Anemia and Hemoglobin Testing

Total Page:16

File Type:pdf, Size:1020Kb

Anemia and Hemoglobin Testing Hematology Anemia and hemoglobin testing Hematology Our mission Contents EKF Hematology aims to make blood 1. What is anemia? donation and anemia screening easier, more affordable and more accessible 2. Causes of anemia than ever before. 3. Symptoms and health consequences Our diagnostic tests deliver fast and reliable results for hemoglobin 4. Patients at risk and hematocrit that provide both practitioner and patient with the 5. Blood donation information they need to make clinical 6. Treatment of anemia or lifestyle decisions in seconds. 7. Methods of testing Hb/Hct 8. Factors influencing the measurement 9. References and units Pharmacies Blood banks • Health check • Donor check Maternity care Hospitals • Anemia testing • Dialysis units H • Emergency rooms • OBGY • Critical care • Operating theatres GP surgeries Field clinics • Anemia testing • Anemia screening • Malnutrition programmes • HIV and malaria programmes 1 What is anemia? Anemia is a condition in which the gender, altitude, smoking behavior number of healthy red blood cells or the and different stages of pregnancy. availability of hemoglobin falls below The volume percentage of red blood the body’s physiologic needs. cells in a blood sample is called hematocrit (Hct), also known as packed Hemoglobin (Hb) is a protein based cell volume (PCV). component and is the main part of red blood cells. It binds oxygen Hemoglobin or hematocrit tests are to transport around the body and the main blood tests used to diagnose ensures sufficient supply to tissues and anemia. Anemia can be caused by poor organs. Hemoglobin also helps in the nutrition or various diseases. transportation of carbon dioxide and hydrogen ions back to the lungs. The individual physiological need depends on several factors like age, Table 1.0: Hemoglobin (Hb) level used to define anemia Age or gender group Hb level (g/dL) Hb level (g/L) Children below 5 years of age ≤ 11.0 ≤ 110 Children 5 - 11 years of age ≤ 11.5 ≤ 115 Children 12 - 14 years of age ≤ 12.0 ≤ 120 Non-pregnant women (15 years of age and ≤ 12.0 ≤ 120 above) Pregnant women ≤ 11.0 ≤ 110 Men (15 years of age and above) ≤ 13.0 ≤ 130 Adapted from1) Anemia is the most common disorder of the blood, Did you know? affecting about 25% of the 25% global population 2 Causes of anemia There are many different types of When iron intake is chronically low, anemia that can be divided into three stores can become depleted and groups: hemoglobin levels decrease. • Anemia caused by blood loss Other nutritional deficiencies causing or • Anemia caused by decreased or contributing to anemia are insufficient faulty red blood cell production supply of folate (folic acid), vitamin B12, • Anemia caused by destruction of vitamin A, riboflavin and copper. red blood cells A number of diseases such as acute The most common cause of anemia is and chronic inflammation, cancer, iron deficiency. The hemoglobin protein malaria, parasitic infection, HIV and is formed from four subunits, each with genetic defects that result in abnormal a cofactor called a heme group that has structures of hemoglobin, like in sickle- an iron molecule at its center. Iron is the cell disease or shortened life-time of red main component that actually binds to blood cells, like in Thalassemia, oxygen, so each hemoglobin molecule can be the underlying cause of anemia. is able to carry four molecules of O2. Most of the body’s iron (ca. 70%) is found in hemoglobin and in the myoglobin of muscle cells, whereas about 25% is stored as ferritin. The average adult male has about 1,000 mg of stored iron, enough for about three years. Women on average have about 300 mg, enough for about six months. Iron deficiency is the most Did you know? common and widespread nutritional disorder in the world and the only nutrient deficiency with significant prevalence also in industralized countries. 3 Symptoms and health consequences The main symptoms of anemia are: Anemia reduces an individuals’ wellbeing, physical productivity and • Fatigue (the most common symptom) work performance. It has a negative • Shortness of breath impact on development and the • Dizziness and headaches learning of children. Maternal anemia is • Cold hands and feet associated with mortality and morbidity • Pale skin and chest pain in the mother and baby, including the risk of miscarriages, stillbirths, In mild to moderate anemia these prematurity and low birth weight. clinical symptoms may be less visible. The clinical effects of anemia also depend on its duration and severity. In acute anemia the body does not have enough time to make the necessary physiologic adjustments, and the symptoms are more likely to be pronounced and dramatic. In contrast, when anemia develops gradually, the body is able to adjust by increasing cardiac output, shunting of blood to vital organs, enhancing oxygen release to the tissues and increasing erythropoietin (EPO) to stimulate red blood cell production. Timely treatment can restore Did you know? personal health and raise national productivity levels by as much as 20% in developing countries 2) 4 Patients at risk Women in the childbearing years Anemia can also be caused by are particularly susceptible to iron- Postpartum hemorrhage (PPH) - an deficiency anemia because of the estimated vaginal blood loss of greater blood loss from menstruation and than 500 mL within 24 hours after the increased blood supply demands vaginal delivery or greater than during pregnancy. 