Ecological Impact Study

Total Page:16

File Type:pdf, Size:1020Kb

Ecological Impact Study South Walker Creek Mulgrave Resource Access: Stage 2C (MRA2C) EPBC 2017-7957 Appendix E: Ecological Impact Study Mulgrave Stage 2C Ecological Impact Study Assessment of Matters of National Environmental Significance Prepared for BHP 19 July 2018 Mulgrave Stage 2C Impact Assessment DOCUMENT TRACKING Item Detail Project Name Mulgrave Stage 2C Ecological Impact Study / MRA2C Preliminary Documentation Project Number 2251 / 8852 Liz Fisher Project Manager (07) 3503 7194 471 Adelaide St, Brisbane QLD 4000 Prepared by Loren Appleby, Renee Whitchurch, Jessie McCudden & Liz Fisher Reviewed by Ailsa Kerswell & Tom Kaveney Approved by Ailsa Kerswell Status FINAL Last saved on 19 July 2018 Cover photo Carborough Creek, ELA 2016 This report should be cited as ‘Eco Logical Australia 2018. Mulgrave Stage 2C Ecological Impact Study. Prepared for BHP.’ Disclaimer This document may only be used for the purpose for which it was commissioned and in accordance with the contract between Eco Logical Australia Pty Ltd and BHP. The scope of services was defined in consultation with BHP, by time and budgetary constraints imposed by the client, and the availability of reports and other data on the subject area. Changes to available information, legislation and schedules are made on an ongoing basis and readers should obtain up to date information. Eco Logical Australia Pty Ltd accepts no liability or responsibility whatsoever for or in respect of any use of or reliance upon this report and its supporting material by any third party. Information provided is not intended to be a substitute for site specific assessment or legal advice in relation to any matter. Unauthorised use of this report in any form is prohibited. Template 29/9/2015 © ECO LOGICAL AUSTRALIA PTY LTD ii Mulgrave Stage 2C Impact Assessment Contents Executive summary ............................................................................................................................... vii 1 Introduction ................................................................................................................................. 1 1.1 Project Background ...................................................................................................................... 1 1.1.1 EPBC Act process to date ............................................................................................................ 1 1.2 Objectives and Scope of Works ................................................................................................... 1 1.3 Study Area .................................................................................................................................... 2 1.3.1 Project Disturbance Footprint ....................................................................................................... 2 2 Method ......................................................................................................................................... 5 2.1 Desktop Assessment .................................................................................................................... 5 2.1.1 Databases ..................................................................................................................................... 5 2.1.2 Previous Studies ........................................................................................................................... 5 2.1.3 Literature Review .......................................................................................................................... 7 2.2 Field Survey .................................................................................................................................. 7 2.2.1 Flora Assessment ......................................................................................................................... 8 2.2.2 Targeted Habitat Assessments .................................................................................................... 9 2.2.3 Targeted fauna survey .................................................................................................................. 9 2.3 Data Analysis .............................................................................................................................. 10 2.3.1 GIS Analysis ............................................................................................................................... 10 2.3.2 BioCondition Scoring .................................................................................................................. 11 3 Desktop Assessment Results ................................................................................................. 14 3.1 Previous Ecological Assessments .............................................................................................. 14 3.2 Database Results ....................................................................................................................... 14 4 Field Results ............................................................................................................................. 15 4.1 Vegetation Communities ............................................................................................................ 15 4.2 Threatened Ecological Communities .......................................................................................... 17 4.3 Threatened Flora Species Presence .......................................................................................... 17 4.4 Habitat Values ............................................................................................................................ 21 4.5 Threatened Fauna Species Presence ........................................................................................ 