Taphonomy of Insects in Carbonates and Amber

Total Page:16

File Type:pdf, Size:1020Kb

Taphonomy of Insects in Carbonates and Amber Palaeogeography, Palaeoclimatology, Palaeoecology 203 (2004) 19^64 www.elsevier.com/locate/palaeo Taphonomy of insects in carbonates and amber Xavier Mart|¤nez-Delclo's a, Derek E.G. Briggs b;Ã, Enrique Pen‹alver c a Dept. Estratigra¢a, Paleontologia i Geocie'ncies Marines, Fac. Geologia, Universitat de Barcelona, 08028 Barcelona, Spain b Department ofGeology and Geophysics, Yale University, P.O.Box 208109, New Haven, CT 06520-8109, USA c Institut Cavanilles de Biodiversitat i Biologia evolutiva, Universitat de Vale'ncia, Apart. 2085 Vale'ncia, Spain Received 15 July 2002; received in revised form 11 August 2003; accepted 16 September 2003 Abstract The major taphonomic processes that control insect preservation in carbonate rocks (limestones, travertines and nodules) are biological: insect size and wingspan, degree of decomposition, presence of microbial mats, predation and scavenging; environmental: water surface tension, water temperature, density and salinity, current activity; and diagenetic: authigenic mineralisation, flattening, deformation, carbonisation. The major taphonomic processes that control the preservation of insects in fossil resins (amber and copal) are different, but can be considered under the same headings ^ biological: presence of resin producers, size and behaviour of insects; environmental: latitude, climate, seasonality, resin viscosity, effects of storms and fires, soil composition; and diagenetic: resin composition, insect dehydration, pressure, carbonisation, thermal maturation, reworking, oxidation. These taphonomic processes are geographically and temporally restricted, and generate biases in the fossil record. Nevertheless, where insects occur they may be abundant and very diverse. Taphonomic processes may impact on phylogenetic and palaeobiogeographic studies, in determining the timing of the origin and extinction of insect groups, and in identifying radiations and major extinctions. Taphonomic studies are an essential prerequisite to the reconstruction of fossil insect assemblages, to interpreting the sedimentary and environmental conditions where insects lived and died, and to the investigation of interactions between insects and other organisms. ß 2003 Elsevier B.V. All rights reserved. Keywords: fossil insects; preservation; limestone; resin 1. Introduction their diversity through time have been reviewed (Carpenter, 1992; Labandeira and Sepkoski, Insects are by far the most diverse and success- 1993; Jarzembowski and Ross, 1996; Ross et ful group of macroscopic organisms and they play al., 2000; Jarzembowski, 2001b) as well as the an important role in all the terrestrial ecosystems palaeobiology of insect feeding (Labandeira et that they inhabit. The fossil record of insects and al., 1994; Labandeira, 1997). The earliest record of the Insecta is from the Lower Devonian of Gaspe¤ (Que¤bec) (Labandeira et al., 1988), but * Corresponding author. Tel./Fax: +1-203-432-8590. E-mail addresses: [email protected] the group is not evident in the fossil record in (X. Mart|¤nez-Delclo's), [email protected] (D.E.G. Briggs), signi¢cant numbers until the Upper Carbonifer- [email protected] (E. Pen‹alver). ous (Brauckmann et al., 1995). The number of 0031-0182 / 03 / $ ^ see front matter ß 2003 Elsevier B.V. All rights reserved. doi:10.1016/S0031-0182(03)00643-6 PALAEO 3225 5-1-04 20 X. Mart|¤nez-Delclo's et al. / Palaeogeography, Palaeoclimatology, Palaeoecology 203 (2004) 19^64 insect orders present in the Permian was similar to sta«tten which preserve non-biomineralised tissues that of now; the record of families identi¢es ma- are a critical source of palaeobiological data that jor periods of origination in the Permo^Carbon- are not available from the ‘shelly’ fossil record iferous, Early Jurassic, Early Cretaceous and Pa- (Briggs, 1995a). The preservation