Geologic Map of the Thatcher Hill Quadrangle and Portions of The

Total Page:16

File Type:pdf, Size:1020Kb

Geologic Map of the Thatcher Hill Quadrangle and Portions of The IDAHO GEOLOGICAL SURVEY TECHNICAL REPORT 11-2 MOSCOW-BOISE-POCATELLO WWW.IDAHOGEOLOGY.ORG KEELEY AND OTHERS Geologic Map of the Thatcher Hill Quadrangle and portions of the Treasureton and Cottonwood Creek Quadrangles, Franklin, Bannock and Caribou Counties, Idaho DESCRIPTION OF MAP UNITS ALLUVIUM (HOLOCENE) - Unconsolidated, poorly to moderately well sorted, CADDY CANYON QUARTZITE, UPPER MEMBER (CRYOGENIAN?) - White, light Qal Zccu matrix- to clast-supported sand and gravel with silt sized loess matrix and brown to blue-gray, well-sorted, fine- to medium-grained quartz arenite. Joshua A. Keeley , David W. Rodgers , Paul K. Link , and Skye Cooley This Technical Report is a reproduction of independent mapping by moderately well-developed soil. Clasts are rounded brown, purple, pink and Medium- to thick-bedded with trough and tabular cross stratification. Up J.A. Keeley, D.W. Rodgers, P.K. Link, and Skye Cooley. Its content white fine- to coarse-grained quartzite cobbles derived from the Neoprotero- section are increasingly more granule conglomerates at the base of thick and format may not conform to agency standards. 2011 zoic to Cambrian Brigham Group and overlying Cambrian carbonate units. beds of quartz arenite. Granules are white, vitreous and pink quartz with Includes stream channel and floodplain deposits. Maximum thickness is 10-15% angular coarse-grained feldspars. Unit is purple to maroon to the Correlation of Map Units 3669 III SE o 4 o 4 111°47’30’’ 37 111 45’ 111 52’30’’ 4 000m 4 4 4 (GRACE POWER PLANT) 34 about 20 m. east. Lower contact is placed at the top of underlying carbonate rocks of the 29 E 30 31 111°50’ 32 o Qls o 38 42 30’ lower member. Forms ledges and slopes. 325 m thick. Qtc 42 30’ 55 Cn Qal Holocene Csw LANDSLIDE DEPOSITS (HOLOCENE) - Unconsolidated, poorly sorted, clast- Qf Cbo Qmc Qls Qt Ql Cn 24 Ql Qbo and matrix-supported pebble to boulder conglomerate and diamict with CADDY CANYON QUARTZITE, LOWER MEMBER (CRYOGENIAN) - White Cwp Qc Qtc? silty loess matrix and well-developed soil. Where above 5440 ft elevation: Zccl orthoquartzite with orange to brown weathered surfaces and liesegang Qoa 47 000 Qc Qbo Cenozoic 05 m N CZcm 47 Qfg Qfg Qbo Ql 05 localized headwall scarps, slump and flow toe geomorphology with clasts banding. Mostly comprised of thick-bedded, medium- to coarse-grained, Pleistocene Qoa Qb derived from Qfg unit. Where on terrace slopes along the Bear River and well-sorted, feldspathic and quartz arenite. Lower portion has several 0.5-2 Qmc Qal Qb lower elevations: mass wasting products derived from Quaternary lake beds meter beds of fine-grained brown argillite with disrupted beds of siltite with 36 Qfg of Qmc and Qbo. Average thickness is about 5-10 m. Maximum thickness in sand injections and convoluted bedding. Top is marked by a 1.5 m thick Tsu Pliocene 25 Cottonwood Valley is 50 m. carbonate unit that contains thin-bedded pink dolostone, massive white to 41 Qoa Cbo yellow recrystallized limestone, and gray to pink dolostone with thin beds of Tsl Miocene 48 Cbl ALLUVIAL FAN DEPOSITS (HOLOCENE) - Low-relief, fan- or apron-like carbonate pebble conglomerate with rare ooids. Thin-bedded yellow argillite Unconformity 60 Qf 32 Qbo landforms that form the transition between valley alluvium and upland and siltite bound this unit above and below. Lower contact placed at the first Cbl sediments. Composed of reworked material from unit that lies immediately tan to white quartite bed above the siltite of the Papoose. Forms ledges and Csw Upper 36 upslope. slopes. 