24 4.6 Groundwater Dependent Ecosystems ........................................................................................ 41 5 Matter of National Environmental Significance ..................................................................... 44 5.1 Threatened Ecological Communities .......................................................................................... 46 5.1.1 Brigalow (dominant or co-dominant) .......................................................................................... 46 5.2 Black Ironbox .............................................................................................................................. 46 5.3 Threatened fauna species .......................................................................................................... 49 © ECO LOGICAL AUSTRALIA PTY LTD iii Mulgrave Stage 2C Impact Assessment 5.3.1 Ornamental Snake (Denisonia maculata) .................................................................................. 49 5.3.2 Koala (Phascolarctos cinereus) .................................................................................................. 50 5.3.3 Squatter Pigeon (Geophaps scripta scripta) .............................................................................. 52 5.3.4 Greater Glider (Petauroides volans) ........................................................................................... 54 6 Impact Assessment .................................................................................................................. 56 6.1 Threatened Ecological Communities .......................................................................................... 56 6.1.1 Brigalow (dominant or co-dominant) .......................................................................................... 56 6.2 Black Ironbox .............................................................................................................................. 59 6.3 Threatened Fauna Species ........................................................................................................ 61 6.3.1 Ornamental Snake (Denisonia maculata) .................................................................................. 61 6.3.2 Koala (Phascolarctos cinereus) .................................................................................................. 62 6.3.3 Squatter Pigeon (Geophaps scripta scripta) .............................................................................. 65 6.3.1 Greater Glider (Petauroides volans) ........................................................................................... 67 7 Mitigation and Management .................................................................................................... 70 7.1 Avoidance and minimisation ....................................................................................................... 70 7.2 Mitigation and management ....................................................................................................... 70 8 Offsets Strategy ........................................................................................................................ 73 References ............................................................................................................................................. 74 Targeted Habitat Assessment Data ................................................................................ 77 Desktop Results ............................................................................................................... 86 BioCondition Assessment Data ...................................................................................... 87 TEC Assessments Results .............................................................................................
Recommended publications
  • Cape York Peninsula Regional Biosecurity Plan 2016 - 2021
    Cape York Peninsula Regional Biosecurity Plan 2016 - 2021 Cape York Peninsula Regional Biosecurity Plan 2016 – 2021 Page 1 Cape York Peninsula Regional Biosecurity Plan 2016 - 2021 ACKNOWLEDGMENTS This document was developed and produced by Cape York Natural Resource Management Ltd (Cape York NRM). Cape York NRM would like to acknowledge the following organisations and their officers for their contribution and support in developing the Cape York Peninsula Regional Biosecurity Plan: Cook Shire Council Northern Peninsula Area Regional Council Aurukun, Hopevale, Kowanyama Lockhart, Mapoon, Napranum, Pormpuraaw and Wujal Wujal Aboriginal Shire Councils Weipa Town Authority Rio Tinto (Alcan) Biosecurity Queensland Department of Environment and Heritage Protection Department of Natural resources and Mines Department of Agriculture and Water Resources Far North Queensland Regional Organisation of Councils Individual Cape York Peninsula Registered Native Title Body Corporates and Land Trusts Cape York Weeds and Feral Animals Incorporated Copyright 2016 Published by Cape York Natural Resource Management (Cape York NRM) Ltd. The Copyright Act 1968 permits fair dealing for study research, news reporting, criticism or review. Selected passages, tables or diagrams may be reproduced for such purposes provided acknowledgment of the source is included. Major extracts of the entire document may not be reproduced by any process without the written permission of the Chief Executive Officer, Cape York Natural Resource Management (Cape York NRM) Ltd. Please reference as: Cape York Natural Resource Management 2016, Cape York Peninsula Regional Biosecurity Plan 2016 -2021, Report prepared by the Cape York Natural Resource Management (Cape York NRM) Disclaimer: This Plan has been compiled in good faith as a basis for community and stakeholder consultation and is in draft form.
    [Show full text]
  • Developing Additional Herbicide Control Options for Rubber Vine (Cryptostegia Grandiflora R.Br.)