of delicate laeocene (Jarzembowski and Ross, 1996). The structures allows for more detailed comparison degree to which the recorded diversity of insects with recent organisms. The controls on the pres- is a re£ection of taphonomic processes is very ervation of non-biomineralised tissues, so-called di⁄cult to determine. A knowledge of the condi- soft-bodied fossils, are more complex than those tions that led to the preservation of insect biotas, on shelly taxa, which are dominantly sedimento- and of the biases introduced by taphonomic pro- logical (Kidwell, 1991) ^ they include organic cesses, is also essential for interpreting the role of matter input, microbial activity, and environmen- insects in terrestrial ecosystems, such as organic tal geochemistry (Allison and Briggs, 1991a,b; matter recycling and the pollination and distribu- Briggs, 2003a). tion of plant taxa. Here we review the major ta- Insect body fossils occur in a variety of envi- phonomic processes that a¡ect insects. ronmental settings including peat deposits (Ken- Insects lack biomineralised tissues and are usu- ward, 1976; Hayashi, 1994; Lavoie et al., 1997), ally considered by palaeontologists as soft-bodied deserts (e.g. Chihuahuan Desert, USA, Quater- organisms. Exceptional conditions are normally nary: Elias, 1990; desert sands Mauritania, Qua- required to ensure their preservation, but where ternary, Azar pers. commun.), lakes and rivers taphonomic processes are favourable, insects may (e.g. Montsec and Las Hoyas, Spain, Lower be extremely abundant. However, there is clearly Cretaceous: Mart|¤nez-Delclo's, 1995; Mele¤ndez, a signi¢cant range in susceptibility to decay, for 1995; Se¤zanne and Auriol travertines, France, Eo- example between £ies and beetles, re£ecting con- cene: Nel and Blot, 1990; Papazian and Nel, trasts in the degree of sclerotisation of the cuticle. 1989), deltas (e.g. Vosges, France, Middle Trias- Nonetheless, laboratory experiments have shown sic: Gall, 1996; Marchal-Papier, 1998), lagoons that even £y carcasses may survive in quiet sedi- (e.g. Solnhofen, Germany, Upper Jurassic: mentary settings for more than a year without Malz, 1976; Frickhinger, 1994), open marine en- disarticulating (Mart|¤nez-Delclo's and Martinell, vironments (e.g. northern Switzerland, Lower Ju- 1993). rassic: Etter and Kuhn, 2000), and deeper marine The most exceptionally preserved insects in turbidites (e.g. Borreda', Spain, Eocene: Gaudant sedimentary rocks occur in ¢ne-grained laminated and Busquets, 1996). The spatiotemporal distribu- carbonates in lacustrine and shallow marine set- tion of these palaeoenvironments was a major tings, where conditions may be suitable for the control on the insect fossil record. preservation of truly labile soft-tissues (e.g. Soln- Where insects are preserved in calcium carbon- hofen, Germany: Frickhinger, 1994). They pro- ate, precipitation may occur as calcite mud (e.g. vide a basis for contrasting preservation with Green River, USA, Eocene: Ferber and Wells, that in amber. The di¡erent taphonomic processes 1995), aragonite mud (e.g. Rubielos de Mora, that control the preservation of insects in carbon- Spain, Miocene: Pen‹alver, 1998), and dolomite ate rocks and in amber result in samples of di¡er- mud (e.g. Karatau, Kazakhstan, Upper Jurassic: ent insect communities. Amber normally preserves Seilacher et al., 1985). Fossil insects also are pre- insects regardless of their susceptibility to decay, served in a variety of other sedimentary contexts: but selective preservation is often a feature of in- clays and marls (Nel, 1986), siltstones (Mart|¤nez- sect assemblages in carbonates. The occurrence of Delclo's and Nel, 1991), sandstones (Nel et al., insects is normally considered to identify a fossil 1993), lacustrine diatomites (Hong, 1985; Riou, deposit as a Konservat-Lagersta«tte or conserva- 1995), cherts (Whalley and Jarzembowski, 1981), tion deposit (sensu Seilacher, 1970) where the em- evaporites (Priesner and Quievreux, 1935; Schlu«- phasis is on the quality of preservation rather ter and Kohring, 2001), phosphates (Handschin, than the abundance of fossils. Konservat-Lager- 1944), coal measures (Bartram et al., 1987; Shear PALAEO 3225 5-1-04 X. Mart|¤nez-Delclo's et al. / Palaeogeography, Palaeoclimatology, Palaeoecology 203 (2004) 19^64 21 and Kukalova¤-Peck, 1990; Jarzembowski, 2001a), Evidence of ecologic relationships between in- and asphalt (Miller, 1983, 1997; Iturralde-Vinent sects and other animals is sometimes preserved in et al., 2000). Here we focus on the two most im- limestones, where it is usually con¢ned to plant^ portant sources of fossil insects, carbonates and insect interactions (Labandeira, 1998; Waggoner, amber. 1999). Such behaviour is inferred on the basis of Repositories are abbreviated as follows: functional morphology, or gut contents (Schaal MNHN, Muse¤um National d’Histoire Naturelle, and Ziegler, 1992; Krassilov et al., 1997)or Paris, France; PIN, Palaeontological Institute, more commonly coprolites (Rothwell and Scott, Russian Academy of Sciences, Moscow, Russia; 1988), or an array of primary evidence for insect MCAM, Museu de la Cie'ncia, Fundacio¤ ‘La feeding (Ro«Mler, 2000; Labandeira and Phillips, Caixa’, Barcelona, Spain; EPGM, Dept. Estrati- 2002). Amber, on the other hand, commonly re- gra¢a, Paleontologia i Geocie'ncies Marines, Univ. veals interactions, such as reproduction (mating, Barcelona, Barcelona, Spain; MCNA, Museo egg laying), commensalism and parasitism be- Ciencias Naturales de AŁ lava, Vitoria^Gasteiz, tween di¡erent insects, and between insects and Spain; MCCM, Museo de Ciencias de Castilla^ other organisms such as nematodes, spiders, pseu- La Mancha, Cuenca, Spain; MPV,
Recommended publications
  • Hym.: Eulophidae) New Larval Ectoparasitoids of Tuta Absoluta (Meyreck) (Lep.: Gelechidae)
    J. Crop Prot. 2016, 5 (3): 413-418______________________________________________________ Research Article Two species of the genus Elachertus Spinola (Hym.: Eulophidae) new larval ectoparasitoids of Tuta absoluta (Meyreck) (Lep.: Gelechidae) Fatemeh Yarahmadi1*, Zohreh Salehi1 and Hossein Lotfalizadeh2 1. Ramin Agriculture and Natural Resources University, Mollasani, Ahvaz, Iran. 2. East-Azarbaijan Research Center for Agriculture and Natural Resources, Tabriz, Iran. Abstract: This is the first report of two ectoparasitoid wasps, Elachertus inunctus (Nees, 1834) in Iran and Elachertus pulcher (Erdös, 1961) (Hym.: Eulophidae) in the world, that parasitize larvae of the tomato leaf miner, Tuta absoluta (Meyrick, 1917) (Lep.: Gelechiidae). The specimens were collected from tomato fields and greenhouses in Ahwaz, Khouzestan province (south west of Iran). Both species are new records for fauna of Iran. The knowledge about these parasitoids is still scanty. The potential of these parasitoids for biological control of T. absoluta in tomato fields and greenhouses should be investigated. Keywords: tomato leaf miner, parasitoids, identification, biological control Introduction12 holometabolous insects, the overall range of hosts and biologies in eulophid wasps is remarkably The Eulophidae is one of the largest families of diverse (Gauthier et al., 2000). Chalcidoidea. The chalcid parasitoid wasps attack Species of the genus Elachertus Spinola, 1811 insects from many orders and also mites. Many (Hym.: Eulophidae) are primary parasitoids of a eulophid wasps parasitize several pests on variety of lepidopteran larvae. Some species are different crops. They can regulate their host's polyphagous that parasite hosts belonging to populations in natural conditions (Yefremova and different insect families. The larvae of these Myartseva, 2004). Eulophidae are composed of wasps are often gregarious and their pupae can be four subfamilies, Entedoninae (Förster, 1856), observed on the surface of plant leaves or the Euderinae (Lacordaire, 1866), Eulophinae body of their host.