600 m thick. Cambrian 4704 Cn 41 Qfg 47 Qmc 04 CALCAREOUS TRAVERTINE (HOLOCENE-UPPER PLEISTOCENE) - Tufa, calcrete PAPOOSE CREEK FORMATION (CRYOGENIAN) - Brown to gray, fine- to Unconformity 55 Qal Qtc and calcareous travertine. Porous, gray to white to yellowish-gray calcium Zpc medium-grained, moderately well-sorted to poorly sorted, sublitharenite Clb Qc 34 carbonate hotspring and warmspring deposits that form mounds and interbedded with black, brown, and gray-blue, slightly phyllitic siltstone and Cbo 40 Qls Paleozoic 50 benches along valleys. Flowing springs commonly associated with the unit. shale. Sedimentary structures include sand injections, syneresis cracks, slump Middle 40 m thick in Mound Valley. folds and ball and pillow structures.Also contains minor beds of purple Cbl Cambrian 32 33 Ctk argillite and several beds of very thick-bedded, well-sorted white quartz ? Qmc Clb Qbo LOESS (HOLOCENE AND PLEISTOCENE) - Massive to stratified, unconsoli- arenite. Forms platy to blocky talus. Lower contact is not exposed in the field B Clb Clb 32 Ql Csp dated, tan wind blown silts overlying Gem Valley Basalt or older bedrock area but should be placed above gray to black quartz arenite or black to Ctk ? units. Ranges from several centimeters to 8 m thick (Bright, 1967). silver shale of the upper member of the Pocatello Formation. Ledge and 46 Cbl Clb 32 steep hill former. The unit thins from 480 m thick in Cottonwood Creek to 300 42 Clb Csp 47 COLLUVIUM (HOLOCENE AND PLEISTOCENE) - Angular to rounded, pebble- m in the northwest portion of the map area. 03 Clb Qc Lower Cambrian 46 4703 Cwp to cobble-sized quartzite clasts with well-developed loess and soil cover. Cwp ? 38 High-elevation surfaces incised deeply by Pleistocene to Holocene streams. POCATELLO FORMATION (CRYOGENIAN) (Only present in cross section) - Zp 50 Qbo Includes cultivated land and hillsides with thick vegetation and soil cover. Upper member is exposed immediately southeast of the map area where it is CZcm 42 Qmc 48 Thickness is unknown. a thin-bedded, black to brown phyllitic shale interbedded with medium- to Unconformity thick-bedded, black to brown, medium- to coarse-grained sandstone. TERRACE GRAVELS (PLEISTOCENE?) - Unconsolidated, moderately to poorly Regionally present below the upper member is interbedded conglomerate, Zm Csp Qal Qt CZcm Qbo sorted cobble conglomerate that forms terraces up to 8 m above present day diamictite and quartz arenite of the Scout Mountain Member and mafic Zmr Cottonwood Creek. Matrix- to clast-supported, rounded and commonly volcanic rocks of the Bannock Volcanic Member. Total thickness to the north Ediacaran 36 imbricated quartzite cobbles with a fine- to coarse-grained sand matrix. Clast and west, outside the study area is 1,920 m (Link and Stanford, 1999). Zm 33 Neoproterozoic Cwp lithologies are brown, purple, pink, green and white Brigham Group quartz- Brigham Group Unconformity Cwp 4702 ites. A meter of peat locally comprises the top of the terrace. In Mound and GEOLOGIC HISTORY Ctk 47 33 38 Qt 02 Gentile Valleys the unit forms the first terrace topographically up from active Zi floodplain. Up to 8 m thick. Introduction - The map area is located within the southern Portneuf Range Z Undifferentiated Z Undifferentiated Unconformity ? 25 of southeastern Idaho about 70 km southeast of the city of Pocatello. The ALLUVIAL FAN GRAVELS AND SANDS (PLEISTOCENE) - Rounded, poorly map area is bounded on the west and south by Cottonwood Creek, on the 35 Qfg Zccu Qmc sorted cobble to boulder conglomerate with loess and soil matrix. Clasts are east by State Highway 34 and the Bear River, and on the north by 42° 26’ 45’’ CZcm Qmc Qal derived from the Brigham Group and overlying Cambrian carbonate units. latitude. Geologically, the map area is located in the northeastern corner of Zccl Shale chips are also present. Distinguished from the Tertiary Salt Lake the Great Basin physiographic province, in the late Cenozoic Basin and Range Cryogenian Qls Qfg Formation by the absence of red ilmenitic matrix and structural tilting, by the Province, and in the late Mesozoic Sevier thrust belt. Zpc presence of loess and soil, and by the fan morphology. Crops out on the east Zp flank of the range above 5440’ elevation and on the west flank above 6120’ Neoproterozoic to late Cambrian Sedimentation - The Neoproterozoic- 4701 29 41 elevation. Interfingers with fine-grained lake