    Twentieth Australasian Weeds Conference Developing additional herbicide control options for rubber vine (Cryptostegia grandiflora R.Br.) Shane D. Campbell and Dannielle A. Brazier Department of Agriculture and Fisheries, Tropical Weeds Research Centre, PO Box 187, Charters Towers, Queensland 4820, Australia ([email protected]) Summary Herbicide control of rubber vine (Cryp- along with its classification as a Weed of National tostegia grandiflora R.Br.), a Weed of National Sig- Significance (Doak and Deveze 2004). A large body of nificance in Australia, can be effectively achieved in research has been undertaken into the impacts, ecology most situations using a range of chemicals and various and control of this weed over the last 30 years (Tom- techniques, including basal bark, cut stump, foliar and ley 1995, Grice 1996, Palmer and Vogler 2012). This aerial applications. Nevertheless control in areas with has resulted in the identification of effective control poor access and with native vegetation still poses dif- options for different densities and situations, includ- ficulties for some land managers, particularly doing ing the individual and integrated use of biocontrol, so in a cost effective manner. chemical, and mechanical techniques and the use of The successful incorporation of low-volume fire (Doak and Deveze 2004, Palmer and Vogler 2012). high-concentration herbicide applications into control In recent years low-volume high-concentration programs for several woody weeds in recent years herbicide applications (e.g. splatter guns) have become prompted further testing of this technique for control increasingly used in Queensland as an effective option of rubber vine. The efficacy of single rates of four for controlling some other woody weeds in difficult herbicides plus a combination of two herbicides was to access areas, such as lantana (Lantana camara L.), compared against an untreated control.
    [Show full text]
  • Grass Genera in Townsville
    Grass Genera in Townsville Nanette B. Hooker Photographs by Chris Gardiner SCHOOL OF MARINE and TROPICAL BIOLOGY JAMES COOK UNIVERSITY TOWNSVILLE QUEENSLAND James Cook University 2012 GRASSES OF THE TOWNSVILLE AREA Welcome to the grasses of the Townsville area. The genera covered in this treatment are those found in the lowland areas around Townsville as far north as Bluewater, south to Alligator Creek and west to the base of Hervey’s Range. Most of these genera will also be found in neighbouring areas although some genera not included may occur in specific habitats. The aim of this book is to provide a description of the grass genera as well as a list of species. The grasses belong to a very widespread and large family called the Poaceae. The original family name Gramineae is used in some publications, in Australia the preferred family name is Poaceae. It is one of the largest flowering plant families of the world, comprising more than 700 genera, and more than 10,000 species. In Australia there are over 1300 species including non-native grasses. In the Townsville area there are more than 220 grass species. The grasses have highly modified flowers arranged in a variety of ways. Because they are highly modified and specialized, there are also many new terms used to describe the various features. Hence there is a lot of terminology that chiefly applies to grasses, but some terms are used also in the sedge family. The basic unit of the grass inflorescence (The flowering part) is the spikelet. The spikelet consists of 1-2 basal glumes (bracts at the base) that subtend 1-many florets or flowers.
    [Show full text]
  • Land Unit Master
    Land Unit Information Sheet Land system name: Ludgate Land unit: LE3 General description This land unit represents the numerous shallow closed depressions, which occur throughout the Ludgate land system and range in size from hundreds of hectares to very small, so small that they cannot be delineated at a map scale of 1:100 000. Grey Vertosols (uniform, cracking clay soils) are predominant, however the area and depth of clay seem to have a major influence on the density and composition of the native vegetation. Acacia cambagei (gidgee), A. farnesiana (mimosa bush), Eucalyptus coolabah (coolabah), Eremophila bignoniiflora (eurah) together with Astrebla species (Mitchell grass) and Brachyachne convergens (native couch) are common on the deep, self-mulching clay soils, whereas the smaller areas with shallow clays, and slightly saline areas tend to have only coolabah, mimosa bush and a ground cover of annual plant species. Invariably, Eucalyptus brownii (Reid River box) and E. whitei (White's ironbark) fringe the depressions. Regional ecosystem 10.3.15 is predominant. Site characteristics Landform element Average slope Plain 0% Site drainage Soil permeability Poorly drained Slowly permeable Flooding risk Inundation risk Low Very high Potential recharge to groundwater Soil depth Low Variable; >1,5m Present land use Grazing, wetlands Susceptibility to land degradation processes Sheet erosion Gully erosion Wind erosion Salting Very low Very low Low High This information has been generated from the Desert Uplands Land Resource Database. The Environmental Protection Agency accepts no liability for any decisions or actions taken on the basis of this information. State of Queensland. Environmental Protection Agency 2004.
