Spurious Hypoxia: Consideration of Hemoglobinopathies

Total Page:16

File Type:pdf, Size:1020Kb

Spurious Hypoxia: Consideration of Hemoglobinopathies Central Annals of Pediatrics & Child Health Case Report *Corresponding author Stephanie Phillips DO, Department of Pediatric Hematology/Oncology, Medical University of South Spurious Hypoxia: Consideration Carolina, MSC 558, 135 Rutledge Ave, Cahrleston, SC 29425, USA, Tel: 843-792-1053, Email: Submitted: 05 October 2015 of Hemoglobinopathies Accepted: 04 December 2015 Published: 07 December 2015 1 2 3 Stephanie Phillips DO *, John Lazarchick , Michael Bowman and Copyright 4 Shayla Bergmann © 2015 Stephanie Phillips et al. 1 Department of Pediatric Hematology/Oncology, Medical University of South Carolina, OPEN ACCESS USA 2Department of Pathology and Laboratory Medicine, Medical University of South Keywords Carolina, USA • Unstable hemoglobin • Hemoglobinopathy 3Department of Pediatric Pulmonology, Medical University of South Carolina, USA • Hypoxia 4 Departnent of Pediatric Hematology/Oncology, Medical University of South Carolina, • Hemoglobin sabine USA • Hemoglobin aalborg Abstract The use of the pulse oximeter to estimate oxygen saturation has revolutionized monitoring capabilities in medicine. However, there can be circumstances in which there is a discordance between oxygen saturation measurements via pulse oximeter (SpO2) and actual arterial oxygen levels (PaO2). In these situations, there is a possibility the patient could have a variant hemoglobin as the etiology of this discordance. This finding is generally incidental, and the patients are asymptomatic. However, knowledge of these variants is crucial and may spare patients unnecessary medical investigations. In this case report, two patients with variant hemoglobins found to have low oxygen saturations via pulse oximeter are presented, both of who underwent extensive medical workup and prolonged hospital stays. ABBREVIATIONS oxygen saturation readings by pulse oximeter and yet have normal oxygen saturation levels when measured by arterial blood SpO2: Oxygen Saturation via pulse Oximeter; PaO2: Arterial Oxygen Level; paO2 Partial Pressure of Oxygen; ABG Arterial : : programming is based upon a normal oxygen-hemoglobin Blood Gas gas analysis. It’s important to remember that pulse oximeter INTRODUCTION dissociation curve. Therefore, in the circumstance of discordance The use of the pulse oximeter to estimate oxygen saturation between SpO2 and PaO2 measurements, it’s wise to consider the has revolutionized monitoring capabilities in medicine, and in possibility of a variant hemoglobin as the cause. In most cases, variantthis finding hemoglobinopathies is usually incidental is crucial and the and patients may spareare otherwise patients can alert healthcare professionals when something may have healthy and asymptomatic. Therefore, knowledge of these affectedsome realms the cardio-pulmonary is even referred to systems as the fifthand vitalprompt sign the [1]. need Its usefor present two patients with variant hemoglobins found to have low oxygenunnecessary saturations medical via investigations pulse oximeter, [3]. both In thisof whom case underwentreport, we because it does not require a blood draw which is likely to cause further investigation. In pediatrics, the pulse oximeter is crucial extensive medical workup and prolonge in respiratory pattern immediately changes the blood gas d hospital stays. crying and/or breath-holding in children. This perturbation Table 1: measurement of oxygen saturation via pulse oximeter (SpO2) has IntrinsicPotential Factors Factors Affecting ExtrinsicPulse Oximetry Factors Measurements. values, making accurate interpretation challenging. As a result, Hemoglobinopathies Nail Polish Methemoglobin Calibration Assumptions becomeHowever, the universal there are measure well documentedof arterial oxygen instances levels in(PaO2). which Environmental interference – ie the use of these devices to measure oxygen saturation may not Carbon Monoxide Poisoning excessive movement be accurate, including motion artifact, poor perfusion, venous Low amplitude pulse – ie hypotension, hypovolemia, situations, patients may be unexpectedly found to have low hypothermia pulsation and nail polish [2-5] (Table 1). In other unique Cite this article: Stephanie Phillips DO, Lazarchick J, Bowman M, Bergmann S (2015) Spurious Hypoxia: Consideration of Hemoglobinopathies. Ann Pediatr Child Health 3(10): 1093. Stephanie Phillips et al. (2015) Email: Central CASE