sediments of the Main Canyon Cambrian succession in southeastern Idaho includes the Pocatello Formation CZcm 47 41 Qls 01 Formation. Thickness unknown. (Ludlum, 1942), the Brigham Group (Link et al, 1985), and overlying carbon- ate rocks. The Pocatello Formation includes the basal Bannock Volcanic Qbo Member consisting of greenstones and mafic volcanic rocks, the Scout 42°27’30” 54 Qmc 42°27’30’’ OLDER ALLUVIUM (PLEISTOCENE) - Poorly sorted boulder to fine-grained Qal Qoa deposits on gently sloping valley-floor surfaces, slightly dissected by modern Mountain Member composed of sandstone, argillite, conglomerate, carbon- streams. Only present in Densmore Creek where the current drainage likely ate and diamictite, and the upper member comprising thin-bedded black did not create the observed valley width nor boulder gravels. Deposited in an shale. This succession records the initial rifting of the supercontinent Rodinia Qf Map Symbols incised valley dissecting the Main Canyon Formation. Unit grades into and (Link, 1987; Fanning and Link, 2004) to form a NNW-SSE trending rifted 27 may incise Bonneville Lake sediments. Thickness unknown. margin. The Bannock Volcanic Member represents a rift-related magmatic Qal 39 50 Qal episode prior to or coeval with the deposition of shallow marine glaciogenic Strike and dip of bedding Qmc BONNEVILLE LAKE SEDIMENTS (PLEISTOCENE) - Poorly consolidated stratified and reworked lodgment till and debris flow diamictite (Link; 1983; Crittenden 4700 Qbo gravel and sand deposited along the periphery of Lake Bonneville (30 to et al., 1983; Harper and Link, 1986; Link, 1987). None of the Pocatello CZcm 4700 Contact 10ka; Oviatt and Miller, 1997). Thin-bedded, generally flat lying, light red to Formation is exposed in the map area, but it is inferred to exist at shallow depth and shown in cross sections. Contact, approximately located 35 orange to pink, silts and fine sands that form gently valley-ward sloping 34 37 benches and dissected benches inset into Main Canyon Fm, Gem Valley The cyclic Blackrock Canyon Limestone (Corsetti et al., 2007) overlies the Basalt, and older bedrock units.
Recommended publications
  • SURFICIAL GEOLOGY of the ONEIDA NARROWS AREA, CARIBOU and FRANKLIN COUNTIES, IDAHO HILL THA THA Pgs
    IDAHO GEOLOGICAL SURVEY TECHNICAL REPORT 12-6 MOSCOW-BOISE-POCATELLO IDAHOGEOLOGY.ORG COOLEY AND PEDERSON 1:24,000 Scale REFERENCES Quadrangle, southeastern ID, U.S. Geological Survey calibrated using Lava Creek B tephra, Geology 29, p. Anderson, S.A., 1998, Sedimentology, hydrology, and Miscellaneous Investigations Map, 1:24,000 scale 783-786 sequence stratigraphy of Pleistocene Bear River delta, Armstrong, R.L.; Leeman, W.P.; Malde, H.E., 1975, K-Ar Fiesinger, D.W.; Perkins, W.D.; Puchy, B.J., 1982, TCHER TCHER Cache Valley, ID, MS Thesis, Idaho State University, 61 dating, Quaternary and Neogene volcanic rocks of the Mineralogy and petrology of Tertiary-Quaternary SURFICIAL GEOLOGY OF THE ONEIDA NARROWS AREA, CARIBOU AND FRANKLIN COUNTIES, IDAHO HILL THA THA pgs. Snake River Plain, ID, Journal of Science 275, p. 225- volcanic rocks in Caribou County, ID, in Bonnichsen, B.; Anderson, S.A.; Link, P.K., 1998, Lake Bonneville 251 Breckenridge, R.M. (editors), Cenozoic Geology of ON sequence stratigraphy, Pleistocene Bear River delta, Bouchard, D.P., 1997, Quaternary Bear River Idaho, Idaho Bureau of Mines and Geology Bulletin 26, Skye W. Cooley and Joel L. Pederson Cache Valley, ID, in Pitman, J.K.; Carroll, A.R. paleohydrogeography reconstructed from 87Sr/86Sr p. 465-488 IDAHO ONEIDA RES. composition of lacustrine fossils, MS Thesis, Utah State Gilbert, G.K., 1890, Lake Bonneville, U.S. Geological Utah State University, Department of Geology, Logan UT NARROWS (editors), Modern and Ancient Lake Systems, TREASURET Utah Geological Association Guidebook University, 92 pgs. Survey Monograph 1, 438 pgs. Bouchard D.P.; Kaufman D.S.; Hochberg, A.; Quade J., Hochberg, A., 1997, Aminostratigraphy of Thatcher Basin, LAKE BONNEVILLE SEDIMENTS (PLEISTOCENE) - Poorly- QUADRANGLE 26, p.