    [Show full text]
  • The Vegetation of the Western Blue Mountains Including the Capertee, Coxs, Jenolan & Gurnang Areas
    Department of Environment and Conservation (NSW) The Vegetation of the Western Blue Mountains including the Capertee, Coxs, Jenolan & Gurnang Areas Volume 1: Technical Report Hawkesbury-Nepean CMA CATCHMENT MANAGEMENT AUTHORITY The Vegetation of the Western Blue Mountains (including the Capertee, Cox’s, Jenolan and Gurnang Areas) Volume 1: Technical Report (Final V1.1) Project funded by the Hawkesbury – Nepean Catchment Management Authority Information and Assessment Section Metropolitan Branch Environmental Protection and Regulation Division Department of Environment and Conservation July 2006 ACKNOWLEDGMENTS This project has been completed by the Special thanks to: Information and Assessment Section, Metropolitan Branch. The numerous land owners including State Forests of NSW who allowed access to their Section Head, Information and Assessment properties. Julie Ravallion The Department of Natural Resources, Forests NSW and Hawkesbury – Nepean CMA for Coordinator, Bioregional Data Group comments on early drafts. Daniel Connolly This report should be referenced as follows: Vegetation Project Officer DEC (2006) The Vegetation of the Western Blue Mountains. Unpublished report funded by Greg Steenbeeke the Hawkesbury – Nepean Catchment Management Authority. Department of GIS, Data Management and Database Environment and Conservation, Hurstville. Coordination Peter Ewin Photos Kylie Madden Vegetation community profile photographs by Greg Steenbeeke Greg Steenbeeke unless otherwise noted. Feature cover photo by Greg Steenbeeke. All Logistics
    [Show full text]
  • Southern Gulf, Queensland
    Biodiversity Summary for NRM Regions Species List What is the summary for and where does it come from? This list has been produced by the Department of Sustainability, Environment, Water, Population and Communities (SEWPC) for the Natural Resource Management Spatial Information System. The list was produced using the AustralianAustralian Natural Natural Heritage Heritage Assessment Assessment Tool Tool (ANHAT), which analyses data from a range of plant and animal surveys and collections from across Australia to automatically generate a report for each NRM region. Data sources (Appendix 2) include national and state herbaria, museums, state governments, CSIRO, Birds Australia and a range of surveys conducted by or for DEWHA. For each family of plant and animal covered by ANHAT (Appendix 1), this document gives the number of species in the country and how many of them are found in the region. It also identifies species listed as Vulnerable, Critically Endangered, Endangered or Conservation Dependent under the EPBC Act. A biodiversity summary for this region is also available. For more information please see: www.environment.gov.au/heritage/anhat/index.html Limitations • ANHAT currently contains information on the distribution of over 30,000 Australian taxa. This includes all mammals, birds, reptiles, frogs and fish, 137 families of vascular plants (over 15,000 species) and a range of invertebrate groups. Groups notnot yet yet covered covered in inANHAT ANHAT are notnot included included in in the the list. list. • The data used come from authoritative sources, but they are not perfect. All species names have been confirmed as valid species names, but it is not possible to confirm all species locations.
    [Show full text]
  • BIODIVERSITY CONSERVATION on the TIWI ISLANDS, NORTHERN TERRITORY: Part 1. Environments and Plants
    BIODIVERSITY CONSERVATION ON THE TIWI ISLANDS, NORTHERN TERRITORY: Part 1. Environments and plants Report prepared by John Woinarski, Kym Brennan, Ian Cowie, Raelee Kerrigan and Craig Hempel. Darwin, August 2003 Cover photo: Tall forests dominated by Darwin stringybark Eucalyptus tetrodonta, Darwin woollybutt E. miniata and Melville Island Bloodwood Corymbia nesophila are the principal landscape element across the Tiwi islands (photo: Craig Hempel). i SUMMARY The Tiwi Islands comprise two of Australia’s largest offshore islands - Bathurst (with an area of 1693 km 2) and Melville (5788 km 2) Islands. These are Aboriginal lands lying about 20 km to the north of Darwin, Northern Territory. The islands are of generally low relief with relatively simple geological patterning. They have the highest rainfall in the Northern Territory (to about 2000 mm annual average rainfall in the far north-west of Melville and north of Bathurst). The human population of about 2000 people lives mainly in the three towns of Nguiu, Milakapati and Pirlangimpi. Tall forests dominated by Eucalyptus miniata, E. tetrodonta, and Corymbia nesophila cover about 75% of the island area. These include the best developed eucalypt forests in the Northern Territory. The Tiwi Islands also include nearly 1300 rainforest patches, with floristic composition in many of these patches distinct from that of the Northern Territory mainland. Although the total extent of rainforest on the Tiwi Islands is small (around 160 km 2 ), at an NT level this makes up an unusually high proportion of the landscape and comprises between 6 and 15% of the total NT rainforest extent. The Tiwi Islands also include nearly 200 km 2 of “treeless plains”, a vegetation type largely restricted to these islands.