1,000 mL after cesarean delivery. Maintaining adequate hemoglobin and The maternal blood volume needs to hematocrit levels by taking vitamin and increase by 40-50% during pregnancy iron supplements in the antepartum to supply the fetus. The increased need period is important for women with of iron and folic acid can often not be known risk of developing PPH. covered by regular nutrition. Monitoring hemoglobin and hematocrit closely is also essential in the course Hemoglobin concentrations even in of PPH including the assessment of healthy, iron-sufficient women decline transfusion needs. during the first trimester in pregnancy reaching their lowest point in the Globally, the highest prevalence second trimester, diminishing by of anemia is found in preschool- ca. 0.5 g/dL (5 g/L). Thereafter, age children (47%). Children have hemoglobin levels begin to rise again increasing hemoglobin needs to in the third trimester. manage their growth. They may suffer from inherited hemoglobin In developing countries the coincidence malformations (e. g. Sickle cell, of malnutrition, infections and early as Thalassemia), parasitic infections or well as frequent pregnancies, poor nutrition. The highest proportion increases the rate of anemia up to of preschool-age children affected by 75% in women. anemia live in Africa (67.6%), while the greatest number affected are in South- East Asia (115.3 million).3) Anemia contributes Did you know? to 20% of all maternal deaths.2) 20% In adolescent girls anemia can be Other risk factors for anemia are long- caused by heavy and prolonged term or serious illnesses such as kidney menstrual bleeding. Several disease, cancer, diabetes, rheumatoid treatment options, including iron arthritis, HIV/AIDS, inflammatory bowel supplementation, are available to disease (including Crohn’s disease), manage this condition and improve the liver disease, heart failure and thyroid adolescent’s quality of life. disease as well as long-term infections or a family history of inherited anemia.13) In toddlers iron deficiency anemia can Gastrointestinal (GI) bleeding is a be a result of high milk consumption. common clinical problem and can Milk provides calcium and vitamin D vary from a massive life threatening but is low in iron and it inhibits the hemorrhage to a slow, often unnoticed, absorption of iron in the body. From chronic blood loss. This can result the age of 6 months, all infants and in iron deficiency anemia. Typical toddlers should receive iron-rich causes of GI bleeding are ulceration, (complementary) foods, including meat esophageal varices or varicose products and/or iron-fortified foods. veins, a hiatal hernia, a colon polyp Unmodified cow’s milk should not be or colorectal cancer, tumors and fed as the main milk drink to infants inflammation. before the age of 12 months and intake should be limited to <500 mL/day in Anti-inflammatory medications (in toddlers.14) particular aspirin or other arthritis drugs) and thinning of the blood from certain medications like Warfarin can Patients with blood loss from surgery or an injury need a close surveillance of aggravate upper GI bleeding. their hemoglobin levels in the course of their treatment to avoid an anemic situation. 5 Blood donation Donating blood is a life-saving aid for The limited life-time of blood products many patients, not only in emergency (up to 42 days for red cells and around situations but also for those five days for platelets) means that depending on long-term treatments. hospitals must plan their stock carefully in order not to run out of any category. Recent improvements in the treatment Regular registered donors help to of cancer patients and the progresses in ensure the availability according to “minimally invasive” surgery decreased the hospitals requirements. But during the demand for blood as did the vacation periods or in the case of adjustment of transfusion thresholds unexpected events blood banks may based on latest medical findings. still need to issue emergency appeals Additionally, patients undergoing to their donors. scheduled surgery are treated for anemia in the weeks before to minimize the need for transfusions. This requires close monitoring of hemoglobin levels in the pre-surgery period. Globally, there is still a strong discrepancy between the coverage of blood transfusion needs in high, mid and low income countries. About 108 million blood donations are collected worldwide. Today, more than half of these are collected in high income countries, representing only 18% of the world’s population.