    [Show full text]
  • LATE MIOCENE FISHES of the CACHE VALLEY MEMBER, SALT LAKE FORMATION, UTAH and IDAHO By
    LATE MIOCENE FISHES OF THE CACHE VALLEY MEMBER, SALT LAKE FORMATION, UTAH AND IDAHO by PATRICK H. MCCLELLAN AND GERALD R. SMITH MISCELLANEOUS PUBLICATIONS MUSEUM OF ZOOLOGY, UNIVERSITY OF MICHIGAN, 208 Ann Arbor, December 17, 2020 ISSN 0076-8405 P U B L I C A T I O N S O F T H E MUSEUM OF ZOOLOGY, UNIVERSITY OF MICHIGAN NO. 208 GERALD SMITH, Editor The publications of the Museum of Zoology, The University of Michigan, consist primarily of two series—the Miscellaneous Publications and the Occasional Papers. Both series were founded by Dr. Bryant Walker, Mr. Bradshaw H. Swales, and Dr. W. W. Newcomb. Occasionally the Museum publishes contributions outside of these series. Beginning in 1990 these are titled Special Publications and Circulars and each is sequentially numbered. All submitted manuscripts to any of the Museum’s publications receive external peer review. The Occasional Papers, begun in 1913, serve as a medium for original studies based principally upon the collections in the Museum. They are issued separately. When a sufficient number of pages has been printed to make a volume, a title page, table of contents, and an index are supplied to libraries and individuals on the mailing list for the series. The Miscellaneous Publications, initiated in 1916, include monographic studies, papers on field and museum techniques, and other contributions not within the scope of the Occasional Papers, and are published separately. Each number has a title page and, when necessary, a table of contents. A complete list of publications on Mammals, Birds, Reptiles and Amphibians, Fishes, I nsects, Mollusks, and other topics is available.
    [Show full text]
  • PDF Linkchapter
    Index [Italic page numbers indicate major references] Abajo Mountains, 382, 388 Amargosa River, 285, 309, 311, 322, Arkansas River, 443, 456, 461, 515, Abort Lake, 283 337, 341, 342 516, 521, 540, 541, 550, 556, Abies, 21, 25 Amarillo, Texas, 482 559, 560, 561 Abra, 587 Amarillo-Wichita uplift, 504, 507, Arkansas River valley, 512, 531, 540 Absaroka Range, 409 508 Arlington volcanic field, 358 Acer, 21, 23, 24 Amasas Back, 387 Aromas dune field, 181 Acoma-Zuni scction, 374, 379, 391 Ambrose tenace, 522, 523 Aromas Red Sand, 180 stream evolution patterns, 391 Ambrosia, 21, 24 Arroyo Colorado, 395 Aden Crater, 368 American Falls Lava Beds, 275, 276 Arroyo Seco unit, 176 Afton Canyon, 334, 341 American Falls Reservoir, 275, 276 Artemisia, 21, 24 Afton interglacial age, 29 American River, 36, 165, 173 Ascension Parish, Louisana, 567 aggradation, 167, 176, 182, 226, 237, amino acid ash, 81, 118, 134, 244, 430 323, 336, 355, 357, 390, 413, geochronology, 65, 68 basaltic, 85 443, 451, 552, 613 ratios, 65 beds, 127,129 glaciofluvial, 423 aminostratigraphy, 66 clays, 451 Piedmont, 345 Amity area, 162 clouds, 95 aggregate, 181 Anadara, 587 flows, 75, 121 discharge, 277 Anastasia Formation, 602, 642, 647 layer, 10, 117 Agua Fria Peak area, 489 Anastasia Island, 602 rhyolitic, 170 Agua Fria River, 357 Anchor Silt, 188, 198, 199 volcanic, 54, 85, 98, 117, 129, Airport bench, 421, 423 Anderson coal, 448 243, 276, 295, 396, 409, 412, Alabama coastal plain, 594 Anderson Pond, 617, 618 509, 520 Alamosa Basin, 366 andesite, 75, 80, 489 Ash Flat, 364 Alamosa
    [Show full text]
  • 1 Bear River Basin: Middle Bear Watershed Watershed Description the Middle Bear Watershed Includes All Land That Drains to the B