    [Show full text]
  • Hymenoptera: Symphyta: Pamphiliidae, Siricidae, Cephidae) from the Okanagan Highlands, Western North America S
    1 New early Eocene Siricomorpha (Hymenoptera: Symphyta: Pamphiliidae, Siricidae, Cephidae) from the Okanagan Highlands, western North America S. Bruce Archibald,1 Alexandr P. Rasnitsyn Abstract—We describe three new genera and four new species (three named) of siricomorph sawflies (Hymenoptera: Symphyta) from the Ypresian (early Eocene) Okanagan Highlands: Pamphiliidae, Ulteramus republicensis new genus, new species from Republic, Washington, United States of America; Siricidae, Ypresiosirex orthosemos new genus, new species from McAbee, British Columbia, Canada; and Cephidae, Cuspilongus cachecreekensis new genus, new species from McAbee and another cephid treated as Cephinae species A from Horsefly River, British Columbia, Canada. These are the only currently established occurrences of any siricomorph family in the Ypresian. We treat the undescribed new siricoid from the Cretaceous Crato Formation of Brazil as belonging to the Pseudosiricidae, not Siricidae, and agree with various authors that the Ypresian Megapterites mirabilis Cockerell is an ant (Hymenoptera: Formicidae). The Miocene species Cephites oeningensis Heer and C. fragilis Heer, assigned to the Cephidae over a century and a half ago, are also ants. Many of the host plants that siricomporphs feed upon today first appeared in the Eocene, a number of these in the Okanagan Highlands in particular. The Okanagan Highlands sites where these wasps were found also had upper microthermal mean annual temperatures as are overwhelmingly preferred by most modern siricomorphs, but were uncommon
    [Show full text]
  • Experimental Taphonomy Shows the Feasibility of Fossil Embryos
    Experimental taphonomy shows the feasibility of fossil embryos Elizabeth C. Raff*, Jeffrey T. Villinski*, F. Rudolf Turner*, Philip C. J. Donoghue†, and Rudolf A. Raff*‡ *Department of Biology and Indiana Molecular Biology Institute, Indiana University, Myers Hall 150, 915 East Third Street, Bloomington, IN 47405; and †Department of Earth Sciences, University of Bristol, Wills Memorial Building, Queens Road, Bristol BS8 1RJ, United Kingdom Communicated by James W. Valentine, University of California, Berkeley, CA, February 23, 2006 (received for review November 9, 2005) The recent discovery of apparent fossils of embryos contempora- external egg envelope within 15–36 days, but no preservation or neous with the earliest animal remains may provide vital insights mineralization of the embryos within was observed (18). into the metazoan radiation. However, although the putative fossil Anyone who works with marine embryos would consider remains are similar to modern marine animal embryos or larvae, preservation for sufficient time for mineralization via phospha- their simple geometric forms also resemble other organic and tization unlikely, given the seeming fragility of such embryos. inorganic structures. The potential for fossilization of animals at Freshly killed marine embryos in normal seawater decompose such developmental stages and the taphonomic processes that within a few hours. We carried out taphonomy experiments might affect preservation before mineralization have not been designed to uncover the impact of the mode of death and examined. Here, we report experimental taphonomy of marine postdeath environment on the preservational potential of ma- embryos and larvae similar in size and inferred cleavage mode to rine embryos and larvae. presumptive fossil embryos.