Recommended publications
  • Human Physiology an Integrated Approach
    Gas Exchange and Transport Gas Exchange in the Lungs and Tissues 18 Lower Alveolar P Decreases Oxygen Uptake O2 Diff usion Problems Cause Hypoxia Gas Solubility Aff ects Diff usion Gas Transport in the Blood Hemoglobin Binds to Oxygen Oxygen Binding Obeys the Law of Mass Action Hemoglobin Transports Most Oxygen to the Tissues P Determines Oxygen-Hb Binding O2 Oxygen Binding Is Expressed As a Percentage Several Factors Aff ect Oxygen-Hb Binding Carbon Dioxide Is Transported in Three Ways Regulation of Ventilation Neurons in the Medulla Control Breathing Carbon Dioxide, Oxygen, and pH Infl uence Ventilation Protective Refl exes Guard the Lungs Higher Brain Centers Aff ect Patterns of Ventilation The successful ascent of Everest without supplementary oxygen is one of the great sagas of the 20th century. — John B. West, Climbing with O’s , NOVA Online (www.pbs.org) Background Basics Exchange epithelia pH and buff ers Law of mass action Cerebrospinal fl uid Simple diff usion Autonomic and somatic motor neurons Structure of the brain stem Red blood cells and Giant liposomes hemoglobin of pulmonary Blood-brain barrier surfactant (40X) From Chapter 18 of Human Physiology: An Integrated Approach, Sixth Edition. Dee Unglaub Silverthorn. Copyright © 2013 by Pearson Education, Inc. All rights reserved. 633 Gas Exchange and Transport he book Into Thin Air by Jon Krakauer chronicles an ill- RUNNING PROBLEM fated trek to the top of Mt. Everest. To reach the summit of Mt. Everest, climbers must pass through the “death zone” T High Altitude located at about 8000 meters (over 26,000 ft ). Of the thousands of people who have attempted the summit, only about 2000 have been In 1981 a group of 20 physiologists, physicians, and successful, and more than 185 have died.
    [Show full text]
  • Absolute Measurements of Cerebral Perfusion and Oxygenation in Rats with Near-Infrared Spectroscopy Bertan Hallacoglu1, Angelo Sassaroli1, Irwin H
    Absolute measurements of cerebral perfusion and oxygenation in rats with near-infrared spectroscopy Bertan Hallacoglu1, Angelo Sassaroli1, Irwin H. Rosenberg2, Aron Troen2 and Sergio Fantini1 Tufts University Department of Biomedical Engineering, Medford, MA (1) and USDA Human Nutrition Research Center on Aging, Boston, MA (2) Brain microvascular pathology is a common finding in Alzheimer’s disease and other dementias. However, Figure 2 – Time traces of [Hb], [HbO2], [HbT], StO2 and SaO2 during the hypoxia and hypercapnia protocols 10 and 20 weeks after Figure 3 – Illustration of the differences in animal groups and the extent to which microvascular abnormalities cause or contribute to cognitive impairment is unclear. the start of folate deficient diet (blue and red lines represent the mean values for each dietary group, whereas, dashed lines indicate changes within each group between weeks 10 and 20 in Dietary vascular risk factors, including poor folate status are potentially modifiable predictors of cognitive the range corresponding to ± one standard error from the mean). A first striking result is the consistency of baseline values across cerebral tissue saturation (StO2) and concentration of impairment among older adults. Folate deficiency in rat impairs cognition and causes cerebral animals within a group (control or folate deficient), and the reproducibility of baseline values measured at weeks 10 and 20. hemoglobin ([HbT]), blood concentration of hemoglobin ([HbT]b), microvascular damage, without concomitant neurodegeneration [1]. We hypothesized that folate Absolute brain total hemoglobin concentration ([HbT]) and tissue oxygen saturation (StO2) are significantly reduced by folate and partial blood volume (Vb/Vt) Eq. (1). FD rats have deficiency might result in functional decrements in cerebral oxygen delivery and vascular reactivity.
