of global importance and organisms regarded previously as primitive Rhizaria, Archaeplastida, Opisthokonta, and Amoebozoa (16, 18, eukaryotes, we conducted a phylogenomic analysis of a dataset of 29–34).
    [Show full text]
  • Systema Naturae. the Classification of Living Organisms
    Systema Naturae. The classification of living organisms. c Alexey B. Shipunov v. 5.601 (June 26, 2007) Preface Most of researches agree that kingdom-level classification of living things needs the special rules and principles. Two approaches are possible: (a) tree- based, Hennigian approach will look for main dichotomies inside so-called “Tree of Life”; and (b) space-based, Linnaean approach will look for the key differences inside “Natural System” multidimensional “cloud”. Despite of clear advantages of tree-like approach (easy to develop rules and algorithms; trees are self-explaining), in many cases the space-based approach is still prefer- able, because it let us to summarize any kinds of taxonomically related da- ta and to compare different classifications quite easily. This approach also lead us to four-kingdom classification, but with different groups: Monera, Protista, Vegetabilia and Animalia, which represent different steps of in- creased complexity of living things, from simple prokaryotic cell to compound Nature Precedings : doi:10.1038/npre.2007.241.2 Posted 16 Aug 2007 eukaryotic cell and further to tissue/organ cell systems. The classification Only recent taxa. Viruses are not included. Abbreviations: incertae sedis (i.s.); pro parte (p.p.); sensu lato (s.l.); sedis mutabilis (sed.m.); sedis possi- bilis (sed.poss.); sensu stricto (s.str.); status mutabilis (stat.m.); quotes for “environmental” groups; asterisk for paraphyletic* taxa. 1 Regnum Monera Superphylum Archebacteria Phylum 1. Archebacteria Classis 1(1). Euryarcheota 1 2(2). Nanoarchaeota 3(3). Crenarchaeota 2 Superphylum Bacteria 3 Phylum 2. Firmicutes 4 Classis 1(4). Thermotogae sed.m. 2(5).
    [Show full text]
  • Kingdom Chromista)
    J Mol Evol (2006) 62:388–420 DOI: 10.1007/s00239-004-0353-8 Phylogeny and Megasystematics of Phagotrophic Heterokonts (Kingdom Chromista) Thomas Cavalier-Smith, Ema E-Y. Chao Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK Received: 11 December 2004 / Accepted: 21 September 2005 [Reviewing Editor: Patrick J. Keeling] Abstract. Heterokonts are evolutionarily important gyristea cl. nov. of Ochrophyta as once thought. The as the most nutritionally diverse eukaryote supergroup zooflagellate class Bicoecea (perhaps the ancestral and the most species-rich branch of the eukaryotic phenotype of Bigyra) is unexpectedly diverse and a kingdom Chromista. Ancestrally photosynthetic/ major focus of our study. We describe four new bicil- phagotrophic algae (mixotrophs), they include several iate bicoecean genera and five new species: Nerada ecologically important purely heterotrophic lineages, mexicana, Labromonas fenchelii (=Pseudobodo all grossly understudied phylogenetically and of tremulans sensu Fenchel), Boroka karpovii (=P. uncertain relationships. We sequenced 18S rRNA tremulans sensu Karpov), Anoeca atlantica and Cafe- genes from 14 phagotrophic non-photosynthetic het- teria mylnikovii; several cultures were previously mis- erokonts and a probable Ochromonas, performed ph- identified as Pseudobodo tremulans. Nerada and the ylogenetic analysis of 210–430 Heterokonta, and uniciliate Paramonas are related to Siluania and revised higher classification of Heterokonta and its Adriamonas; this clade (Pseudodendromonadales three phyla: the predominantly photosynthetic Och- emend.) is probably sister to Bicosoeca. Genetically rophyta; the non-photosynthetic Pseudofungi; and diverse Caecitellus is probably related to Anoeca, Bigyra (now comprising subphyla Opalozoa, Bicoecia, Symbiomonas and Cafeteria (collectively Anoecales Sagenista). The deepest heterokont divergence is emend.). Boroka is sister to Pseudodendromonadales/ apparently between Bigyra, as revised here, and Och- Bicoecales/Anoecales.
    [Show full text]
  • A Revised Six-Kingdom System of Life
    Hi ul. R iv. ' 1998,', 73, p p . 203-266 printed in the United Kingdom © Cambridge Philosophical Society 203 A revised six-kingdom system of life T. CAVALIER-SMITH Evolutionary Biology Programme, Canadian Institute for Advanced Research , Department o f Botany , University o f British Columbia, Vancouver, BC, Canada V6T If4 (.Received 27 M arch 1 9 9 6 ; revised 15 December 1 9 9 7 ; accepted 18 December 1997) ABSTRACT A revised six-kingdom system of life is presented, down to the level of infraphylum. As in my 1983 system Bacteria are treated as a single kingdom, and eukaryotes are divided into only five kingdoms: Protozoa, Animalia, Fungi, Plantae and Chromista. Interm ediate high level categories (superkingdom, subkingdom, branch, infrakingdom, supcrphylum, subphylum and infraphylum) arc extensively used lo avoid splitting organisms into an excessive num ber of kingdoms and phyla (60 only being recognized). The two ‘zoological ’ kingdoms. Protozoa and Animalia, are subject to the International Code of Zoological Nomenclature, the kingdom Bacteria to the International Code of Bacteriological Nomenclature, and the three ‘botanical’ kingdoms (Plantae, Fungi, Chromista) lo the International Code of Botanical Nomenclature, Circumscrip­ tions of the kingdoms Bacteria and Plantae remain unchanged since Cavalicr-Smith (1981). The kingdom Fungi is expanded by adding M icrosporidia, because of protein sequence evidence that these amitochondrial intracellular parasites are related to conventional Fungi, not Protozoa. Fungi arc subdivided into four phyla and 20 classes; fungal classification at the rank of subclass and above is comprehensively revised. The kingdoms Protozoa and Animalia are modified in the light of molecular phylogenetic evidence that Myxozoa arc actually Animalia, not Protozoa, and that mesozoans arc related lo bilaterian animals.
    [Show full text]
  • Swimming Eukaryotic Microorganisms Exhibit a Universal Speed Distribution Maciej Lisicki1,2†*, Marcos F Velho Rodrigues1†, Raymond E Goldstein1, Eric Lauga1*
    SHORT REPORT Swimming eukaryotic microorganisms exhibit a universal speed distribution Maciej Lisicki1,2†*, Marcos F Velho Rodrigues1†, Raymond E Goldstein1, Eric Lauga1* 1Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, United Kingdom; 2Institute of Theoretical Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland Abstract One approach to quantifying biological diversity consists of characterizing the statistical distribution of specific properties of a taxonomic group or habitat. Microorganisms living in fluid environments, and for whom motility is key, exploit propulsion resulting from a rich variety of shapes, forms, and swimming strategies. Here, we explore the variability of swimming speed for unicellular eukaryotes based on published data. The data naturally partitions into that from flagellates (with a small number of flagella) and from ciliates (with tens or more). Despite the morphological and size differences between these groups, each of the two probability distributions of swimming speed are accurately represented by log-normal distributions, with good agreement holding even to fourth moments. Scaling of the distributions by a characteristic speed for each data set leads to a collapse onto an apparently universal distribution. These results suggest a universal way for ecological niches to be populated by abundant microorganisms. DOI: https://doi.org/10.7554/eLife.44907.001 *For correspondence: Introduction [email protected] (ML); Unicellular eukaryotes comprise
    [Show full text]