A Paleoecological Approach Ary, Research Should Consider the Resources Outside of the Park

Total Page:16

File Type:pdf, Size:1020Kb

A Paleoecological Approach Ary, Research Should Consider the Resources Outside of the Park RANGER: THE JOURNAL OF THE ASSOCIATION OF NATIONAL PARK RANGERS -- are not within the monument. Since the fossil record does not end at the park bound- A Paleoecological Approach ary, research should consider the resources outside of the park. In 1994, The Morrison Formation Ex- ?lib Managing Paleontological Resources tinct Ecosystem Project, was initiated as a multidisciplinary endeavor designed to de- By Vincent L. Santucci to define the natural boundaries. Research- termine the nature, distribution, and evolu- Fossil Butte National Monument ers and resource managers are cognizant tion ofancient ecosystems that existed in the that ecological boundaries do not generally Western Interior ofthe United States during coincide with adminstrative boundaries (i.e., the Late Jurassic. A team ofspecialists were rangesofbison, grizzlies. or wolves existing assembled to gain a more con~pletepicture within and around Yellowstone). ofthe Morrison ecosystem. Isotopic dating, Ecosystems are dynamic entities and regional tectonics, and trace fossil analysis been collected from the field. Appropriate evolve over time. The interrelationships were some of the lines of evidence used to field collecting techniques combined with between organisms and the changing envi- interpret the ancient climate and changes in detailed field data acquisition are essential ronment will be continually redefined. A the paleohydrology. in the science of paleontology. Museums paleoecological perspective incorporates a The value ofa multidisciplinary approach. around the world contain fossils that pos- temporal component to understanding eco- one that goes beyond park boundaries, pro- sess inadequate data. Past collecting habits systems. The paleoecological perspective vides greater opportunities for interpreting have generated cabinets full of fossils that provides an opportunity to assess the factors ancient landscapes to the public. Part of the lack important scientific information. At- related to temporal changes such as climatic responsibility within the National Park Ser- tempts to reconstruct missing information trends or extinction events. vice is to provide the highest level of scien- can result in conlpromising the scientific There is some value in viewing ecosys- tific understanding to the park visitor. Pre- integrity of the data. A holisitic and multi- tems from a dual-uniformitarian perspec- senting a broad perspective of the ancient disciplinary approach to managing paleon- tive. This view recognizes that the "present setting can often be a very effective means tological resources provides the greatest is the key to the past" and that the "past is the of interpreting paleontological resources to opportunities to interpret the ancient land- key to the future." Our ability to best under- the park visitor. -I scape. Paleontologists interested in conduct- stand our universe, from the limited slice in ing research within National Park Service time we occupy, is enhanced by any knowl- areas should employ holistic strategies as edge gained from the past. Vince Santucci currently is serving as chief part of their field collection of fossils and A multidisciplinary approach to under- ranger at Fossil Butte National Monument. the associated geological and paleoecologi- standing past ecosystems is the recom- Most of his career has been spent in the field of paleontology. cal data. mended approach to managing paleonto- As new methods and technolo,'ales re- logical resources. Research collecting should shape the paleontologist's approach to ex- look beyond the fossilized floral and faunal cavating fossilized remains. the ability to specimens. All paleontological resource assimilate new levels of information in- collecting should require that researchers creases. In some cases, "conservation pale- obtain any associated geologic or ontology" or preserving fossils in sit11is the paleoecologic data. This associated infor- preferred resource management decision. mation can enable greater levels of interpre- This strategy is based upon the assumption tation of ancient sedimentary environments, that future technology may be able to extract past climates, historical biogeography of greater amounts of information from the paleospecies and other information. paleontological resources. Just as modem ecosystems don't end at A paleoecological approach to managing park boundaries. likewise, paleoecosystems non-renewable paleontological resources is extend beyond these same geographic bound- a holistic strategy for research and field aries. Fossil Butte preserves approximately collection. The study of paleoecology, like 8.000 acres of ancient Fossil Lake. Within modem ecology, considers the relationships the park boundaries are important expo- between organisms and the environment. sures of the deep water portion of the fossil- Thus ecosystems and paleoecosystems are iferous Green River Formation. Fossil rich defined by both biological andphysical com- deposits representing near shore and shal- ponents. In our efforts to define an ecosys- low water segments of the lake, which pre- tem. or even a paleoecosystem. we attempt serve a different assemblage of organisms, RANGER: F..ILL I +J', ANGER R - The Journal or the Association or National Park Rangers Vol. XV, No. 4 Fall 1999 Environmental Excellence! The Challenge of the 21 st Century .