    [Show full text]
  • The Effect of Anemia on the Ventilatory Response to Transient and Steady-State Hypoxia
    The effect of anemia on the ventilatory response to transient and steady-state hypoxia. T V Santiago, … , N H Edelman, A P Fishman J Clin Invest. 1975;55(2):410-418. https://doi.org/10.1172/JCI107945. Research Article The effects of anemia upon the ventilatory responses to transient and steady-state hypoxia were studied in unanesthetized goats. Responses to transient hypoxia (inhalation of several breaths of nitrogen) were considered to reflect peripheral chemoreceptor and non-chemoreceptor influences of hypoxia upon ventilatory control. In all goats, severe anemia (hemoglobin 3.1-4.8 g/100ml) markedly heightened the responses to transient hypoxia (from a mean of 0.27 to a mean of 0.75 liter/min/percent fall in SaO2). This phenomenon was substantially reversed by alpha-adrenergic blockade (phenoxybenzamine, 5 mg/kg). In contrast, the ventilatory responses to steady-state hypoxia were unaffected by severe anemia. These data suggest that severe anemia enhances the peripheral chemoreceptor-mediated response to hypoxia through a mechanism involving the alpha-adrenergic system. It also appears that a ventilatory depressant effect of hypoxia which is not mediated by the peripheral chemoreceptors is also enhanced by severe anemia, thereby preventing an increase in the steady-state ventilatory response to hypoxia. Finally, experiments involving variation in oxygen affinity of hemoglobin suggested that O2 tension rather than O2 availability in arterial blood is the major determinant of peripheral chemoreceptor activity. Find the latest version: https://jci.me/107945/pdf The Effect of Anemia on the Ventilatory Response to Transient and Steady-State Hypoxia TEODORO V. SANTIAGO, NORMAN H.
    [Show full text]
  • Respiration the Main Function of the Respiratory System Is Gas Exchange
    Respiration The main function of the respiratory system is gas exchange. Gas exchange is achieved through a process called respiration, or breathing. The cardiovascular system and the respiratory system work together to accomplish respiration. External Respiration During external respiration, fresh oxygen from outside the body fills the lungs and alveoli, and carbon dioxide is transported from the body tissues to the lungs. For oxygen to reach the body’s tissues and carbon dioxide to leave the body, gas exchange must occur in the alveolar capillary membrane. The alveoli and the capillaries that surround them make up the alveolar (al-VEE-oh-lar) capillary membrane (Figure 9.5 in the textbook). The alveolar capillary membrane is built for gas exchange, as explained by Fick’s Law. Fick’s Law states that the diffusion of oxygen and carbon dioxide between the capillaries and the alveolar sacs is proportional to the surface area (S.A.) of the lungs, the diffusion constant (D) of each gas, and the difference in partial pressure between each capillary and alveolar sac (P1-P2). According to this law, the diffusion of gases is also inversely related to the thickness of the tissues (T) involved. In simpler terms, thin-walled tissues allow for easier gas exchange. Diffusion = Therefore, oxygen easily diffuses across the membrane of the alveolar sacs and into the capillaries. Carbon dioxide passes from the capillaries into the alveolar sacs, where it can be expelled from the body via the lungs (Figure 9.5). How fast does gas exchange occur in the lungs? Faster than you might think.
    [Show full text]
  • Oxygen Transport During Ex Situ Machine Perfusion of Donor Livers Using Red Blood Cells Or Artificial Oxygen Carriers
    International Journal of Molecular Sciences Review Oxygen Transport during Ex Situ Machine Perfusion of Donor Livers Using Red Blood Cells or Artificial Oxygen Carriers Silke B. Bodewes 1,2 , Otto B. van Leeuwen 1,3, Adam M. Thorne 1,3, Bianca Lascaris 1,3, Rinse Ubbink 3, Ton Lisman 2 , Diethard Monbaliu 4,5 , Vincent E. De Meijer 1 , Maarten W. N. Nijsten 6 and Robert J. Porte 1,* 1 Section of Hepatobiliary Surgery and Liver Transplantation, Department of Surgery, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands; [email protected] (S.B.B.); [email protected] (O.B.v.L.); [email protected] (A.M.T.); [email protected] (B.L.); [email protected] (V.E.D.M.) 2 Surgical Research Laboratory, Department of Surgery, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands; [email protected] 3 Organ Preservation & Resuscitation Unit, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands; [email protected] 4 Department of Abdominal Transplantation Surgery and Coordination, University Hospitals Leuven, 3000 Leuven, Belgium; [email protected] 5 Transplantation Research Group, Department of Microbiology, Immunology, and Transplantation, Katholieke Universiteit Leuven, 3000 Leuven, Belgium 6 Department of Critical Care, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands; [email protected] * Correspondence: [email protected]; Tel./Fax: +31-50-3611745 Abstract: Oxygenated ex situ machine perfusion of donor livers is an alternative for static cold preservation that can be performed at temperatures from 0 ◦C to 37 ◦C.