    [Show full text]
  • I I 71-15,061 CAMERON, Christopher Paul, 1940- PALEOMAGNETISM of SHEMYA and ADAK ISLANDS, ALEUTIAN ISLANDS, ALASKA. University O
    Paleomagnetism Of Shemya And Adak Islands, Aleutian Islands, Alaska Item Type Thesis Authors Cameron, Christopher Paul Download date 23/09/2021 14:56:00 Link to Item http://hdl.handle.net/11122/9194 I I 71-15,061 CAMERON, Christopher Paul, 1940- PALEOMAGNETISM OF SHEMYA AND ADAK ISLANDS, ALEUTIAN ISLANDS, ALASKA. University of Alaska, Ph.D., 1970 Geology University Microfilms, A XEROX Company, Ann Arbor, Michigan tutc nTCCTDTATTOM MAC HTTM MTPROFIT.MFD F.VAPTT.Y AS RF.OF.TVF.D Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. PALE01IAGNETISM OF SHEMYA AMD ADAK ISLAUDS, ALEUTIAN ISLANDS, ALASKA A DISSERTATION Presented to the Faculty of the University of Alaska in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY by Christopher P/" Cameron B. S. College, Alaska May, 1970 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. PALEOilAGNETISM OF SHEMYA AND ADAK ISLANDS, ALEUTIAN ISLANDS, ALASKA APPROVED: f t l ‘y l .V" ■i. n ■ ■< < ; N w 1 T *W -C ltc-JL It / _ _ ____ /vx... , ~ ~ 7 YdSV Chairman APPPvOVED: dai£ 3 / 3 0 / 7 0 Dean of the College of Earth Sciences and Mineral Industry Vice President for Research and Advanced Study Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. ABSTRACT Paleomagnetic results are presented for Tertiary and Quaternary volcanic rocks from Shemya and Adak Islands, Aleutian Islands, Alaska. The specimens were collected and measured using standard paleomagnetic methods. Alternating field demagnetization techniques were applied to test the stability of the remanence and to remove unwanted secondary components of magnetization.
    [Show full text]
  • Pterosaur Distribution in Time and Space: an Atlas 61
    Zitteliana An International Journal of Palaeontology and Geobiology Series B/Reihe B Abhandlungen der Bayerischen Staatssammlung für Pa lä on to lo gie und Geologie B28 DAVID W. E. HONE & ERIC BUFFETAUT (Eds) Flugsaurier: pterosaur papers in honour of Peter Wellnhofer CONTENTS/INHALT Dedication 3 PETER WELLNHOFER A short history of pterosaur research 7 KEVIN PADIAN Were pterosaur ancestors bipedal or quadrupedal?: Morphometric, functional, and phylogenetic considerations 21 DAVID W. E. HONE & MICHAEL J. BENTON Contrasting supertree and total-evidence methods: the origin of the pterosaurs 35 PAUL M. BARRETT, RICHARD J. BUTLER, NICHOLAS P. EDWARDS & ANDREW R. MILNER Pterosaur distribution in time and space: an atlas 61 LORNA STEEL The palaeohistology of pterosaur bone: an overview 109 S. CHRISTOPHER BENNETT Morphological evolution of the wing of pterosaurs: myology and function 127 MARK P. WITTON A new approach to determining pterosaur body mass and its implications for pterosaur fl ight 143 MICHAEL B. HABIB Comparative evidence for quadrupedal launch in pterosaurs 159 ROSS A. ELGIN, CARLOS A. GRAU, COLIN PALMER, DAVID W. E. HONE, DOUGLAS GREENWELL & MICHAEL J. BENTON Aerodynamic characters of the cranial crest in Pteranodon 167 DAVID M. MARTILL & MARK P. WITTON Catastrophic failure in a pterosaur skull from the Cretaceous Santana Formation of Brazil 175 MARTIN LOCKLEY, JERALD D. HARRIS & LAURA MITCHELL A global overview of pterosaur ichnology: tracksite distribution in space and time 185 DAVID M. UNWIN & D. CHARLES DEEMING Pterosaur eggshell structure and its implications for pterosaur reproductive biology 199 DAVID M. MARTILL, MARK P. WITTON & ANDREW GALE Possible azhdarchoid pterosaur remains from the Coniacian (Late Cretaceous) of England 209 TAISSA RODRIGUES & ALEXANDER W.