    Bear River Watershed Fact Sheets- Middle 1 English Units Revision 7/11/07 Bear River Basin: Middle Bear Watershed Watershed Description The Middle Bear Watershed includes all land that drains to the Bear River From below Alexander Dam in Idaho to Cutler Dam in Utah. It is the second largest watershed in the Bear River Basin, draining 3,230 km2. AFter the river leaves Alexander Reservoir, it makes a hairPin turn around SheeP Rock and heads south. At Grace Dam water is diverted into an aQueduct and delivered to the Grace Power Plant at Cove Dam. The river continues through the wide, relatively flat Gem and Gentile Valleys in Idaho, passes through Oneida Reservoir, and continues south through Cache Valley in Idaho and Utah. The river Flows through Cutler Reservoir and enters a narrow canyon. On its 180 kilometer journey through this watershed, the river loses about 410 meters in elevation. The highest Point in the watershed is Mt. Naomi (3040 meters) in the Naomi Peak Wilderness Area. The lowest Point is below Cutler Dam (1320 meters). Alexander Dam, Idaho-Jay Baker, USU Tributaries and Reservoirs The Cub River is the largest tributary oF the Bear River in this reach. It drains 575 km2.Other tributaries include: Cottonwood Creek Weston Creek Newton Creek Summit Creek Birch Creek There are 15 lakes and watersheds scattered throughout the Middle Bear Bear River in Gentile Valley, Idaho-Unknown Watershed. Oneida Narrows Reservoir, located on the mainstem oF the Bear River in Idaho, stores the most water. Other reservoirs include Twin Lakes, Foster, Glendale, Lamont, Strong Arm, Treasureton and Newton Reservoirs.
    [Show full text]
  • Models and Great Basin Prehistory a Symposium
    REPRINTED FROM MODELS AND GREAT BASIN PREHISTORY A SYMPOSIUM EDITED BY DON D. FOWLER DESERT RESEARCH INSTITUTE PUBLICATIONS IN THE SOCIAL SCIENCES NO, 12 EDITOR: DON D. FOWLER ASSOCIATE EDITOR: ALMA SMITH 1977 GREAT BASIN LATE QUATERNARY ENVIRONMENTS AND CHRONOLOGY' PETER J. MEHRINGER, JR. WASHINGTON STATE UNIVERSITY ABSTRACT Evidence for the magnitude and chronology of Great Basin climatic change comes from plant macrofossils of dry caves, fluctuating lake levels, spring discharge and tree lines, dune activity, peat formation in desert salt marshes, and arroyo cutting and filling. About 12,000-10,000 B.P. pluvial lakes began to dry and by 7500 B.P. climatic conditions were much like the present. With minor fluctuations, relative aridity per- sisted until about 4000 B.P. and was followed by increased effective moisture. The dynamic nature of Great Basin environments is apparent whether measured by geological or biological criteria. There were several periods when regional climatic change was sufficient to warrant investigations of its possible influence on human populations; locally, volcanic or tectonic activity may have been even more important. How- ever, instability of the last 10,000 years is no more dramatic than the ecological variation encountered by Great Basin inhabitants within a single year. Variability itself may have been most important in shaping cultural or technological adaptations. The influence of climatic change on man is best considered in terms of evidence for its effect on local resources. INTRODUCTION Great Basin anthropologists have assumed an important link between man and environment, and interpretations of cultural change have been influenced by notions of the magnitude and chronology of climatic history.