    [Show full text]
  • Hemoglobin/Myoglobin Robert F.Diegelmann, Ph.D
    Hemoglobin/Myoglobin Robert F.Diegelmann, Ph.D. OBJECTIVES 1. Describe the interactions of heme, globins and oxygen. 2. Discuss the mechanism responsible for Sickle­Cell Anemia. 3. Understand the clinical significance of A1C hemoglobin. 4. Describe the basic biochemical mechanisms of O2 delivery & CO2 removal. RECOMMENDED RESOURCES Lehninger, Principles of Biochemistry, 5th edition, Chapter 5 Molecular Cell Biology, 5th edition; Lodish et al., page 67 http://web.indstate.edu/thcme/mwking/hemoglobin­myoglobin.html#hemoglobin Myoglobin (muscle) & Hemoglobin (Red Blood Cells) were the first proteins for which three­ dimensional structures were determined. Professor Max Perutz and his colleagues at Cambridge University determined Hemoglobin’s three dimensional structure in the late 1950s Therefore Hemoglobin is one of the most studied & best understood proteins. Figure 1. The Evolution of the Globin protein family Figure 2. Structural similarity of the Globin proteins Figure 3 Below is the basic heme group structure. It consists of a complex organic ring structure named Protoporphyrin. NOTE: Heme metabolism will be covered in more detail in another lecture. Protoporphyrin prosthetic group Porphyrin ring Fe binding site Methene bridge Substitution sites Figure 4 Oxygen is not very soluble in aqueous solutions and therefore needs a special molecule to be carried to tissues and cells. The Protoporphyrin ring structure of Heme binds a single iron atom in its ferrous (Fe 2+) . The iron atom has six coordination bonds, four are found bound to the nitrogens in the Porphyrin ring system and two additional sites perpendicular to the Porphyrin. The Cytochromes (a, b & c) are proteins that also consist of porphyrin structures.
    [Show full text]
  • Prognostic Value of the Hemoglobin/Red Cell Distribution Width Ratio in Resected Lung Adenocarcinoma
    cancers Article Prognostic Value of the Hemoglobin/Red Cell Distribution Width Ratio in Resected Lung Adenocarcinoma Francesco Petrella 1,2,* , Monica Casiraghi 1 , Davide Radice 3, Andrea Cara 1, Gabriele Maffeis 1, Elena Prisciandaro 1, Stefania Rizzo 4,5 and Lorenzo Spaggiari 1,2 1 Department of Thoracic Surgery, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy; [email protected] (M.C.); [email protected] (A.C.); [email protected] (G.M.); [email protected] (E.P.); [email protected] (L.S.) 2 Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, 20141 Milan, Italy 3 Department of Biostatistics, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy; [email protected] 4 Department of Radiology, Ente Ospedaliero Cantonale (EOC) Istituto di Imaging della Svizzera Italiana (IIMSI), 6903 Lugano, Switzerland; [email protected] 5 Facoltà di Scienze Biomediche, Università della Svizzera italiana, via Buffi 13, 6900 Lugano, Switzerland * Correspondence: [email protected] or [email protected]; Tel.: +39-025-748-9362; Fax: +39-029-437-9218 Simple Summary: Low hemoglobin (Hb) values—indicating a condition of anemia—are related to impaired nutrition and immune system status, suggesting reduced tolerance to therapies in oncologic patients. In fact, it has been shown that pre-treatment anemia predicts poor outcomes in many neoplastic diseases. Similarly, red cell distribution width—which is a measure of the size of variation of circulating erythrocytes—has been shown to be closely related to poor prognosis Citation: Petrella, F.; Casiraghi, M.; both in cardiovascular and in oncologic diseases.