    [Show full text]
  • Early Tetrapod Relationships Revisited
    Biol. Rev. (2003), 78, pp. 251–345. f Cambridge Philosophical Society 251 DOI: 10.1017/S1464793102006103 Printed in the United Kingdom Early tetrapod relationships revisited MARCELLO RUTA1*, MICHAEL I. COATES1 and DONALD L. J. QUICKE2 1 The Department of Organismal Biology and Anatomy, The University of Chicago, 1027 East 57th Street, Chicago, IL 60637-1508, USA ([email protected]; [email protected]) 2 Department of Biology, Imperial College at Silwood Park, Ascot, Berkshire SL57PY, UK and Department of Entomology, The Natural History Museum, Cromwell Road, London SW75BD, UK ([email protected]) (Received 29 November 2001; revised 28 August 2002; accepted 2 September 2002) ABSTRACT In an attempt to investigate differences between the most widely discussed hypotheses of early tetrapod relation- ships, we assembled a new data matrix including 90 taxa coded for 319 cranial and postcranial characters. We have incorporated, where possible, original observations of numerous taxa spread throughout the major tetrapod clades. A stem-based (total-group) definition of Tetrapoda is preferred over apomorphy- and node-based (crown-group) definitions. This definition is operational, since it is based on a formal character analysis. A PAUP* search using a recently implemented version of the parsimony ratchet method yields 64 shortest trees. Differ- ences between these trees concern: (1) the internal relationships of aı¨stopods, the three selected species of which form a trichotomy; (2) the internal relationships of embolomeres, with Archeria
    [Show full text]
  • Download Full Article in PDF Format
    comptes rendus palevol 2021 20 20 iles — Jean- pt Cl re au d d n e a R s a n g a e i — b i h P p a l a m e a o f b o i o y l h o p g a y r g a o n e d g p o i a l b a o e DIRECTEURS DE LA PUBLICATION / PUBLICATION DIRECTORS : Bruno David, Président du Muséum national d’Histoire naturelle Étienne Ghys, Secrétaire perpétuel de l’Académie des sciences RÉDACTEURS EN CHEF / EDITORS-IN-CHIEF : Michel Laurin (CNRS), Philippe Taquet (Académie des sciences) ASSISTANTE DE RÉDACTION / ASSISTANT EDITOR : Adenise Lopes (Académie des sciences ; [email protected]) MISE EN PAGE / PAGE LAYOUT : Fariza Sissi (Muséum national d’Histoire naturelle ; [email protected]) RÉVISIONS LINGUISTIQUES DES TEXTES ANGLAIS / ENGLISH LANGUAGE REVISIONS : Kevin Padian (University of California at Berkeley) RÉDACTEURS ASSOCIÉS / ASSOCIATE EDITORS : Micropaléontologie/Micropalaeontology Maria Rose Petrizzo (Università di Milano, Milano) Paléobotanique/Palaeobotany Cyrille Prestianni (Royal Belgian Institute of Natural Sciences, Brussels) Métazoaires/Metazoa Annalisa Ferretti (Università di Modena e Reggio Emilia, Modena) Paléoichthyologie/Palaeoichthyology Philippe Janvier (Muséum national d’Histoire naturelle, Académie des sciences, Paris) Amniotes du Mésozoïque/Mesozoic amniotes Hans-Dieter Sues (Smithsonian National Museum of Natural History, Washington) Tortues/Turtles Juliana Sterli (CONICET, Museo Paleontológico Egidio Feruglio, Trelew) Lépidosauromorphes/Lepidosauromorphs Hussam Zaher (Universidade de São Paulo) Oiseaux/Birds Eric Buffetaut (CNRS, École Normale Supérieure, Paris) Paléomammalogie (mammifères de moyenne et grande taille)/Palaeomammalogy (large and mid-sized mammals) Lorenzo Rook* (Università degli Studi di Firenze, Firenze) Paléomammalogie (petits mammifères sauf Euarchontoglires)/Palaeomammalogy (small mammals except for Euarchontoglires) Robert Asher (Cambridge University, Cambridge) Paléomammalogie (Euarchontoglires)/Palaeomammalogy (Euarchontoglires) K.