    [Show full text]
  • 32567727.Pdf
    Utah State University DigitalCommons@USU All Graduate Theses and Dissertations Graduate Studies 5-1997 Quaternary Bear River Paleohydrogeography Reconstructed from the 87Sr/86Sr Composition of Lacustrine Fossils David P. Bouchard Follow this and additional works at: https://digitalcommons.usu.edu/etd Part of the Geology Commons Recommended Citation Bouchard, David P., "Quaternary Bear River Paleohydrogeography Reconstructed from the 87Sr/86Sr Composition of Lacustrine Fossils" (1997). All Graduate Theses and Dissertations. 4424. https://digitalcommons.usu.edu/etd/4424 This Thesis is brought to you for free and open access by the Graduate Studies at DigitalCommons@USU. It has been accepted for inclusion in All Graduate Theses and Dissertations by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. QUATERNARY BEAR RIVER PALEOHYDROGEOGRAPHY RECONSTRUCfED FROM THE 87Sr/86Sr COMPOSITION OF LACUSTRINE FOSSILS by David P. Bouchard A thesis submitted in partial fulfi ll ment of the requirements for the degree of MASTER OF SCIENCE in Geology Approved: UTAH STATE UNNERSITY Logan, Utah 1997 ii Copyright © David P. Bouchard All Ri ghts Reserved iii ABS1RACT Quaternary Bear River Paleohydrogeography Reconstructed from the 87Sr/86Sr Composition of Lacustrine Fossils by David P. Bouchard, Master of Science Utah State Uni versity, 1997 Major Professor: Dr. Darrell S. Kaufman Department: Geology Diverted from its former course to the Pacific Ocean by basalt flows in Gem Valley, Idaho, the Bear River presently flows south into the Bonneville Basin . Constraining the timing of the river's diversion is pivotal to understanding the hydrologic budgets, tmd thus the climatological implications of the Bonneville Basin lakes.
    [Show full text]
  • Mineralization in the Bear River Range, Utah-Idaho
    Utah State University DigitalCommons@USU All Graduate Theses and Dissertations Graduate Studies 5-1975 Mineralization in the Bear River Range, Utah-Idaho John C. Chappelle Utah State University Follow this and additional works at: https://digitalcommons.usu.edu/etd Part of the Geology Commons Recommended Citation Chappelle, John C., "Mineralization in the Bear River Range, Utah-Idaho" (1975). All Graduate Theses and Dissertations. 3171. https://digitalcommons.usu.edu/etd/3171 This Thesis is brought to you for free and open access by the Graduate Studies at DigitalCommons@USU. It has been accepted for inclusion in All Graduate Theses and Dissertations by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. ii ACKNOWLEDGMENTS I express thanks to Dr. Donald R. Olsen for his patience, guidance, and criticism during the completion of this study. Apprecia- tion is also expressed to Dr. Clyde T. Hardy, Dr. Raymond L. Kerns , Jr., and Dr. Robert Q. Oaks, Jr., for their assistance and suggestions. I would also like to use this opportunity to express my appreciation to the many people of northern Utah and southeastern Idaho who have assisted me in locating and gaining access to the mineral deposits studied. Particular appreciation is expressed to Mr . Leroy Smith of Preston, Idaho, Mr. A. C. Wardell and Mr. Roy Taylor of Clifton, Idaho, Mr. Harold Lowe of Grace, Idaho, Mr. Fred Minnig of Georgetown, Idaho , and Judge Thorley Swan of Kaysville, Utah. Finally, and most of all, I want to thank my wife, Peggie, for her patience, encouragement, and assistance. John C.