    [Show full text]
  • Improved Oxygen Release: an Adaptation of Mature Red Cells to Hypoxia
    Improved oxygen release: an adaptation of mature red cells to hypoxia Miles J. Edwards, … , Carrie-Lou Walters, James Metcalfe J Clin Invest. 1968;47(8):1851-1857. https://doi.org/10.1172/JCI105875. Research Article Blood from patients with erythrocytosis secondary to arterial hypoxemia due either to congenital heart disease or to chronic obstructive pulmonary disease was shown to have a decreased affinity for oxygen; the average oxygen pressure required to produce 50% saturation of hemoglobin with oxygen was 29.8 mm Hg (average normal, 26.3 mm Hg). Such a displacement of the blood oxygen equilibrium curve promotes the release of oxygen from blood to the tissues. Studies were also performed upon blood from a man with complete erythrocyte aplasia who received all of his red cells by transfusion from presumably normal persons. With mild anemia (hematocrit, 28%), the affinity of his blood for oxygen was slightly diminished (an oxygen pressure of 27.0 mm Hg was required to produce 50% saturation of hemoglobin with oxygen). With severe anemia (hematocrit, 13.5%), however, his blood had a markedly decreased oxygen affinity (an oxygen pressure of 29.6 mm Hg was required to produce 50% saturation of hemoglobin with oxygen). We conclude that patients with various conditions characterized by an impairment in the oxygen supply system to tissues respond with a diminished affinity of their blood for oxygen. Although the mechanism which brings about this adaptation is not known, the displacement of the oxygen equilibrium curve is associated with an increase in heme-heme interaction. The decrease in blood oxygen affinity […] Find the latest version: https://jci.me/105875/pdf Improved Oxygen Release: an Adaptation of Mature Red Cells to Hypoxia MUas J.
    [Show full text]
  • A Carbon Monoxide Transport Model of the Human Respiratory System Applied to …
    A Carbon Monoxide Transport Model of The Human Respiratory System Applied to … A Carbon Monoxide Transport Model Cyro Albuquerque Neto of the Human Respiratory System [email protected] Applied to Urban Atmosphere Jurandir Itizo Yanagihara Senior Member, ABCM Exposure Analysis [email protected] The aim of this work is to analyze the carbon monoxide (CO) transport in the human body submitted to several physical activity levels. A complete mathematical model of the human respiratory system was developed, considering the exchanges of CO, oxygen (O2) and Fábio Turri carbon dioxide (CO2) in the lung, blood and tissues. The human body was divided in the [email protected] following compartments: alveolar, pulmonary capillaries, arterial, venous, tissue capillary University of Sao Paulo - USP and tissues. The gas transport in the blood and tissues is represented by empirical Escola Politécnica equations. The physiological parameters were described in function of physical activity. Department of Mechanical Engineering The model was validated by comparing its results with experimental data of controlled CO 055809-900 São Paulo, SP, Brazil exposition. The agreement was excellent. CO concentration curves for critical days of São Caetano do Sul city (SP, Brazil) atmosphere were used as model input. The simulation results for some physical activities show that the more intense the activity, the larger the blood carboxyhemoglobin (COHb) level variations. The COHb level was compared with a CO quality air criteria, which showed to be adequate for low and moderate physical activity levels. Keywords: compartment model, carbon monoxide, gas transport, respiratory system, air pollution The models of Selvakumar, Sharan and Singh (1992) and Introduction Sharan and Selvakumar (1999) divide the lung into compartments, one alveolar and several pulmonary capillaries.