    [Show full text]
  • Insect Classification Standards 2020
    RECOMMENDED INSECT CLASSIFICATION FOR UGA ENTOMOLOGY CLASSES (2020) In an effort to standardize the hexapod classification systems being taught to our students by our faculty in multiple courses across three UGA campuses, I recommend that the Entomology Department adopts the basic system presented in the following textbook: Triplehorn, C.A. and N.F. Johnson. 2005. Borror and DeLong’s Introduction to the Study of Insects. 7th ed. Thomson Brooks/Cole, Belmont CA, 864 pp. This book was chosen for a variety of reasons. It is widely used in the U.S. as the textbook for Insect Taxonomy classes, including our class at UGA. It focuses on North American taxa. The authors were cautious, presenting changes only after they have been widely accepted by the taxonomic community. Below is an annotated summary of the T&J (2005) classification. Some of the more familiar taxa above the ordinal level are given in caps. Some of the more important and familiar suborders and families are indented and listed beneath each order. Note that this is neither an exhaustive nor representative list of suborders and families. It was provided simply to clarify which taxa are impacted by some of more important classification changes. Please consult T&J (2005) for information about taxa that are not listed below. Unfortunately, T&J (2005) is now badly outdated with respect to some significant classification changes. Therefore, in the classification standard provided below, some well corroborated and broadly accepted updates have been made to their classification scheme. Feel free to contact me if you have any questions about this classification.
    [Show full text]
  • Photosynthesis and Yield Reductions from Wheat Stem Sawfly (Hymenoptera: Cephidae): Interactions with Wheat Solidness, Water Stress, and Phosphorus Deficiency
    PLANT RESISTANCE Photosynthesis and Yield Reductions From Wheat Stem Sawfly (Hymenoptera: Cephidae): Interactions With Wheat Solidness, Water Stress, and Phosphorus Deficiency 1 KEVIN J. DELANEY, DAVID K. WEAVER, AND ROBERT K. D. PETERSON Department of Land Resources and Environmental Sciences, 334 Leon Johnson Hall, Montana State University, Bozeman, MT 59717Ð3120 J. Econ. Entomol. 103(2): 516Ð524 (2010); DOI: 10.1603/EC09229 ABSTRACT The impact of herbivory on plants is variable and inßuenced by several factors. The current study examined causes of variation in the impact of larval stem mining by the wheat stem sawßy, Cephus cinctus Norton (Hymenoptera: Cephidae), on spring wheat, Triticum aestivum L. We performed greenhouse experiments over 2 yr to 1) study whether biotic (hollow versus solid stemmed host wheat) and abiotic (water, phosphorus stress) factors interact with C. cinctus stem mining to inßuence degree of mined stem physiological (photosynthesis) and yield (grain weight) reductions; and 2) determine whether whole plant yield compensatory responses occur to offset stem-mining reductions. Flag leaf photosynthetic reduction was not detected 16Ð20 d after infestation, but were detected at 40Ð42 d and doubled from water or phosphorus stresses. Main stem grain weight decreased from 10 to 25% from stem mining, largely due to reductions in grain size, with greater reductions under low phosphorus and/or water levels. Phosphorus-deÞcient plants without water stress were most susceptible to C. cinctus, more than doubling the grain weight reduction due to larval feeding relative to other water and phosphorus treatments. Two solid stemmed varieties with stem mining had less grain weight loss than a hollow stemmed variety, so greater internal mechanical resistance may reduce larval stem mining and plant yield reductions.
    [Show full text]
  • Composition and Origin of Jurassic Ammonite Concretions at Gerzen, Germany
    JURASSIC AMMONITE CONCRETIONS COMPOSITION AND ORIGIN OF JURASSIC AMMONITE CONCRETIONS AT GERZEN, GERMANY. By MICHAEL DAVID GERAGHTY, B.Sc. A Thesis Submitted to the School of Graduate Studies in Partial Fulfilment of the Requirements for the Degree Master of Science McMaster University (c) Copyright by Michael David Geraghty, April 1990 MASTER OF SCIENCE (1990) McMaster University (Geology) Hamilton, Ontario TITLE: Composition and Origin of Jurassic Ammonite Concretions at Gerzen, Germany. AUTHOR: Michael David Geraghty, B. Sc. (University of Guelph) SUPERVISOR: Professor G.E.G. Westermann NUMBER OF PAGES: xiii, 154, 17 Figs., 10 Pls. ii ACKNOWLEDGEMENTS I would like to express my sincere gratitude to Dr. Gerd Westermann for allowing me the privilege of studying under his supervision on a most interesting research project. His advice, support and patience were greatly appreciated. I deeply indebted to Mr. Klaus Banike of Gottingen, F. R. Germany for opening his home and his collection of concretions to me and also for his help and friendship. To Erhardt Trute and Family of Gerzen, F.R. Germany, I owe many thanks for their warm hospitality and assistance with my field work. Also Dr. Hans Jahnke of Georg-August University, Gottingen deserves thanks for his assistance and guidance. Jack Whorwood's photographic expertise was invaluable and Len Zwicker did an excellent job of preparing my thin­ sections. Also, Kathie Wright did a great job helping me prepare my figures. Lastly, I would like to thank all those people, they know who they are, from whom I begged and borrowed time, equipment and advice. iii ABSTRACT Study of the ecology of concretion and host sediment fossils from a shell bed in middle Bajocian clays of northwestern Germany indicates a predominantly epifaunal suspension-feeding community living on a firm mud bottom.