    [Show full text]
  • Palatability of Plants to Camels (DBIRD NT)
    Technote No. 116 June 2003 Agdex No: 468/62 ISSN No: 0158-2755 The Palatability of Central Australian Plant Species to Camels Dr B. Dorges, Dr J. Heucke, Central Australian Camel Industry Association and R. Dance, Pastoral Division, Alice Springs BACKGROUND About 600,000 camels (Camelus dromedarius) are believed to inhabit the arid centre of Australia, mainly in South Australia, Western Australia and the Northern Territory. Most of these camels are feral. A small camel industry has developed, which harvests selected animals for domestic and export markets, primarily for meat. Camels can eat more than 80% of the common plant species found in Central Australia. Some plant species are actively sought by camels and may need to be protected. METHOD Observations of grazing preferences by camels were made periodically for up to 12 years on five cattle stations in Central Australia. Where camels were accustomed to the presence of humans, it was possible to observe their grazing preferences from a few metres. Radio transmitters were fitted on some camels for easy detection and observation at any time. These evaluations were used to establish a diet preference or palatability index for observed food plants. Table 1. Palatability index for camels Index Interpretation 1 only eaten when nothing else is available 2 rarely eaten 3 common food plant 4 main food plant at times 5 preferred food plant 6 highly preferred food plant 7 could be killed by camel browsing More information can be obtained from the web site of the Central Australian Camel Industry Association http://www.camelsaust.com.au 2 RESULTS Table 2.
    [Show full text]
  • Impacts of Land Clearing
    Impacts of Land Clearing on Australian Wildlife in Queensland January 2003 WWF Australia Report Authors: Dr Hal Cogger, Professor Hugh Ford, Dr Christopher Johnson, James Holman & Don Butler. Impacts of Land Clearing on Australian Wildlife in Queensland ABOUT THE AUTHORS Dr Hal Cogger Australasian region” by the Royal Australasian Ornithologists Union. He is a WWF Australia Trustee Dr Hal Cogger is a leading Australian herpetologist and former member of WWF’s Scientific Advisory and author of the definitive Reptiles and Amphibians Panel. of Australia. He is a former Deputy Director of the Australian Museum. He has participated on a range of policy and scientific committees, including the Dr Christopher Johnson Commonwealth Biological Diversity Advisory Committee, Chair of the Australian Biological Dr Chris Johnson is an authority on the ecology and Resources Study, and Chair of the Australasian conservation of Australian marsupials. He has done Reptile & Amphibian Specialist Group (IUCN’s extensive research on herbivorous marsupials of Species Survival Commission). He also held a forests and woodlands, including landmark studies of Conjoint Professorship in the Faculty of Science & the behavioural ecology of kangaroos and wombats, Mathematics at the University of Newcastle (1997- the ecology of rat-kangaroos, and the sociobiology of 2001). He is a member of the International possums. He has also worked on large-scale patterns Commission on Zoological Nomenclature and is a in the distribution and abundance of marsupial past Secretary of the Division of Zoology of the species and the biology of extinction. He is a member International Union of Biological Sciences. He is of the Marsupial and Monotreme Specialist Group of currently the John Evans Memorial Fellow at the the IUCN Species Survival Commission, and has Australian Museum.
