Groundwater Salinity and the Effects of Produced Water Disposal in The
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Download Full Article in PDF Format
A new marine vertebrate assemblage from the Late Neogene Purisima Formation in Central California, part II: Pinnipeds and Cetaceans Robert W. BOESSENECKER Department of Geology, University of Otago, 360 Leith Walk, P.O. Box 56, Dunedin, 9054 (New Zealand) and Department of Earth Sciences, Montana State University 200 Traphagen Hall, Bozeman, MT, 59715 (USA) and University of California Museum of Paleontology 1101 Valley Life Sciences Building, Berkeley, CA, 94720 (USA) [email protected] Boessenecker R. W. 2013. — A new marine vertebrate assemblage from the Late Neogene Purisima Formation in Central California, part II: Pinnipeds and Cetaceans. Geodiversitas 35 (4): 815-940. http://dx.doi.org/g2013n4a5 ABSTRACT e newly discovered Upper Miocene to Upper Pliocene San Gregorio assem- blage of the Purisima Formation in Central California has yielded a diverse collection of 34 marine vertebrate taxa, including eight sharks, two bony fish, three marine birds (described in a previous study), and 21 marine mammals. Pinnipeds include the walrus Dusignathus sp., cf. D. seftoni, the fur seal Cal- lorhinus sp., cf. C. gilmorei, and indeterminate otariid bones. Baleen whales include dwarf mysticetes (Herpetocetus bramblei Whitmore & Barnes, 2008, Herpetocetus sp.), two right whales (cf. Eubalaena sp. 1, cf. Eubalaena sp. 2), at least three balaenopterids (“Balaenoptera” cortesi “var.” portisi Sacco, 1890, cf. Balaenoptera, Balaenopteridae gen. et sp. indet.) and a new species of rorqual (Balaenoptera bertae n. sp.) that exhibits a number of derived features that place it within the genus Balaenoptera. is new species of Balaenoptera is relatively small (estimated 61 cm bizygomatic width) and exhibits a comparatively nar- row vertex, an obliquely (but precipitously) sloping frontal adjacent to vertex, anteriorly directed and short zygomatic processes, and squamosal creases. -
Source-Rock Geochemistry of the San Joaquin Basin Province, California
Petroleum Systems and Geologic Assessment of Oil and Gas in the San Joaquin Basin Province, California Chapter 11 Source-Rock Geochemistry of the San Joaquin Basin Province, California By Kenneth E. Peters, Leslie B. Magoon, Zenon C. Valin, and Paul G. Lillis HIO for all source-rock units except the Tumey formation of Contents Atwill (1935). Abstract-----------------------------------------------------------------------------------1 Thick, organic-rich, oil-prone shales of the upper Mio- Introduction------------------------------------------------------------------------------ 1 cene Monterey Formation occur in the Tejon depocenter in Methods----------------------------------------------------------------------------------2 the southern part of the basin with somewhat less favorable Discussion--------------------------------------------------------------------------------3 occurrence in the Southern Buttonwillow depocenter to the Upper Miocene Antelope shale---------------------------------------------------3 north. Shales of the upper Miocene Monterey Formation Eocene Tumey formation-----------------------------------------------------------4 Eocene Kreyenhagen Formation--------------------------------------------------4 generated most of the petroleum in the San Joaquin Basin. Cretaceous-Paleocene Moreno Formation--------------------------------------5 Thick, organic-rich, oil-prone Kreyenhagen Formation source Conclusions----------------------------------------------------------------------------- -5 rock occurs in the Buttonwillow -
Appendices D Through I
Appendix D Operation & Maintenance Appendix D. Operation and Maintenance Plan Operation and Maintenance Plan This document presents the operation and maintenance (O&M) plan for Western Area Power Administration’s (Western) Sierra Nevada Region (SNR) transmission line systems. 