Recommended publications
  • Early Tetrapod Relationships Revisited
    Biol. Rev. (2003), 78, pp. 251–345. f Cambridge Philosophical Society 251 DOI: 10.1017/S1464793102006103 Printed in the United Kingdom Early tetrapod relationships revisited MARCELLO RUTA1*, MICHAEL I. COATES1 and DONALD L. J. QUICKE2 1 The Department of Organismal Biology and Anatomy, The University of Chicago, 1027 East 57th Street, Chicago, IL 60637-1508, USA ([email protected]; [email protected]) 2 Department of Biology, Imperial College at Silwood Park, Ascot, Berkshire SL57PY, UK and Department of Entomology, The Natural History Museum, Cromwell Road, London SW75BD, UK ([email protected]) (Received 29 November 2001; revised 28 August 2002; accepted 2 September 2002) ABSTRACT In an attempt to investigate differences between the most widely discussed hypotheses of early tetrapod relation- ships, we assembled a new data matrix including 90 taxa coded for 319 cranial and postcranial characters. We have incorporated, where possible, original observations of numerous taxa spread throughout the major tetrapod clades. A stem-based (total-group) definition of Tetrapoda is preferred over apomorphy- and node-based (crown-group) definitions. This definition is operational, since it is based on a formal character analysis. A PAUP* search using a recently implemented version of the parsimony ratchet method yields 64 shortest trees. Differ- ences between these trees concern: (1) the internal relationships of aı¨stopods, the three selected species of which form a trichotomy; (2) the internal relationships of embolomeres, with Archeria
    [Show full text]
  • Paleoecology: an Untapped Resource for Teaching Environmental Change
    International Journal of Environmental & Science Education Paleoecology Vol. 4, No. 4, October 2009, 441-447 International Journal of Environmental & Science Education Vol. 3, No. 3, July 2008, xx-xx Paleoecology: An Untapped Resource for Teaching Environmental Change Diana J. Raper Oregon State University, USA Holli Zander Brevard Public Schools, USA Received 06 February 2009; Accepted 13 May 2009 Global warming and climate change have become hot topics that incite debate, inspire scientific research, and influence international policy. However, the scientific research that provides the past climate and environmental information upon which contemporary envi- ronmental change is measured, receives little attention in high school curriculum. Paleoe- cology, the study of ancient ecosystems, provides a unifying theme for teaching multiple high school science curriculum concepts involving global environmental change. As a teaching tool, paleoecology establishes a framework linking concepts such as geologic time, climate change, adaptation, survival, extinction, human impact and ecological interac- tions that are often taught separately. This article provides a brief overview of how the science of paleoecology can be introduced to students and incorporated into the curriculum through simple activities. The activities outlined here include using elevation maps or Ga- zetteers to investigate potential sites where marine fossils may be found far from the ocean, using multiple biological proxies to measure climate change, and creating models to dem- onstrate the impact of sea level rise on coastal ecosystems. These activities provide numer- ous opportunities for the students to discuss the scientific research associated with climate change, the economic impacts of changing climate, and how science may influence policy regarding climate change mitigation.