    [Show full text]
  • Myoglobin/Hemoglobin O2 Binding and Allosteric Properties
    Myoglobin/Hemoglobin O2 Binding and Allosteric Properties of Hemoglobin •Hemoglobin binds and transports H+, O2 and CO2 in an allosteric manner •Allosteric interaction - a regulatory mechanism where a small molecule (effector) binds and alters an enzymes activity ‘globin Function O does not easily diffuse in muscle and O is toxic to biological 2 2 systems, so living systems have developed a way around this. Physiological roles of: – Myoglobin • Transports O2 in rapidly respiring muscle • Monomer - single unit • Store of O2 in muscle high affinity for O2 • Diving animals have large concentration of myoglobin to keep O2 supplied to muscles – Hemoglobin • Found in red blood cells • Carries O2 from lungs to tissues and removes CO2 and H+ from blood to lungs • Lower affinity for O2 than myoglobin • Tetrameter - two sets of similar units (α2β2) Myo/Hemo-globin • Hemoglobin and myoglobin are oxygen- transport and oxygen-storage proteins, respectively • Myoglobin is monomeric; hemoglobin is tetrameric – Mb: 153 aa, 17,200 MW – Hb: two α chains of 141 residues, 2 β chains of 146 residues X-ray crystallography of myoglobin – mostly α helix (proline near end of each helix WHY?) – very small due to the folding – hydrophobic residues oriented towards the interior of the protein – only polar aas inside are 2 histidines Structure of heme prosthetic group Protoporphyrin ring w/ iron = heme Oxygenation changes state of Fe – Purple to red color of blood, Fe+3 - brown Oxidation of Fe+2 destroys biological activity of myoglobin Physical barrier of protein
    [Show full text]
  • Respiratory System.Pdf
    Respiratory System Respiratory System - Overview: Assists in the detection Protects system of odorants Respiratory (debris / pathogens / dessication) System 5 3 4 Produces sound (vocalization) Provides surface area for gas exchange (between air / blood) 1 2 For the body to survive, there must be a constant supply of Moves air to / from gas O2 and a constant exchange surface disposal of CO 2 Marieb & Hoehn (Human Anatomy and Physiology, 8th ed.) – Table 19.1 Respiratory System Respiratory System Functional Anatomy: Functional Anatomy: Trachea Epiglottis Naming of pathways: • > 1 mm diameter = bronchus Upper Respiratory • Conduction of air • < 1 mm diameter = bronchiole System • Gas exchange Primary • < 0.5 mm diameter = terminal bronchiole Bronchus • Filters / warms / humidifies Lower Respiratory Bronchi System incoming air bifurcation (23 orders) 1) External nares 5) Larynx 2) Nasal cavity • Provide open airway Green = Conducting zone • Resonance chamber • channel air / food Purple = Respiratory zone 3) Uvula • voice production (link) 4) Pharynx 6) Trachea 7) Bronchial tree • Nasopharynx Bronchiole 8) Alveoli • Oropharynx Terminal Bronchiole Respiratory Bronchiole • Laryngopharynx Alveolus Martini et. al. (Fundamentals of Anatomy and Physiology, 7th ed.) – Figure 23.1 Martini et. al. (Fundamentals of Anatomy and Physiology, 7th ed.) – Figure 23.9 Respiratory System Respiratory System Functional Anatomy: Functional Anatomy: Respiratory Mucosa / Submucosa: How are inhaled debris / pathogens cleared from respiratory tract? Near Near trachea alveoli Nasal Cavity: Epithelium: Particles > 10 µm Pseudostratified Simple columnar cuboidal Conducting Zone: Particles 5 – 10 µm Cilia No cilia Respiratory Zone: Mucus Escalator Particles 1 – 5 µm Mucosa: Lamina Propria (areolar tissue layer): Mucous membrane (epithelium / areolar tissue) smooth smooth muscle muscle Mucous No glands mucous glands Cartilage: Rings Plates / none Macrophages Martini et.
    [Show full text]
  • Tissue Hypoxia: Implications for the Respiratory Clinician
    Tissue Hypoxia: Implications for the Respiratory Clinician Neil R MacIntyre MD FAARC Introduction Causes of Hypoxia Hypoxemia Oxygen Delivery Oxygen Extraction/Utilization Compensatory Mechanisms for Hypoxia Current and Future Clinical Implications Summary Oxygen is essential for normal aerobic metabolism in mammals. Hypoxia is the presence of lower than normal oxygen content and pressure in the cell. Causes of hypoxia include hypoxemia (low blood oxygen content and pressure), impaired oxygen delivery, and impaired cellular oxygen up- take/utilization. Many compensatory mechanisms exist at the global, regional, and cellular levels to allow cells to function in a hypoxic environment. Clinical management of tissue hypoxia usually focuses on global hypoxemia and oxygen delivery. As we move into the future, the clinical focus needs to change to assessing and managing mission-critical regional hypoxia to avoid unnecessary and potential toxic global strategies. We also need to focus on understanding and better harnessing the body’s own adaptive mechanisms to hypoxia. Key words: hypoxia; hypoxemia; alveolar ventila- tion; ventilation/perfusion matching; diffusion; hemoglobin binding; hemoglobin-oxygen binding; re- gional oxygenation; oxygen extraction; oxygen utilization; hypoxia-inducible factors. [Respir Care 2014;59(10):1590–1596. © 2014 Daedalus Enterprises] Introduction with oxygen to produce energy (converting adenosine 5Ј- Ј diphosphate to adenosine 5 -triphosphate) along with CO2 Oxygen is essential for normal aerobic metabolism in and
    [Show full text]