PRESENTATION Case report 1 facility. During his hospitalization, he had an echocardiogram blood gas was obtained and showed a paO2 and spiral chest CT done which were both normal. An arterial A 7 year old previously healthy male presented to an outside clinically and remained asymptomatic with ofnormal 116 mmHg lung and an oxygen saturation of 98%. The patient continued to look well he was found to be hypoxic with an oxygen saturation in the clinic with a one-week history of cough. On initial evaluation, tocardiovascular do well and wasexaminations. discharged Hemoglobin home with closevariants follow were up withsent 80% range obtained via pulse oximeter. He was seen by his and were reported as 17.8% “other hemoglobin”. He continued pediatrician, and a chest x-ray was obtained after confirming hemoglobin cascade testing was sent to Mayo Clinic and returned outpatient pediatric hematology. At his outpatient follow up visit, bloodthe SpO2 gas (ABG)reading. was The done chest and x-ray showed was a reportedlypartial pressure normal. of Lung examination was also documented as normal. An arterial at that visit remained healthy and asymptomatic with normal as 9.6% hemoglobin Sabine. The patient was lost to follow up but lowoxygen SpO2 (paO2) readings of 93 were mmHg. obtained, Hemoglobin the patient electrophoresis was referred was to obtained in the office with results pending. After persistent DISCUSSIONexercise tolerance. ultimately had a three-week hospitalization for workup of this When patients present with low oxygen saturation readings, our hospital for further workup. The patient was admitted and hypoxia. During this time, he remained asymptomatic, denying it generally causes a lengthy list of possible etiologies to flood Theshortness patient of breath,was initially chest pain,admitted or increased to the pediatricwork of breathing.intensive However,the mind inof certain the healthcare situations, provider.the clinical From presentation pulmonary of theto Respiratory and cardiovascular examination remained normal. patientcardiovascular may be to discordant infectious disease,with the the readings list can obtainedbe quite extensive. on pulse care unit for the hypoxia. He had some minimal improvement of The modern pulse oximeter has been in use since the mid scan,his SpO2 pulmonary readings function on 8L oftests, supplemental and echocardiogram oxygen via performed, facemask. oximetry. During his hospitalization, he had multiple chest xrays, a chest CT 1970’s and has become an essential tool in estimating oxygen all of which were normal. The patient had consultations with obtained and was positive for human metapneumovirus and whilesaturations incredibly in patients useful, [5].the accuracyIts use can of providethese machines real-time, may non- be pulmonology and cardiology. A respiratory viral panel was mycoplasma pneumoniae limitedinvasive in assessments certain circumstances, of patients particularly oxygenation in status. cases whereHowever, the clinical appearance of the patient does not correlate with the . The patient was treated for atypical pneumonia with no improvement in oxygen saturations. An arterial blood gas analysis was done which showed a paO2 of 93 absorbancereadings. Carboxy- by using and 2 diodesdecarboxy-hemoglobin transmitting light have of differing mmHg and an oxygen saturation of 98%. did not improve following macrolide therapy, he was presumed wavelengthslight absorption across patterns. a tissue A topulse measure oximeter the intensitymeasures of thisthe to haveWhen macrolide-resistantthe patient’s oxygen mycoplasma saturations infectionvia pulse andoximeter was hemoglobin can then be derived using the known absorbance wavelengths at the other side. The percent oxygen saturation of caretreated physician with a ten-dayreturned course during of hisclindamycin. hospitalization The resultsshowing of the presence of a hemoglobinopathy, pulse oximetry alone may the hemoglobin electrophoresis done by the patient’s primary spectra of oxygenated and deoxygenated hemoglobin [5,6]. In despite persistent hypoxia measured by pulse oximeter and was circumstances, the hemoglobin molecule is altered often as a a hemoglobin variant. The patient remained asymptomatic not be reliable to accurately measure oxygen saturation. In these discharged home with 0.5L supplemental oxygen to use at night. result of an amino acid substitution that changes the molecule’s theHe hadpresence follow of upthe as hemoglobin an outpatient variant with and pediatric results showedhematology. 24% affinity for oxygen. Hemoglobin cascade testing was sent to Mayo Clinic to confirm In the first case reported above, the patient was found to have hemoglobin Aalborg. This rare hemoglobin variant is the hemoglobin Aalborg. The nighttime supplemental oxygen was patientsresult of anin argininegeneral residueare asymptomatic replacing glycine. and are As anot consequence, associated discontinued. The patient continues to do well despite incidental this unstable hemoglobin has a decreased oxygen affinity. These lowCase oxygen report saturations 2 on pulse oximetry. A 7-year-old male with a past medical history of hereditary