    [Show full text]
  • Fossil Communities in Paleoecology: Their Recognition and Significance
    J. A. FAGERSTROM Dept. Geology, University of Nebraska, Lincoln, Nebr. Fossil Communities in Paleoecology: Their Recognition and Significance Abstract: Fossil assemblages consist of individuals mentary aggregate, lithofacies relationships, sur- that were members of one or more ancient com- face condition of fossils, and ratio of whole to frag- munities. Four types of fossil assemblages (fossil mented shells. Replacement, leaching, and crush- communities, residual or winnowed fossil com- ing of shells are the causes of most postbunal munities, transported fossil assemblages, and mixed alteration and may profoundly influence the cri- fossil assemblages) may be differentiated on the teria for preburial alteration. basis of amount, and in some cases, cause of pre- Analysis of a fossil assemblage from the Pennsyl- burial alteration. The most damaging agents to vanian of Nebraska indicates that the specimens marine communities are predators, scavengers, and have been subject to considerable postburial crush- especially bottom currents which selectively re- ing which has reduced the significance of some of move shells. To assess the preburial alteration of a the criteria for assessing preburial alteration. None- particular fossil assemblage one must evaluate as theless, right-skewed size-frequency distributions many of the following criteria as can be reasonably for two species of fossil invertebrates give strong applied: size-frequency distributions, ratio of indication that this assemblage is a fossil community. articulated to disarticulated valves, ratio of oppo- This conclusion is supported by the fact that the site valves, dispersion of fossils, population density, elongated shells show no tendency toward parallel community density, faunal composition and alignment and the absence of primary sedimentary diversity, orientation of clastic particles (including structures indicative of deposition from strong fossils), texture, sorting, and structure of sedi- directional currents.
    [Show full text]
  • Vertebrate Paleontology of the Cloverly Formation (Lower Cretaceous), II: Paleoecology Author(S): Matthew T
    Vertebrate Paleontology of the Cloverly Formation (Lower Cretaceous), II: Paleoecology Author(s): Matthew T. Carrano , Matthew P. J. Oreska , and Rowan Lockwood Source: Journal of Vertebrate Paleontology, 36(2) Published By: The Society of Vertebrate Paleontology URL: http://www.bioone.org/doi/full/10.1080/02724634.2015.1071265 BioOne (www.bioone.org) is a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/page/terms_of_use. Usage of BioOne content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. Journal of Vertebrate Paleontology e1071265 (12 pages) Ó by the Society of Vertebrate Paleontology DOI: 10.1080/02724634.2015.1071265 ARTICLE VERTEBRATE PALEONTOLOGY OF THE CLOVERLY FORMATION (LOWER CRETACEOUS), II: PALEOECOLOGY MATTHEW T. CARRANO,*,1 MATTHEW P. J. ORESKA,1,2 and ROWAN LOCKWOOD3 1Department of Paleobiology, Smithsonian Institution, P.O. Box 37012, MRC 121, Washington, DC 20013-7012, U.S.A., [email protected]; 2Department of Environmental Sciences, University of Virginia, Clark Hall, 291 McCormick Road, P.O.
    [Show full text]
  • Redalyc.Biostratigraphy and Paleoecology of the Qom Formation
    Revista Mexicana de Ciencias Geológicas ISSN: 1026-8774 [email protected] Universidad Nacional Autónoma de México México Behforouzi, Elham; Safari, Amrollah Biostratigraphy and paleoecology of the Qom Formation in the Chenar area (northwestern Kashan) , Iran Revista Mexicana de Ciencias Geológicas, vol. 28, núm. 3, diciembre, 2011, pp. 555-565 Universidad Nacional Autónoma de México Querétaro, México Available in: http://www.redalyc.org/articulo.oa?id=57221165016 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Revista Mexicana de Ciencias Geológicas,Biostratigraphy v. 28, núm. and 3, paleoecology 2011, p. 555-565 of the Qom Formation, Iran 555 Biostratigraphy and paleoecology of the Qom Formation in Chenar area (northwestern Kashan), Iran Elham Behforouzi* and Amrollah Safari Department of Geology, Faculty of Sciences, University of Isfahan, Isfahan, Iran, 81746-73441. * [email protected] ABSTRACT A study of large benthic foraminifera from the 147 m-thick Qom Formation in the Chenar area (northwestern Kashan) is reported. One hundred and twelve thin sections were prepared and the distribution of benthic foraminifera was analyzed to reconstruct paleoenvironmental conditions. Study of these sections led to the identification of 28 genera and 38 species. On the basis of the recognized foraminifera, the section is comparable to Lepidocyclina- Operculina- Ditrupa Assemblage zone, and the age of the Qom Formation in the studied section is assigned to the Oligocene. Evidence of sea level changes is observed from bottom to top of the studied section.