    [Show full text]
  • Boise, Idaho 1969
    UNITED STATES DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY Water Resources Division AVAILABILITY OF GROUND WATER FOR LARGE-SCALE USE IN THE MALAD VALLEY-BEAR RIVER AREAS OF SOUTHEASTERN IDAHO AN INITIAL ASSESSMENT By W. L. Burnham, A. H. Harder, and N. P. Dion Prepared for the Idaho Water Resource Board in cooperation with the Idaho Department of Reclamation OPEN-FILE REPORT Boise, Idaho 1969 CONTENTS Page Abstract----------- - ------- ____ __ ._ __ _ _ ^ Introduction 2 Objective and scope - - - ------ --.-~~ _- _ 2 Location and general features--------------------- 3 Malad Valley area- -- - - ---- ----- _ _-- 5 Generalized geology- --- - - -----------,----- 5 Physiography- ___-_--__ _ _______ __ _ 7 Mountains- ----- _ -__ _ ___ 7 Alluvial apron- ----- ____ -____ ___ 7 LaK.e teatures ~ *-_ y Valley floor- -------- -___ - --- 9 Principal lithologic units- ----- --- -- 9 Structural features- _____^_--_ - ___. 13 Valley-fill reservoir- __.___.- __._ _ _,«__ }.4 Extent and boundaries-- - ...----,--- - -* - 14 Distribution of water-bearing units-------*-- 16 Source and occurrence of ground water ----- is Hydrologic features of the valley-fill reservoir- 20 Area of recharge- --------- ____________ 20 Ground-water movement ------ - -,_-__ ____ 21 Areas of discharge -..-___---__---__ ____ 21 Evapotranspiration--------------------- 22 Seeps and springs- -,-- ---------- -- 22 ir"D 1U.Ill|JUiy T TYl V~\ ~l T^ /T »- « *>-- - _ _ _ _ _ +1*. _ «_ «« H «. _ « « .«. * « H « . « ZO fl^ Subsurface outflow------------- -- 24 Water-level changes __-_».-_-._- -- - -- 25 Estimated storage in principal water-bearing ln>u.n_L-.Tj_,-i__ uo _ ^ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _ _ _ _ __ _ _ ___ _ _ _ _ zOQ o The available ground-water supply- - - 28 Specific yield ____,-____- -_ -__ _ 28 Ground-water from storage ----».- ---_ 30 Summary of availability- ------ - -- 33 Water quality problems -___-__- -- -- --- 33 Conclusions " -- ^ <- »- jzj.
    [Show full text]
  • Caribou County, Idaho
    Caribou County, Idaho o Tincup o 112 00 Mtn 111 10 PPPs Qb Qs PPP s Grays TR s o Qb Qb Ms Lk. 43 00 Tps Ms Qa Qa Ks Putnam Qs Qb Ms Qb PPPs Thrust OCs Chesterfield Wayan Gannett Hills Qb Ks Js Fort Hall Ind. Res. TTR R ss TR s Qa Tps Portneuf Js Qs OCs PPP s Blackfoot CZb Ms Qs Res. M Qs PPP s e Tps TR s a PPP s TR s Henry de Chesterfield TR s Rge. T Rv h Ms PPP s ru Portneuf Rge Qa Tps s t Js Portneuf Valley Ms Qf Js Tps PPP s Qs Qf China Qa Qa TR s Ks Qb Qf Cap TR s CZb Ms Blackfoot China Hat Qb Lava Field Qa Qa Bonneville TR s Pk. Conda TR s O Qs PPPs Tps ld Os TR s Qs H Paris Qs Tps wy Qs Ms Ds Paris Qa 3 PPPs Bancroft 0 Ds Aspen Rge Fish Crk. Rge. Ss TR s TR s Qa Os Os Qa Thrust Qa Ds Thrust PPPs 30 Soda Ms Tps Qa Springs TR s Gem Valley Tps PPPs Qb Qa PPPs Ms Os Tps 30 Ms PPPs Ms Grace Ms Ms Ms Js Ks Os 34 Preuss Cs Qa Os Qa Rge Ms Ms Cs o PPPs 42 30 Cs Cs Qs Qa Qs CZb Os 05 10 miles 08 16 kilometers 1:500,000 Digital Atlas of Idaho, Nov. 2002 http://imnh.isu.edu/digitalatlas Compiled by Paul K. Link, Idaho State University, Geosciences Dept.