Recommended publications
  • Human Physiology an Integrated Approach
    Gas Exchange and Transport Gas Exchange in the Lungs and Tissues 18 Lower Alveolar P Decreases Oxygen Uptake O2 Diff usion Problems Cause Hypoxia Gas Solubility Aff ects Diff usion Gas Transport in the Blood Hemoglobin Binds to Oxygen Oxygen Binding Obeys the Law of Mass Action Hemoglobin Transports Most Oxygen to the Tissues P Determines Oxygen-Hb Binding O2 Oxygen Binding Is Expressed As a Percentage Several Factors Aff ect Oxygen-Hb Binding Carbon Dioxide Is Transported in Three Ways Regulation of Ventilation Neurons in the Medulla Control Breathing Carbon Dioxide, Oxygen, and pH Infl uence Ventilation Protective Refl exes Guard the Lungs Higher Brain Centers Aff ect Patterns of Ventilation The successful ascent of Everest without supplementary oxygen is one of the great sagas of the 20th century. — John B. West, Climbing with O’s , NOVA Online (www.pbs.org) Background Basics Exchange epithelia pH and buff ers Law of mass action Cerebrospinal fl uid Simple diff usion Autonomic and somatic motor neurons Structure of the brain stem Red blood cells and Giant liposomes hemoglobin of pulmonary Blood-brain barrier surfactant (40X) From Chapter 18 of Human Physiology: An Integrated Approach, Sixth Edition. Dee Unglaub Silverthorn. Copyright © 2013 by Pearson Education, Inc. All rights reserved. 633 Gas Exchange and Transport he book Into Thin Air by Jon Krakauer chronicles an ill- RUNNING PROBLEM fated trek to the top of Mt. Everest. To reach the summit of Mt. Everest, climbers must pass through the “death zone” T High Altitude located at about 8000 meters (over 26,000 ft ). Of the thousands of people who have attempted the summit, only about 2000 have been In 1981 a group of 20 physiologists, physicians, and successful, and more than 185 have died.
    [Show full text]
  • Absolute Measurements of Cerebral Perfusion and Oxygenation in Rats with Near-Infrared Spectroscopy Bertan Hallacoglu1, Angelo Sassaroli1, Irwin H
    Absolute measurements of cerebral perfusion and oxygenation in rats with near-infrared spectroscopy Bertan Hallacoglu1, Angelo Sassaroli1, Irwin H. Rosenberg2, Aron Troen2 and Sergio Fantini1 Tufts University Department of Biomedical Engineering, Medford, MA (1) and USDA Human Nutrition Research Center on Aging, Boston, MA (2) Brain microvascular pathology is a common finding in Alzheimer’s disease and other dementias. However, Figure 2 – Time traces of [Hb], [HbO2], [HbT], StO2 and SaO2 during the hypoxia and hypercapnia protocols 10 and 20 weeks after Figure 3 – Illustration of the differences in animal groups and the extent to which microvascular abnormalities cause or contribute to cognitive impairment is unclear. the start of folate deficient diet (blue and red lines represent the mean values for each dietary group, whereas, dashed lines indicate changes within each group between weeks 10 and 20 in Dietary vascular risk factors, including poor folate status are potentially modifiable predictors of cognitive the range corresponding to ± one standard error from the mean). A first striking result is the consistency of baseline values across cerebral tissue saturation (StO2) and concentration of impairment among older adults. Folate deficiency in rat impairs cognition and causes cerebral animals within a group (control or folate deficient), and the reproducibility of baseline values measured at weeks 10 and 20. hemoglobin ([HbT]), blood concentration of hemoglobin ([HbT]b), microvascular damage, without concomitant neurodegeneration [1]. We hypothesized that folate Absolute brain total hemoglobin concentration ([HbT]) and tissue oxygen saturation (StO2) are significantly reduced by folate and partial blood volume (Vb/Vt) Eq. (1). FD rats have deficiency might result in functional decrements in cerebral oxygen delivery and vascular reactivity.