    [Show full text]
  • Fins to Limbs: What the Fossils Say1
    EVOLUTION & DEVELOPMENT 4:5, 390–401 (2002) Fins to limbs: what the fossils say1 Michael I. Coates,a,* Jonathan E. Jeffery,b and Marcello Rutaa aDepartment of Organismal Biology and Anatomy, University of Chicago, 1027 E57th Street, Chicago, IL 60637, USA bInstitute of Evolutionary and Ecological Sciences, Leiden University, Kaiserstraat 63, Postbus 9516, 2300 RA Leiden, The Netherlands *Author for correspondence (email: [email protected]) 1From the symposium on Starting from Fins: Parallelism in the Evolution of Limbs and Genitalia. SUMMARY A broad phylogenetic review of fins, limbs, and highlight a large data gap in the stem group preceding the first girdles throughout the stem and base of the crown group is appearance of limbs with digits. It is also noted that the record needed to get a comprehensive idea of transformations unique of morphological diversity among stem tetrapods is somewhat to the assembly of the tetrapod limb ground plan. In the lower worse than that of basal crown group tetrapods. The pre-limbed part of the tetrapod stem, character state changes at the pecto- evolution of stem tetrapod paired fins is marked by a gradual re- ral level dominate; comparable pelvic level data are limited. In duction in axial segment numbers (mesomeres); pectoral fins of more crownward taxa, pelvic level changes dominate and re- the sister group to limbed tetrapods include only three. This re- peatedly precede similar changes at pectoral level. Concerted duction in segment number is accompanied by increased re- change at both levels appears to be the exception rather than gional specialization, and these changes are discussed with the rule.
    [Show full text]
  • Invertebrate Paleontology Earth Sciences Division Natural History
    Invertebrate Paleontology 19^ Earth Sciences Division Natural History Mu 3311m A NEW SPECIES OF CHIMNEY-BUILDING PENITELLA FROM THE GULF OF ALASKA (BIVALVIA: PHOLADIDAE) * LIBRARY 'Ol ANGBIES GOIJNTV \i: A>., , -APOsrr.'ON GEORGE L. KENNEDY AND JOHN M. ARMENTROUT 1 Made in United States of America Reprinted from THE VELIGER Vol. 32, No. 3, July 1989 © California Malacozoological Society, Inc., 1989 THE VELIGER © CMS, Inc., 1989 The Veliger 32(3):320-325 (July 3, 1989) A New Species of Chimney-Building Penitella from the Gulf of Alaska (Bivalvia: Pholadidae) by GEORGE L. KENNEDY Invertebrate Paleontology Section, Natural History Museum of Los Angeles County, 900 Exposition Boulevard, Los Angeles, California 90007, USA AND JOHN M. ARMENTROUT Mobil Oil Corporation, New Exploration Ventures, P.O. Box 650232, Dallas, Texas 75265, USA Abstract. Penitella hopkinsi sp. nov., from the Gulf of Alaska, differs from other species in the genus by its blunt and thickened posterior margin that inserts against the base of a chimney of agglutinated sediment (unique in the genus), by the shape of the mesoplax, and by details of the umbonal reflection and dorsal extension of the callum. Anatomy is unknown. Late Pleistocene records of the species range from the Seward Peninsula, Alaska, to Point Arena, California. INTRODUCTION acology]); MCZ, Museum of Comparative Zoology, Cam- bridge; NMC, National Museum of Natural Sciences, Recent efforts to identify several enigmatic species of Peni- Ottawa; NSMT, National Science Museum, Tokyo; tella Valenciennes, 1846, from both the northeastern and SBMNH, Santa Barbara Museum of Natural History, northwestern Pacific revealed that a number of nomencla- Santa Barbara; UCLA, University of California, Los An- tural and taxonomic problems in the genus still need to geles (collections at LACM); UCMP, University of Cal- be resolved (KENNEDY, 1985).