1.0 Inspection/System Management In compliance with Western’s Reliability Centered Maintenance Program, Western would conduct aerial, ground, and climbing inspections of its existing transmission infrastructure since initial construction. The following paragraphs describe Western’s inspection requirements. Aerial Inspections Aerial inspections would be conducted a minimum of every 6 months by helicopter or small plane over the entire transmission system to check for hazard trees1 or encroaching vegetation, as well as to locate damaged or malfunctioning transmission equipment. Typically, aerial patrols would be flown between 50 and 300 feet above Western’s transmission infrastructure depending on the land use, topography, and infrastructure requirements. In general, the aerial inspections would pass over each segment of the transmission line within a one-minute period. Ground Inspections Annual ground inspections would check access to the towers/poles, tree clearances, fences, gates, locks, and tower hardware, and ensure that each structure would be readily accessible in the event of an emergency. They would allow for the inspection of hardware that would not be possible by air, and identify redundant or overgrown access roads that should be permanently closed and returned to their natural state. Ground inspections would typically be conducted by driving a pickup truck along the ROW and access roads. Detailed ground inspections would be performed on 20 percent of all lines and structures annually, for 100 percent inspection every 5 years. -
The US Well Number Standard: an Identifier for Petroleum Industry
The US Well Number Standard An Identifier for Petroleum Industry Wells in the USA “The PPDM Association is a not-for-profit data management professional society that collaborates with industry to develop Professional Data Management standards for the Petroleum Industry.” May 2013 (minor revisions June 2014) ® Copyright 2014, The PPDM Association. All Rights Reserved The US Well Number Standard v1.0 REVISION HISTORY The US Well Number Standard: An identifier for the Petroleum Industry Wells in the USA Version: 2013 rev 1 Reason for Revision Replace API Number with US Well Number This Standard Replaces: American Petroleum Institute Bulletin D12A, revised 1979 This Standard defines an identifier for wells and wellbores in the petroleum industry of the USA. This Standard is compatible with Abstract: previous versions of the D12A Number, with emphasis on the identification of every wellbore Prepared by: PPDM Association Date published: June 19th, 2014 Date of next review: May 31st, 2018 Document type: Standard standards, petroleum, well, wellbore, identifier, USA, US Well Keywords: Number, API Well Number, D12A DISCLAIMER The Professional Petroleum Data Management (PPDM) Association makes no representation, warranty or guarantee in connection with the contents of this publication and hereby expressly disclaims any liability or responsibility for loss or damage resulting from use or application hereunder or violation of federal, state or local regulation with which the contents may conflict. The PPDM Association Copyright 2013 2014, PPDM Association. All Rights Reserved www.ppdm.org Page 1 23544_ProfessionalPetroleum_Well_ID_Standards_TEXT_REV | Cyan Magenta Black | 1-OCT-1419:11:20 The US Well Number Standard The US Well Number Standard v1.0 v1.0 EXECUTIVE SUMMARY REVISION HISTORY This document defines and supports a standard for the identification of petroleum wellbores in the USA. -
Sediment Provenance and Dispersal of Neogene–Quaternary Strata of the Southeastern San Joaquin Basin and Its Transition Into the GEOSPHERE; V
Research Paper THEMED ISSUE: Origin and Evolution of the Sierra Nevada and Walker Lane GEOSPHERE Sediment provenance and dispersal of Neogene–Quaternary strata of the southeastern San Joaquin Basin and its transition into the GEOSPHERE; v. 12, no. 6 southern Sierra Nevada, California doi:10.1130/GES01359.1 Jason Saleeby1, Zorka Saleeby1, Jason Robbins2, and Jan Gillespie3 13 figures; 2 tables; 2 supplemental files 1Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California 91125, USA 2Chevron North America Exploration and Production, McKittrick, California 93251, USA 3Department of Geological Sciences, California State University, Bakersfield, California 93311, USA CORRESPONDENCE: jason@ gps .caltech .edu CITATION: Saleeby, J., Saleeby, Z., Robbins, J., and ABSTRACT INTRODUCTION Gillespie, J., 2016, Sediment provenance and dis- persal of Neogene–Quaternary strata of the south- eastern San Joaquin Basin and its transition into We have studied detrital-zircon U-Pb age spectra and conglomerate clast The Sierra Nevada and Great Valley of California are structurally coupled the southern Sierra Nevada, California: Geosphere, populations from Neogene–Quaternary siliciclastic and volcaniclastic strata and move semi-independently within the San Andreas–Walker Lane dextral v. 12, no. 6, p. 1744–1773, doi:10.1130/GES01359.1. of the southeastern San Joaquin Basin, as well as a fault-controlled Neo- transform system as a microplate (Argus and Gordon, 1991; Unruh et al., 2003). gene basin that formed across the southernmost Sierra Nevada; we call this Regional relief generation and erosion of the Sierra Nevada are linked to sub- Received 9 May 2016 Accepted 31 August 2016 basin the Walker graben. -