    [Show full text]
  • The Effect of Anemia on the Ventilatory Response to Transient and Steady-State Hypoxia
    The effect of anemia on the ventilatory response to transient and steady-state hypoxia. T V Santiago, … , N H Edelman, A P Fishman J Clin Invest. 1975;55(2):410-418. https://doi.org/10.1172/JCI107945. Research Article The effects of anemia upon the ventilatory responses to transient and steady-state hypoxia were studied in unanesthetized goats. Responses to transient hypoxia (inhalation of several breaths of nitrogen) were considered to reflect peripheral chemoreceptor and non-chemoreceptor influences of hypoxia upon ventilatory control. In all goats, severe anemia (hemoglobin 3.1-4.8 g/100ml) markedly heightened the responses to transient hypoxia (from a mean of 0.27 to a mean of 0.75 liter/min/percent fall in SaO2). This phenomenon was substantially reversed by alpha-adrenergic blockade (phenoxybenzamine, 5 mg/kg). In contrast, the ventilatory responses to steady-state hypoxia were unaffected by severe anemia. These data suggest that severe anemia enhances the peripheral chemoreceptor-mediated response to hypoxia through a mechanism involving the alpha-adrenergic system. It also appears that a ventilatory depressant effect of hypoxia which is not mediated by the peripheral chemoreceptors is also enhanced by severe anemia, thereby preventing an increase in the steady-state ventilatory response to hypoxia. Finally, experiments involving variation in oxygen affinity of hemoglobin suggested that O2 tension rather than O2 availability in arterial blood is the major determinant of peripheral chemoreceptor activity. Find the latest version: https://jci.me/107945/pdf The Effect of Anemia on the Ventilatory Response to Transient and Steady-State Hypoxia TEODORO V. SANTIAGO, NORMAN H.
    [Show full text]
  • Respiration the Main Function of the Respiratory System Is Gas Exchange
    Respiration The main function of the respiratory system is gas exchange. Gas exchange is achieved through a process called respiration, or breathing. The cardiovascular system and the respiratory system work together to accomplish respiration. External Respiration During external respiration, fresh oxygen from outside the body fills the lungs and alveoli, and carbon dioxide is transported from the body tissues to the lungs. For oxygen to reach the body’s tissues and carbon dioxide to leave the body, gas exchange must occur in the alveolar capillary membrane. The alveoli and the capillaries that surround them make up the alveolar (al-VEE-oh-lar) capillary membrane (Figure 9.5 in the textbook). The alveolar capillary membrane is built for gas exchange, as explained by Fick’s Law. Fick’s Law states that the diffusion of oxygen and carbon dioxide between the capillaries and the alveolar sacs is proportional to the surface area (S.A.) of the lungs, the diffusion constant (D) of each gas, and the difference in partial pressure between each capillary and alveolar sac (P1-P2). According to this law, the diffusion of gases is also inversely related to the thickness of the tissues (T) involved. In simpler terms, thin-walled tissues allow for easier gas exchange. Diffusion = Therefore, oxygen easily diffuses across the membrane of the alveolar sacs and into the capillaries. Carbon dioxide passes from the capillaries into the alveolar sacs, where it can be expelled from the body via the lungs (Figure 9.5). How fast does gas exchange occur in the lungs? Faster than you might think.
    [Show full text]
  • Oxygen Transport During Ex Situ Machine Perfusion of Donor Livers Using Red Blood Cells Or Artificial Oxygen Carriers
    International Journal of Molecular Sciences Review Oxygen Transport during Ex Situ Machine Perfusion of Donor Livers Using Red Blood Cells or Artificial Oxygen Carriers Silke B. Bodewes 1,2 , Otto B. van Leeuwen 1,3, Adam M. Thorne 1,3, Bianca Lascaris 1,3, Rinse Ubbink 3, Ton Lisman 2 , Diethard Monbaliu 4,5 , Vincent E. De Meijer 1 , Maarten W. N. Nijsten 6 and Robert J. Porte 1,* 1 Section of Hepatobiliary Surgery and Liver Transplantation, Department of Surgery, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands; [email protected] (S.B.B.); [email protected] (O.B.v.L.); [email protected] (A.M.T.); [email protected] (B.L.); [email protected] (V.E.D.M.) 2 Surgical Research Laboratory, Department of Surgery, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands; [email protected] 3 Organ Preservation & Resuscitation Unit, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands; [email protected] 4 Department of Abdominal Transplantation Surgery and Coordination, University Hospitals Leuven, 3000 Leuven, Belgium; [email protected] 5 Transplantation Research Group, Department of Microbiology, Immunology, and Transplantation, Katholieke Universiteit Leuven, 3000 Leuven, Belgium 6 Department of Critical Care, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands; [email protected] * Correspondence: [email protected]; Tel./Fax: +31-50-3611745 Abstract: Oxygenated ex situ machine perfusion of donor livers is an alternative for static cold preservation that can be performed at temperatures from 0 ◦C to 37 ◦C.