    [Show full text]
  • Paleoecology: an Untapped Resource for Teaching Environmental Change
    International Journal of Environmental & Science Education Paleoecology Vol. 4, No. 4, October 2009, 441-447 International Journal of Environmental & Science Education Vol. 3, No. 3, July 2008, xx-xx Paleoecology: An Untapped Resource for Teaching Environmental Change Diana J. Raper Oregon State University, USA Holli Zander Brevard Public Schools, USA Received 06 February 2009; Accepted 13 May 2009 Global warming and climate change have become hot topics that incite debate, inspire scientific research, and influence international policy. However, the scientific research that provides the past climate and environmental information upon which contemporary envi- ronmental change is measured, receives little attention in high school curriculum. Paleoe- cology, the study of ancient ecosystems, provides a unifying theme for teaching multiple high school science curriculum concepts involving global environmental change. As a teaching tool, paleoecology establishes a framework linking concepts such as geologic time, climate change, adaptation, survival, extinction, human impact and ecological interac- tions that are often taught separately. This article provides a brief overview of how the science of paleoecology can be introduced to students and incorporated into the curriculum through simple activities. The activities outlined here include using elevation maps or Ga- zetteers to investigate potential sites where marine fossils may be found far from the ocean, using multiple biological proxies to measure climate change, and creating models to dem- onstrate the impact of sea level rise on coastal ecosystems. These activities provide numer- ous opportunities for the students to discuss the scientific research associated with climate change, the economic impacts of changing climate, and how science may influence policy regarding climate change mitigation.
    [Show full text]
  • Taphonomy of Fossilized Resins: Determining the Biostratinomy of Amber
    Viewmetadata, citation and similar papers at core.ac.uk broughtto you by CORE providedby Revistes Catalanes amb Accés Obert ACTA GEOLOGICA HISPANICA, v. 35 (2000), nº 1-2, p. 171-182 Taphonomy of fossilized resins: determining the biostratinomy of amber G.O. POINAR, Jr.(1) and M. MASTALERZ(2) (1) Department of Entomology, Oregon State University, Corvallis,OR 97330. E-mail: [email protected] (2) Indiana Geological Survey, Indiana University, 611 North Walnut Grove, Bloomington, IN 47405-2208. E-mail: [email protected] ABSTRACT Comparing the maturity of fossilized resins with that of their enclosing bedrock can provide information on the maturity, relative age and biostratinomy of amber and copal. A method to determine this is presented here with examples of amber and copal from the Dominican Republic. Maturity of the bedrock was determined by vitrinite reflection and that of the fossilized resin by FTIR analys i s . Vitrinite oxidation values showed maturity states corresponding to lignite and sub-bituminous coal ranks. While the samples from some mines demonstrated that the maturities of the rock and fossilized resin were syngenetic, other samples indicated that recycling of the amber may have occurred. Darkening of the amber (from yel l o w to red) was correlated with increased oxi d a t i o n / w eathering. Th i s method can be a useful tool for understanding the biostratinomy of fossilized resins. Keywo rd s : Am b e r . Copal. Tap h o n o m y. Maturity. Relative age. Dominican Republi c . IN T RO D U C T I O N to the 30-45 million year dates obtained earlier by Cepek (Schlee, 1990).
    [Show full text]