USGS Professional Paper 1740
Age, Stratigraphy, and Correlations of the Late Neogene Purisima Formation, Central California Coast Ranges By Charles L. Powell II1, John A. Barron1, Andrei M. Sarna-Wojcicki1, Joseph C. Clark2, Frank A. Perry3, Earl E. Brabb4, and Robert J. Fleck1 Abstract Counties inland to the San Andreas Fault (fig. 1). These scat- tered outcrops have been grouped as the Purisima Formation The Purisima Formation is an important upper Miocene because they are all fine- to coarse-grained clastic rocks, with and Pliocene stratigraphic unit in central California, cropping dark andesitic fragments and locally abundant silicic tephra, out from the coast at Point Reyes north of San Francisco to and occupy the same stratigraphic position at their various more extensive exposures in the Santa Cruz Mountains to the exposures. Since first described by Haehl and Arnold (1904), south. The fine-grained rocks in the lower parts of the Puri- the Purisima Formation has been considered to be of Pliocene sima Formation record a latest Miocene transgressive event, or of late Miocene to Pliocene age. Differing age assignments whereas the middle and upper parts of the formation consist have resulted from the wide stratigraphic range of many com- of increasingly clastic-rich siltstones and sandstones resulting monly encountered megafossils and from the lack of agree- from uplift of adjacent coastal regions and the Sierra Nevada ment on the placement of the Miocene-Pliocene Series bound- during Pliocene transgressive and regressive sea-level events. ary between the provincial megafaunal chronology and that Exposures of the Purisima occur in three different, fault- of international usage. -
Lost Hills Oil Field (Kem County) Aquifer Exemption Record of Decision
UNITED STATES ENVIRONMENTAL PROTECTION AGENCY REGION IX 75 Hawthorne Street San Francisco, CA 94105-3901 May 20, 2019 Kenneth A. Harris Jr. State Oil and Gas Supervisor Division of Oil, Gas, and Geothermal Resources California Department of Conservation 801 K Street, MS 18-05 Sacramento, CA 95814-3530 Re: Approval of Aquifer Exemption for the Lost Hills Oil Field, Kem County, California Dear Mr. Harris: Based on a thorough review of the supporting documents submitted by the California Department of Conservation, Division of Oil, Gas, and Geothermal Resources (DOGGR) and the State Water Resources Control Board (SWRCB), the U.S. Environmental Protection Agency (EPA) hereby approves the aquifer exemption request for portions of the Tulare Formation in the Lost Hills Oil Field in Kern County, California. In accordance with applicable regulations at 40 C.F.R. Parts 144, 145, and 146, we find that this aquifer exemption request is a non-substantial program revision, and the requested formations meet the following federal exemption criteria: • The portions of the formation proposed for exemption in the field do not currently serve as sources of drinking water; and • The portions of the formation proposed for exemption in the field cannot now and will not in the future serve as a source of drinking water because they are commercially hydrocarbon-producing. The approved aquifer exemption boundaries and depths, along with the EPA's analysis and rationale in support of the approval, are detailed in the enclosed Record of Decision. In addition, we are enclosing the application and other documents submitted by the DOGGR and SWRCB to the EPA that were considered in this approval decision. -
An Analysis of Shallow Gas, NORM, and Trace Metals