    [Show full text]
  • Hemoglobin/Myoglobin Robert F.Diegelmann, Ph.D
    Hemoglobin/Myoglobin Robert F.Diegelmann, Ph.D. OBJECTIVES 1. Describe the interactions of heme, globins and oxygen. 2. Discuss the mechanism responsible for Sickle­Cell Anemia. 3. Understand the clinical significance of A1C hemoglobin. 4. Describe the basic biochemical mechanisms of O2 delivery & CO2 removal. RECOMMENDED RESOURCES Lehninger, Principles of Biochemistry, 5th edition, Chapter 5 Molecular Cell Biology, 5th edition; Lodish et al., page 67 http://web.indstate.edu/thcme/mwking/hemoglobin­myoglobin.html#hemoglobin Myoglobin (muscle) & Hemoglobin (Red Blood Cells) were the first proteins for which three­ dimensional structures were determined. Professor Max Perutz and his colleagues at Cambridge University determined Hemoglobin’s three dimensional structure in the late 1950s Therefore Hemoglobin is one of the most studied & best understood proteins. Figure 1. The Evolution of the Globin protein family Figure 2. Structural similarity of the Globin proteins Figure 3 Below is the basic heme group structure. It consists of a complex organic ring structure named Protoporphyrin. NOTE: Heme metabolism will be covered in more detail in another lecture. Protoporphyrin prosthetic group Porphyrin ring Fe binding site Methene bridge Substitution sites Figure 4 Oxygen is not very soluble in aqueous solutions and therefore needs a special molecule to be carried to tissues and cells. The Protoporphyrin ring structure of Heme binds a single iron atom in its ferrous (Fe 2+) . The iron atom has six coordination bonds, four are found bound to the nitrogens in the Porphyrin ring system and two additional sites perpendicular to the Porphyrin. The Cytochromes (a, b & c) are proteins that also consist of porphyrin structures.
    [Show full text]
  • Prognostic Value of the Hemoglobin/Red Cell Distribution Width Ratio in Resected Lung Adenocarcinoma
    cancers Article Prognostic Value of the Hemoglobin/Red Cell Distribution Width Ratio in Resected Lung Adenocarcinoma Francesco Petrella 1,2,* , Monica Casiraghi 1 , Davide Radice 3, Andrea Cara 1, Gabriele Maffeis 1, Elena Prisciandaro 1, Stefania Rizzo 4,5 and Lorenzo Spaggiari 1,2 1 Department of Thoracic Surgery, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy; [email protected] (M.C.); [email protected] (A.C.); [email protected] (G.M.); [email protected] (E.P.); [email protected] (L.S.) 2 Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, 20141 Milan, Italy 3 Department of Biostatistics, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy; [email protected] 4 Department of Radiology, Ente Ospedaliero Cantonale (EOC) Istituto di Imaging della Svizzera Italiana (IIMSI), 6903 Lugano, Switzerland; [email protected] 5 Facoltà di Scienze Biomediche, Università della Svizzera italiana, via Buffi 13, 6900 Lugano, Switzerland * Correspondence: [email protected] or [email protected]; Tel.: +39-025-748-9362; Fax: +39-029-437-9218 Simple Summary: Low hemoglobin (Hb) values—indicating a condition of anemia—are related to impaired nutrition and immune system status, suggesting reduced tolerance to therapies in oncologic patients. In fact, it has been shown that pre-treatment anemia predicts poor outcomes in many neoplastic diseases. Similarly, red cell distribution width—which is a measure of the size of variation of circulating erythrocytes—has been shown to be closely related to poor prognosis Citation: Petrella, F.; Casiraghi, M.; both in cardiovascular and in oncologic diseases.