    [Show full text]
  • Fish Taphonomy and Environmental Inference in Paleolimnology
    Palaeogeography, Palaeoclimatology, Palaeoecology, 62 (1988): 577 592 577 Elsevier Science Publishers B.V., Amsterdam -- Printed in The Netherlands FISH TAPHONOMY AND ENVIRONMENTAL INFERENCE IN PALEOLIMNOLOGY R. L. ELDER and G. R. SMITH Department of Geology, Oberlin College, Oberlin, OH 44074 (U.S.A.) Museum of Paleontology, University of Michigan, Ann Arbor, MI 48109 (U.S.A.) (Accepted for publication April 24, 1986) Abstract Elder, R. L. and Smith, G. R., 1988. Fish taphonomy and environmental inference in paleolimnology. Palaeogeogr., Palaeoclimatol., Palaeoecol., 62: 577-592. The contribution of fish studies to paleoecology generally takes the form of (1) inference from analogies in modern fish faunas and (2) fish taphonomy -- the pattern of death and dispersal of bones. (1) Modern fish faunas and associated organisms provide taxonomic, ecological, or functional analogues for interpretation of ancient limiting factors and behaviors. These inferences presume taxonomic conservatism. They also presume functional relationships between morphological form and feeding mode or habitat. They become weak with increased geologic age or phyletic distance between ancient subject and modern analogue. (2) Fish taphonomy may contribute information about limnology, community composition, life history, mortality, depositional environment, and preservation. Taphonomic reconstruc- tion of ecology and preservation depends on the applicability of analogous processes in modern ecology and limnology. In aquatic taphonomy, temperature is the most important factor in determining the fate of a carcass. Above about 16°C (depending on depth and pressure), most carcasses are made buoyant by bacterial decay gases and are transported to the surface where they may decay further and fall piecemeal into deepwater environments, or drift to beach environments where wave energy disarticulates, abrades, and scatters the bones.
    [Show full text]
  • Taxonomic Revision and Paleoecology of Middle Devonian (Eifelian) Fishes of the Onondaga, Columbus and Delaware Limestones of the Eastern United States
    Graduate Theses, Dissertations, and Problem Reports 2002 Taxonomic revision and paleoecology of Middle Devonian (Eifelian) fishes of the Onondaga, Columbus and Delaware limestones of the eastern United States Robert Lewis Martin West Virginia University Follow this and additional works at: https://researchrepository.wvu.edu/etd Recommended Citation Martin, Robert Lewis, "Taxonomic revision and paleoecology of Middle Devonian (Eifelian) fishes of the Onondaga, Columbus and Delaware limestones of the eastern United States" (2002). Graduate Theses, Dissertations, and Problem Reports. 1678. https://researchrepository.wvu.edu/etd/1678 This Dissertation is protected by copyright and/or related rights. It has been brought to you by the The Research Repository @ WVU with permission from the rights-holder(s). You are free to use this Dissertation in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you must obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/ or on the work itself. This Dissertation has been accepted for inclusion in WVU Graduate Theses, Dissertations, and Problem Reports collection by an authorized administrator of The Research Repository @ WVU. For more information, please contact [email protected]. Taxonomic Revision and Paleoecology of Middle Devonian (Eifelian) Fishes of the Onondaga, Columbus and Delaware Limestones of the eastern United States. Robert L. Martin Dissertation submitted to the College of Arts and Sciences at West Virginia University in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Geology Thomas Kammer, Ph.D.
    [Show full text]
  • Volume 26C-Nogrid
    Priscum Volume 26 | Issue 1 May 2021 The Newsletter of the Paleontological Society Inside this issue Diversity, Equity, and Inclusion Matter in Diversity, Equity, & Inclusion matter in Paleontology Paleontology PS Development Developments Building an inclusive and equitable Where are we now? PaleoConnect Paleontological Society (see Section 12 of the Member Code of Conduct for definitions) is Since the Paleontological Society (PS) was Journal Corner essential to realizing our core purpose — founded in 1908, its membership has been advancing the field of paleontology (see Article dominated by white men from the United PS-AGI Summer 2020 Interns II of the Articles of Incorporation). However, like States. Racial and ethnic diversity in the PS many other scientific societies, ours has remain extremely low. More than 88% of Tribute to William Clemens, Jr. historically only fostered a sense of belonging respondents to PS membership surveys Educational Materials for a subset of individuals. conducted in 2013 and 2019 self-identified as White (Stigall, 2013; unpublished data, 2019). PS Ethics Committee Report Consider your outreach experiences. Imagine These surveys revealed that, unlike the visiting a series of first grade classrooms — proportion of women, which has increased in Research and Grant Awardees overwhelmingly, the children are fascinated by younger age cohorts (Stigall, 2013), racial and PS Annual meeting at GSA Connects dinosaur bones, scale trees, and trilobites — ethnic diversity varied little among age groups, 2021 regardless of their identities. Now, reflect on suggesting that substantial barriers to the your experiences in paleontological settings as inclusion of most racial and ethnic groups have Upcoming Opportunities an adult; do they include as much diversity as persisted across generations of PS members.