September 2015 Understanding and Managing Environmental Roadblocks to Shale Gas Development: An Analysis of Shallow Gas, NORM, and Trace Metals Final Report June 14, 2013 to September 30, 2015 RPSEA Award No 11122-56 by J.-P. Nicot, P. Mickler, T. Larson, M.C. Castro R. Darvari, R. Smyth, K. Uhlman, C. Omelon with participation of L. Bouvier, Tao Wen, Z.L. Hildenbrand, M. Slotten, J.M. Aldrige, C.M. Hall, R. Costley, J. Anderson, R. Reedy, J. Lu, Yuan Liu, K. Romanak, S.L. Porse, and Texas Water Development Board Bureau of Economic Geology Jackson School of Geosciences The University of Texas at Austin Austin, Texas 78713-8924 Understanding and Managing Environmental Roadblocks to Shale Gas Development: An Analysis of Shallow Gas, NORM, and Trace Metals Jean-Philippe Nicot1, Patrick Mickler1, Toti Larson2, M. Clara Castro3 Roxana Darvari1, Rebecca Smyth1, Kristine Uhlman+1, Christopher Omelon2 with participation of L. Bouvier+3, Tao Wen3, Z.L. Hildenbrand4, M. Slotten+5, J.M. Aldrige+5, C.M. Hall3, R. Costley1, J. Anderson1, R. Reedy1, J. Lu1, Yuan Liu+1, K. Romanak1, S.L. Porse+1, and TWDB6 1: Bureau of Economic Geology, The University of Texas at Austin 2: Department of Geological Sciences, The University of Texas at Austin 3: Department of Earth and Environmental Sciences, University of Michigan at Ann Arbor 4: Inform Environmental LLC, Dallas, TX 5: Environmental Management and Sustainability Program, St. Edwards University, Austin, TX 6: Texas Water Development Board, Austin, TX +: previously at Bureau of Economic Geology Jackson School of Geosciences The University of Texas at Austin Austin, Texas 78713-8924 Disclaimer From DOE/NETL: “This report was prepared as an account of work sponsored by an agency of the United States Government. -
CALIFORNIANS at RISK: an Analysis of Health Threats from Oil and Gas Pollution in Two Communities Case Studies in Lost Hills and Upper Ojai
CALIFORNIANS AT RISK: An Analysis of Health Threats from Oil and Gas Pollution in Two Communities Case studies in Lost Hills and Upper Ojai January 2015 TM EARTHWORKS TM EARTHWORKS TM EARTHWORKS TM EARTHWORKS CALIFORNIANS AT RISK: An Analysis of Health Threats from Oil and Gas Pollution in Two Communities Case studies in Lost Hills and Upper Ojai January 2015 AUTHORS: Jhon Arbelaez, California Organizer, Earthworks Bruce Baizel, Energy Program Director, Earthworks Report available at: http://californiahealth.earthworksaction.org Photos by Earthworks ACKNOWLEDGEMENTS This report is funded in part by a grant from The California Wellness Foundation (TCWF). Created in 1992 as a private independent foundation, TCWF’s mission is to improve the health of the people of California by making grants for health promotion, wellness education and disease prevention. We would also like to thank the Broad Reach Fund for its generous financial support for this investigation. Earthworks would like to thank The William and Flora Hewlett Foundation for its generous support of this report. The opinions expressed in this report are those of the authors and do not necessarily reflect the views of The William and Flora Hewlett Foundation. A special thank you to Rosanna Esparza at Clean Water Action/Clean Water Fund for her assistance with health surveys and continued grassroots backing in Kern County; and Andrew Grinberg and Miriam Gordon, Clean Water Action/Clean Water Fund for review and contributions to the report. Thank you to ShaleTest and Calvin Tillman for the use of the FLIR camera, and their guidance on community air testing. Thank you to Citizens for Responsible Oil and Gas (CFROG), for their knowledge and expertise in Ventura County. -
Qt53v080hx.Pdf
UC Berkeley PaleoBios Title A new Early Pliocene record of the toothless walrus Valenictus (Carnivora, Odobenidae) from the Purisima Formation of Northern California Permalink https://escholarship.org/uc/item/53v080hx Journal PaleoBios, 34(0) ISSN 0031-0298 Author Boessenecker, Robert W. Publication Date 2017-06-15 DOI 10.5070/P9341035289 Peer reviewed eScholarship.org Powered by the California Digital Library University of California PaleoBios 34:1-6, June 15, 2017 PaleoBios OFFICIAL PUBLICATION OF THE UNIVERSITY OF CALIFORNIA MUSEUM OF PALEONTOLOGY Boessenecker, Robert W. (2017). A New Early Pliocene Record of the Toothless Walrus Valenictus (Carnivora, Odobenidae) from the Purisima Formation of Northern California. Cover photo: Life restoration of the extinct Pliocene walrus Valenictus and flightless auks (Mancalla) hauled out on the rocky shore of the uplifted Coast Ranges of California (top right); cliff exposures of the Purisima Formation near Santa Cruz, from where Valenictus was collected by Wayne Thompson (left); bivalves, chiefly Clinocardium meekianum, exposed in the Purisima Formation near the locality (bottom). Photo credit and original artwork: Robert W. Boessenecker. Citation: Boessenecker, Robert W. 2017. A New Early Pliocene Record of the Toothless Walrus Valenictus (Carnivora, Odobenidae) from the Puri- sima Formation of Northern California. PaleoBios, 34. ucmp_paleobios_35289 A New Early Pliocene Record of the Toothless Walrus Valenictus (Carnivora, Odobenidae) from the Purisima Formation of Northern California ROBERT W. BOESSENECKER1,2 1Department of Geology and Environmental Geosciences, College of Charleston, Charleston, SC 29424; [email protected] 2University of California Museum of Paleontology, University of California, Berkeley, CA 94720 The walrus (Odobenus rosmarus) is a large tusked molluskivore that inhabits the Arctic and is the sole living member of the family Odobenidae. -