    [Show full text]
  • Improved Oxygen Release: an Adaptation of Mature Red Cells to Hypoxia
    Improved oxygen release: an adaptation of mature red cells to hypoxia Miles J. Edwards, … , Carrie-Lou Walters, James Metcalfe J Clin Invest. 1968;47(8):1851-1857. https://doi.org/10.1172/JCI105875. Research Article Blood from patients with erythrocytosis secondary to arterial hypoxemia due either to congenital heart disease or to chronic obstructive pulmonary disease was shown to have a decreased affinity for oxygen; the average oxygen pressure required to produce 50% saturation of hemoglobin with oxygen was 29.8 mm Hg (average normal, 26.3 mm Hg). Such a displacement of the blood oxygen equilibrium curve promotes the release of oxygen from blood to the tissues. Studies were also performed upon blood from a man with complete erythrocyte aplasia who received all of his red cells by transfusion from presumably normal persons. With mild anemia (hematocrit, 28%), the affinity of his blood for oxygen was slightly diminished (an oxygen pressure of 27.0 mm Hg was required to produce 50% saturation of hemoglobin with oxygen). With severe anemia (hematocrit, 13.5%), however, his blood had a markedly decreased oxygen affinity (an oxygen pressure of 29.6 mm Hg was required to produce 50% saturation of hemoglobin with oxygen). We conclude that patients with various conditions characterized by an impairment in the oxygen supply system to tissues respond with a diminished affinity of their blood for oxygen. Although the mechanism which brings about this adaptation is not known, the displacement of the oxygen equilibrium curve is associated with an increase in heme-heme interaction. The decrease in blood oxygen affinity […] Find the latest version: https://jci.me/105875/pdf Improved Oxygen Release: an Adaptation of Mature Red Cells to Hypoxia MUas J.
    [Show full text]
  • A Carbon Monoxide Transport Model of the Human Respiratory System Applied to …
    A Carbon Monoxide Transport Model of The Human Respiratory System Applied to … A Carbon Monoxide Transport Model Cyro Albuquerque Neto of the Human Respiratory System [email protected] Applied to Urban Atmosphere Jurandir Itizo Yanagihara Senior Member, ABCM Exposure Analysis [email protected] The aim of this work is to analyze the carbon monoxide (CO) transport in the human body submitted to several physical activity levels. A complete mathematical model of the human respiratory system was developed, considering the exchanges of CO, oxygen (O2) and Fábio Turri carbon dioxide (CO2) in the lung, blood and tissues. The human body was divided in the [email protected] following compartments: alveolar, pulmonary capillaries, arterial, venous, tissue capillary University of Sao Paulo - USP and tissues. The gas transport in the blood and tissues is represented by empirical Escola Politécnica equations. The physiological parameters were described in function of physical activity. Department of Mechanical Engineering The model was validated by comparing its results with experimental data of controlled CO 055809-900 São Paulo, SP, Brazil exposition. The agreement was excellent. CO concentration curves for critical days of São Caetano do Sul city (SP, Brazil) atmosphere were used as model input. The simulation results for some physical activities show that the more intense the activity, the larger the blood carboxyhemoglobin (COHb) level variations. The COHb level was compared with a CO quality air criteria, which showed to be adequate for low and moderate physical activity levels. Keywords: compartment model, carbon monoxide, gas transport, respiratory system, air pollution The models of Selvakumar, Sharan and Singh (1992) and Introduction Sharan and Selvakumar (1999) divide the lung into compartments, one alveolar and several pulmonary capillaries.