    [Show full text]
  • Delayed Colonisation of Acacia by Thrips and the Timing of Host
    McLeish et al. BMC Evolutionary Biology 2013, 13:188 http://www.biomedcentral.com/1471-2148/13/188 RESEARCH ARTICLE Open Access Delayed colonisation of Acacia by thrips and the timing of host-conservatism and behavioural specialisation Michael J McLeish1*, Joseph T Miller2 and Laurence A Mound3 Abstract Background: Repeated colonisation of novel host-plants is believed to be an essential component of the evolutionary success of phytophagous insects. The relative timing between the origin of an insect lineage and the plant clade they eat or reproduce on is important for understanding how host-range expansion can lead to resource specialisation and speciation. Path and stepping-stone sampling are used in a Bayesian approach to test divergence timing between the origin of Acacia and colonisation by thrips. The evolution of host-plant conservatism and ecological specialisation is discussed. Results: Results indicated very strong support for a model describing the origin of the common ancestor of Acacia thrips subsequent to that of Acacia. A current estimate puts the origin of Acacia at approximately 6 million years before the common ancestor of Acacia thrips, and 15 million years before the origin of a gall-inducing clade. The evolution of host conservatism and resource specialisation resulted in a phylogenetically under-dispersed pattern of host-use by several thrips lineages. Conclusions: Thrips colonised a diversity of Acacia species over a protracted period as Australia experienced aridification. Host conservatism evolved on phenotypically and environmentally suitable host lineages. Ecological specialisation resulted from habitat selection and selection on thrips behavior that promoted primary and secondary host associations. These findings suggest that delayed and repeated colonisation is characterised by cycles of oligo- or poly-phagy.
    [Show full text]
  • Post-Fire Recovery of Woody Plants in the New England Tableland Bioregion
    Post-fire recovery of woody plants in the New England Tableland Bioregion Peter J. ClarkeA, Kirsten J. E. Knox, Monica L. Campbell and Lachlan M. Copeland Botany, School of Environmental and Rural Sciences, University of New England, Armidale, NSW 2351, AUSTRALIA. ACorresponding author; email: [email protected] Abstract: The resprouting response of plant species to fire is a key life history trait that has profound effects on post-fire population dynamics and community composition. This study documents the post-fire response (resprouting and maturation times) of woody species in six contrasting formations in the New England Tableland Bioregion of eastern Australia. Rainforest had the highest proportion of resprouting woody taxa and rocky outcrops had the lowest. Surprisingly, no significant difference in the median maturation length was found among habitats, but the communities varied in the range of maturation times. Within these communities, seedlings of species killed by fire, mature faster than seedlings of species that resprout. The slowest maturing species were those that have canopy held seed banks and were killed by fire, and these were used as indicator species to examine fire immaturity risk. Finally, we examine whether current fire management immaturity thresholds appear to be appropriate for these communities and find they need to be amended. Cunninghamia (2009) 11(2): 221–239 Introduction Maturation times of new recruits for those plants killed by fire is also a critical biological variable in the context of fire Fire is a pervasive ecological factor that influences the regimes because this time sets the lower limit for fire intervals evolution, distribution and abundance of woody plants that can cause local population decline or extirpation (Keith (Whelan 1995; Bond & van Wilgen 1996; Bradstock et al.
    [Show full text]
  • Global Climate Change Impacts on Pacific Islands Terrestrial Biodiversity: a Review
    Mongabay.com Open Access Journal - Tropical Conservation Science Vol. 9 (1): 203-223, 2016 Review paper Global Climate Change Impacts on Pacific Islands Terrestrial Biodiversity: a review S. Taylor1 and L. Kumar1 1Ecosystem Management, School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia. Phone: (+61) 2 67733363; Fax: (+61) 2 67732769. Corresponding Author: Subhashni Taylor (e-mail: [email protected]) Abstract The islands of the Pacific region hold three of the 35 global biodiversity hotspots with large numbers of endemic species. Global climate change will exacerbate the challenges faced by the biodiversity of this region. In this review, we identify trends in characteristics for 305 terrestrial species threatened by climate change and severe weather according to the International Union for Conservation of Nature and Natural Resources (IUCN). We then review the literature on observed and potential impacts of climate change on terrestrial biodiversity, focusing on the species’ characteristics that were identified. High-elevation ecosystems such as cloud montane forests are projected to disappear entirely by the year 2100, with corresponding global losses of their endemic biodiversity. Sea level rise threatens restricted range species on small low-lying atolls. Shifts in distribution may be possible for generalist species, but range shifts will be difficult for species with small distributions, specialized habitat requirements, slow dispersal rates, and species at high elevations. Accurate assessments of climate change impacts on biodiversity of the region are difficult because of confusion about nomenclature, the many species unknown to science, the lack of baseline data on species’ ecology and distributions, and lack of fine resolution elevation data for very small islands.
    [Show full text]