Active Tectonics at Wheeler Ridge, Southern San Joaquin Valley, California
Active tectonics at Wheeler Ridge, southern San Joaquin Valley, California E. A. Keller* Environmental Studies Program and Department of Geological Sciences, University of California, Santa Barbara, California 93106 R. L. Zepeda 1342 Grove Street, Alameda, California 94501 T. K. Rockwell Department of Geological Sciences, San Diego State University, San Diego, California 91282 T. L. Ku Department of Earth Sciences, University of Southern California, Los Angeles, California 90089-0740 W. S. Dinklage Department of Geological Sciences, University of California, Santa Barbara, California 93106 ABSTRACT INTRODUCTION where geomorphic surfaces are folded over the anticlinal axis (Zepeda et al., 1986). In addition, Wheeler Ridge is an east-west–trending Buried reverse faults associated with actively the 1952 Kern County earthquake was centered anticline that is actively deforming on the up- deforming folds are known to produce large earth- below Wheeler Ridge, but not on the Wheeler per plate of the Pleito–Wheeler Ridge thrust- quakes. Several recent, large California earth- Ridge thrust fault; therefore the potential earth- fault system. Holocene and late Pleistocene de- quakes are examples: M = 6.7, Northridge, 1994; quake hazard in the area is clear. formation is demonstrated at the eastern end M = 6.1, Whittier Narrows, 1987; MS = 6.4, The primary goals of the research at Wheeler of the anticline where Salt Creek crosses the Coalinga, 1983, and MS = 7.7, Kern County, Ridge are (1) to characterize the tectonic geomor- anticlinal axis. Uplift, tilting, and faulting, as- 1952. Detailed investigations of folding associ- phology; (2) to develop the Pleistocene chronol- sociated with the eastward growth of the anti- ated with concealed reverse faults are therefore ogy; and (3) to test the hypothesis that climatic cline, are documented by geomorphic surfaces necessary in order to better understand earthquake perturbations are responsible for most Pleistocene that are higher and older to the west. -
Summary of North American Blancan Nonmarine Mollusks1
MALACOLOGIA , 1966, 4(1): 1-172 SUMMARY OF NORTH AMERICAN BLANCAN NONMARINE MOLLUSKS1 D. W. Taylor U. S. Geological Survey, and Research Associate, University of Michigan Museum of Zoology, Ann Arbor, Michigan, U. S. A. ABSTRACT All known North American nonmarine mollusks of Blancan (late Pliocene and early Pleistocene) age have been here fitted into the available framework of associated fossils, physical stratigraphy and radiogenic potassium-argon dates. Many of the independently dated molluscan assemblages are so similar to other faunas that most of the fossils summarized can be assigned confidently to the Blancan age. These assignments permitted compilation of lists of last appear- ances of genera and families that are unknown during or after Blancan times. About 50-55 Blancan assemblages are known, and together with about 10-15 older or younger faunas included for convenience of discussion they are summarized under 57 local geographic headings (map, Fig. 1). For each local assemblage the following data have been given so far as possi- ble: location, previous references to mollusks, stratigraphic unit and most recent geologic maps, number of species of mollusks, mention of other fossils from the same locality or formation, age, institution where fossils are preserved, and most recent topographic maps. The detail of treatment varies widely, according to available information, progress of knowledge since previous liter- ature and the usefulness of new information. Lists of species are included usually only if the fauna is revised or first recorded in this paper, but the references to previous work are intended to be complete. The Blancan faunas from the Great Plains region (Nebraska, Kansas, Okla- homa, Texas), and from Arizona, are generally similar and include mainly widespread living species.