    [Show full text]
  • Myoglobin/Hemoglobin O2 Binding and Allosteric Properties
    Myoglobin/Hemoglobin O2 Binding and Allosteric Properties of Hemoglobin •Hemoglobin binds and transports H+, O2 and CO2 in an allosteric manner •Allosteric interaction - a regulatory mechanism where a small molecule (effector) binds and alters an enzymes activity ‘globin Function O does not easily diffuse in muscle and O is toxic to biological 2 2 systems, so living systems have developed a way around this. Physiological roles of: – Myoglobin • Transports O2 in rapidly respiring muscle • Monomer - single unit • Store of O2 in muscle high affinity for O2 • Diving animals have large concentration of myoglobin to keep O2 supplied to muscles – Hemoglobin • Found in red blood cells • Carries O2 from lungs to tissues and removes CO2 and H+ from blood to lungs • Lower affinity for O2 than myoglobin • Tetrameter - two sets of similar units (α2β2) Myo/Hemo-globin • Hemoglobin and myoglobin are oxygen- transport and oxygen-storage proteins, respectively • Myoglobin is monomeric; hemoglobin is tetrameric – Mb: 153 aa, 17,200 MW – Hb: two α chains of 141 residues, 2 β chains of 146 residues X-ray crystallography of myoglobin – mostly α helix (proline near end of each helix WHY?) – very small due to the folding – hydrophobic residues oriented towards the interior of the protein – only polar aas inside are 2 histidines Structure of heme prosthetic group Protoporphyrin ring w/ iron = heme Oxygenation changes state of Fe – Purple to red color of blood, Fe+3 - brown Oxidation of Fe+2 destroys biological activity of myoglobin Physical barrier of protein
    [Show full text]
  • Respiratory System.Pdf
    Respiratory System Respiratory System - Overview: Assists in the detection Protects system of odorants Respiratory (debris / pathogens / dessication) System 5 3 4 Produces sound (vocalization) Provides surface area for gas exchange (between air / blood) 1 2 For the body to survive, there must be a constant supply of Moves air to / from gas O2 and a constant exchange surface disposal of CO 2 Marieb & Hoehn (Human Anatomy and Physiology, 8th ed.) – Table 19.1 Respiratory System Respiratory System Functional Anatomy: Functional Anatomy: Trachea Epiglottis Naming of pathways: • > 1 mm diameter = bronchus Upper Respiratory • Conduction of air • < 1 mm diameter = bronchiole System • Gas exchange Primary • < 0.5 mm diameter = terminal bronchiole Bronchus • Filters / warms / humidifies Lower Respiratory Bronchi System incoming air bifurcation (23 orders) 1) External nares 5) Larynx 2) Nasal cavity • Provide open airway Green = Conducting zone • Resonance chamber • channel air / food Purple = Respiratory zone 3) Uvula • voice production (link) 4) Pharynx 6) Trachea 7) Bronchial tree • Nasopharynx Bronchiole 8) Alveoli • Oropharynx Terminal Bronchiole Respiratory Bronchiole • Laryngopharynx Alveolus Martini et. al. (Fundamentals of Anatomy and Physiology, 7th ed.) – Figure 23.1 Martini et. al. (Fundamentals of Anatomy and Physiology, 7th ed.) – Figure 23.9 Respiratory System Respiratory System Functional Anatomy: Functional Anatomy: Respiratory Mucosa / Submucosa: How are inhaled debris / pathogens cleared from respiratory tract? Near Near trachea alveoli Nasal Cavity: Epithelium: Particles > 10 µm Pseudostratified Simple columnar cuboidal Conducting Zone: Particles 5 – 10 µm Cilia No cilia Respiratory Zone: Mucus Escalator Particles 1 – 5 µm Mucosa: Lamina Propria (areolar tissue layer): Mucous membrane (epithelium / areolar tissue) smooth smooth muscle muscle Mucous No glands mucous glands Cartilage: Rings Plates / none Macrophages Martini et.
    [Show full text]
  • Tissue Hypoxia: Implications for the Respiratory Clinician
    Tissue Hypoxia: Implications for the Respiratory Clinician Neil R MacIntyre MD FAARC Introduction Causes of Hypoxia Hypoxemia Oxygen Delivery Oxygen Extraction/Utilization Compensatory Mechanisms for Hypoxia Current and Future Clinical Implications Summary Oxygen is essential for normal aerobic metabolism in mammals. Hypoxia is the presence of lower than normal oxygen content and pressure in the cell. Causes of hypoxia include hypoxemia (low blood oxygen content and pressure), impaired oxygen delivery, and impaired cellular oxygen up- take/utilization. Many compensatory mechanisms exist at the global, regional, and cellular levels to allow cells to function in a hypoxic environment. Clinical management of tissue hypoxia usually focuses on global hypoxemia and oxygen delivery. As we move into the future, the clinical focus needs to change to assessing and managing mission-critical regional hypoxia to avoid unnecessary and potential toxic global strategies. We also need to focus on understanding and better harnessing the body’s own adaptive mechanisms to hypoxia. Key words: hypoxia; hypoxemia; alveolar ventila- tion; ventilation/perfusion matching; diffusion; hemoglobin binding; hemoglobin-oxygen binding; re- gional oxygenation; oxygen extraction; oxygen utilization; hypoxia-inducible factors. [Respir Care 2014;59(10):1590–1596. © 2014 Daedalus Enterprises] Introduction with oxygen to produce energy (converting adenosine 5Ј- Ј diphosphate to adenosine 5 -triphosphate) along with CO2 Oxygen is essential for normal aerobic metabolism in and
    [Show full text]