    [Show full text]
  • Paleoecology of Upper Cambrian Carbonate Units in the House Range and South Lakeside Mountains, Utah
    PALEOECOLOGY OF UPPER CAMBRIAN CARBONATE UNITS, HOUSE RANGE AND SOUTH LAKESIDE MOUNTAINS, UTAH by Patricia K. Garcia A thesis submitted to the faculty of The University of Utah in partial fulfillment of the requirements for the degree of Master of Science in Geology Department of Geology and Geophysics The University of Utah December 2015 Copyright © Patricia K. Garcia 2015 All Rights Reserved The University of Utah Graduate School STATEMENT OF THESIS APPROVAL The thesis of Patricia K. Garcia has been approved by the following supervisory committee members: Allan A. Ekdale , Chair 10/02/2015 Date Approved Marjorie Chan , Member 10/02/2015 Date Approved Randall B. Irmis , Member 10/02/2015 Date Approved and by John M. Bartley , Chair/Dean of the Department/College/School of Geology and Geophysics and by David B. Kieda, Dean of The Graduate School. ABSTRACT Upper Cambrian strata in the Great Basin of western Utah are dominated by marine carbonate facies. The Hellnmaria Member of the Notch Peak Formation in the southern House Range and the Upper Carbonate Member of the St. Charles Formation in the northern South Lakeside Mountains are correlative Upper Cambrian strata. At both localities, the correlative carbonate units preserve cyanobacterical stromatolite facies containing burrows. The Hellnmaria Member and the Upper Carbonate Member both contain smooth walled cylindrical burrows inside and surrounding the stromatolites. The burrows exhibit a branching morphology, and they have a coarser grain fill that is different in texture from surrounding sediments. The branching geometry of the burrow tunnels is irregular and constricted. These are assigned to the trace fossil Thalassinoides paradoxicus.
    [Show full text]
  • Trace Fossils
    Trace Fossils Paleontology Geology 331 Characteristics of Trace Fossils that make them valuable in Paleoecology • Long Time Range – allows rocks of widely different ages to be compared. • Narrow Facies Range – most trace fossils are found in their preferred environment. • No Secondary Displacement – can not be transported like body fossils. Cubichnia = Resting Repichnia = Crawling Pascichnia = Grazing Agrichnia = Farming Fodinichnia = Deposit Feeding Dwelling = Domichnia Fugichnia = Escape The behavioral classification of trace fossils, showing the major categories, and some typical examples of each. Illustrated ichnogenera are: 1, Cruziana; 2, Anomoepus; 3, Cosmorhaphe; 4, Paleodicyton; 5, Phycosiphon; 6, Zoophycos; 7, Thalassinoides; 8, Ophiomorpha; 9, Diplocraterion; 10, Gastrochaenolites; 11, Asteriacites; 12, Rusophycus. (Based on Ekdale et al. 1984.) Terminology for trace fossil preservation, depending on the relationship of the trace to sediment horizons. (Based on Ekdale et al. 1984.) One trace fossil may be produced by many different organisms. Here, all the traces are resting impressions, cubichnia, of the ichnogenus Rusophycus, produced by (a) the polychaete worm Aphrodite, (b) a nassid snail, (c) a notostracan branchiopod shrimp, and (d) a trilobite. (Based on Ekdale et al. 1984.) Ichnofacies Freshwater Marine Hardgrounds and Soft marine sediments Firmgrounds and Shoreface Skolithos burrows, Miss., WV. Skolithos Ichnfacies Formation clues: Skolithos burrows in Aladdin Sandstone, Black Hills, SD Skolithos trace fossils in the Cambrian of Wyoming Arenicola, sediment casings, and it’s burrow opening Ophiomorpha gallery of burrows. Eocene of Mississippi. Skolithos Ichnofacies Callianassa or Ghost Shrimp Callianassa shrimp mounds: origin of Ophiomorpha. Tidal flat, Florida Keys. Trilobite traces, Cruziana Ichnofacies Rusophycus, resting Cruziana, crawling Diplichnites, walking Arthrophycus, Silurian.
    [Show full text]