    [Show full text]
  • A Reconnaissance of the Water Resources in the Portneuf River
    WATER INFORMATlON BULLETIN NO. I6 A RECONNAISSANCE OF THE WATER RESOURCES IN THE PORTNEUF RIVER BASTN, IDAHO by R.F. Norvitch and A.L. Lawn United States GeologicaI Survey Prepared by the United States Geological Survey in Cooperation with Idaho Department of Reclamation Published by Idaho Department of Reclamation R. Keith Higinson State Reclamation Engineer CONTENTS Page Abstract .................................................... 1 Introduction ................................................2 Purpose and scope ..........................................2 Previous studies ........................................... 7 Acknowledg~nenlts .........................................-4 Numbering systcrn .......................................... 4 Use ot' metric units ..........................................4 Physiography ................................................h Topography and landforms ...................................h Drainage ..................................................7 Uppervalley .............................................7 Lower valley .............................................8 Climate ...................................................8 Gcologic units and their water- bearing characteristics ................11 Wa tcr resources .............................................1 6 Sources ..................................................16 Groundwater ............................................. IS Water-level fluctuations .................................. 19 Well and aquifer charactcrjstics .............................23
    [Show full text]
  • Investigation of the Ground Water Flow System in Gem Valley
    INVESTIGATION OF THE GROUND WATER FLOW SYSTEM IN GEM VALLEY by Marc A, Norton Idaho Department of Water Resources Boise, Idaho September 1981 INVESTIGATION 01<' THE GROUND WATER PLOW SYSTEM IN GEM VALLEY Page ACKNOWLEDGEMENTS 1 INTRODUCTION 2 Location of Gem Valley----------------- 2 Scope of the Report-------------------- 2 GEOHYDROLOGIC SETTING---------------------- 4 Geology-------------------------------- 4 Hydrology------------------------------ 11 WELL DESIGN AND ITS AFFECT ON PUMPING LEVELS----------------------- 22 CONCLUSIONS-------------------------------- 27 RECOMMENDATIONS 28 REFERENCES--------------------------------- 29 LIST OF FIGURES AND TABLES Figures Page 1. Location of Gem Valley, Portneuf Valley and Gentile Valley-------------------------- 3 2. Geologic map of Thatcher Basin and geologic cross sections (Bright, 1963) --------------- 5 3a-i. Development of Lake Thatcher and the present day drainage pattern (Bright, 1963) --------- 6-8 4. Ground water contour map showing the location of the divide and tl1e direction of flow----- 13 5. Location of observation wells------------------ 15 6. Hydrographs from several wells in Gem Valley 16 7. Hydrograph of domestic well TlOS-R40E-5CBB and precipitation data from Grace, Idaho 18 8. Hydrograph of domestic well T9S-R39E-23BAD ----- 19 9. Hydrographs showing long term ground water level fluctuations-------------------------- 20 10. Well designs for a shallow well---------------- 25 11. Well designs for a deep well------------------- 26 Tables 1. Specific capacity of several wells in Gem and Portneuf Valleys (Norvitch & Larson, 1970) 23 1 ACKNOWLEDGMENTS The author would like to thank the residents of Gem Valley for their cooperation during the investigation by allowing access to IDWR field personnel, The assistance of John D. Carlson and Harold W. Jones, IDWR staff personnel, during the data collection phase is greatly appreciated.
    [Show full text]
  • Chronological Listing
    Utah State University Department of Geology Chronological Listing of Reports, Theses, and Dissertations Publication Type: R = Report, T = Thesis, D = Dissertation UST = Undergraduate Senior Thesis Digital Department Name Year Title Advisor Type Commons Library Cooley, I. Lavell 1928 The Devonian of the Bear River Range, Utah unknown T Yes Yes The Geology of a Part of the Bear River Range and Some Peterson, Vic E. 1936 unknown T Yes Yes Relationships That It Bears with the Rest of the Range Young, J. Llewellyn 1939 Glaciation in the Logan Quadrangle, Utah J. Stewart Williams T Yes Yes Maxey, George B. 1941 Cambrian Stratigraphy in the Northern Wasatch Region J. Stewart Williams T Yes Yes Phosphate Deposits in Western Summit, Wasatch, Salt Lake, Hanson, Alvin M. 1942 J. Stewart Williams T Yes Yes Morgan, and Weber Counties, Utah Yolton, James S. 1943 The Dry-Lake Section of the Brazer Formation J. Stewart Williams T Yes Yes Keller, Allen S. 1952 Geology of the Mink Creek Region, Idaho Armand J. Eardley T Yes Yes Geology of the Rendezvous Peak Area, Cache and Box Elder Ezell, Robert L. 1953 Clyde T. Hardy T Yes Yes Counties, Utah Adamson, Robert D. 1955 The Salt Lake Group in Cache Valley, Utah and Idaho Clyde T. Hardy T Yes Yes The Worm Creek Quartzite Member of the St. Charles Haynie, Anthon V., Jr. 1957 J. Stewart Williams T Yes Yes Formation, Utah-Idaho Prammani, Prapath 1957 Geology of the East-Central Part of the Malad Range, Idaho J. Stewart Williams T Yes Yes Geology of the Northern Part of the Wellsville Mountain, Beus, Stanley S.
    [Show full text]